首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Polymict samples can be used to establish mass-balance constraints regarding the bulk composition of the lunar crust, and to gauge the degree of regional heterogeneity in the composition of the lunar crust. The most ideally polymict type of sample is finely-mixed regolith (lunar soil), or its lithified equivalent, regolith breccia. Fortunately, lunar regolith breccias can occasionally be found at great distances from their points of origin — most of the known lunar meteorites are regolith breccias. We are searching for examples of exotic regolith samples among the Apollo regolith breccia collection. Most of the 21 Apollo regolith breccias analyzed for this study strongly resemble the local soils over which they were collected. Nine regolith breccias from Apollo 16 are surprisingly mature compared to previously-analyzed Apollo 16 regolith breccias, and six of the seven from Apollo 16 Station 5 have lower, more local-soil-like,mg ratios than previously analyzed regolith breccias from this station. Several of the Apollo 14 regolith breccias investigated show significantly highermg, and lower Al, than the local soils.The most interesting sample we have investigated is 14076,1, from a lithology that constitutes roughly half of a 2.0-g pebble. The presence of spherules indicates a regolith derivation for 14076,1, yet its highly aluminous (30 wt.% Al2O3) composition is clearly exotic to the 1.6-km traverse surface over which the Apollo 14 samples were collected. This sample resembles soils from the Descartes (Apollo 16) highlands far more than it does any other polymict sample from the Fra Mauro (Apollo 14) region. The I/sFeO maturity index is extremely low, but this may be a result of thermal annealing. A variety of siderophile elements occur in 14076,1 at typical regolith concentrations. The chemistry of the second most aluminous regolith sample from Apollo 14, 14315, can only be roughly approximated as a mixture of local regolith and 14076,1-like material. However, the low a priori statistical probability for long-distance horizontal transport by impact cratering, along with the relatively high contents of incompatible elements in 14076,1 (despite its high Al content), suggest that this regolith breccia probably originated within a few hundred kilometers of the Appollo 14 site. If so, its compositional resemblance to ferroan anorthosite tends to suggest that the regional crust is, or originally was, far richer in ferroan anorthosite than implied by the meager statistics for pristine rocks from this site. Thus, 14076,1 tends to strengthen the hypothesis that ferroan anorthosite originated as the flotation crust of a global magmasphere.  相似文献   

2.
Some breccias from the lunar highlands have probably trapped solar wind gases at a very early epoch in the history of the moon, as implied by their high contents of parentless fissiogenic xenon and sometimes, of parentless radiogenic129Xe. Four samples of this type, on which noble gas data already exist, have been selected for analysis of nitrogen contents and isotopic composition, by using step-wise heating techniques: 14047, 14055, 14307, 60255. Since uncertainties in the evolution of the solar wind15N/14N ratio with time are due in part to uncertainties in the measurement of the epoch of exposure, those samples provided the opportunity to measure the isotopic composition of nitrogen which has been trapped in the remote past, avoiding the problems inherent in the use of spallogenic nuclides. Results show that, in the samples studied from the Apollo 14 landing site, nitrogen is not particularly light, and has not been acquired, as a whole, in very ancient times. The conflicting presence of both parentless xenon and nitrogen of relatively “recent” isotopic signature can be explained if the hypothetical light nitrogen is diluted by more abundant, heavier nitrogen. Accordingly, the very ancient soil components which are implied in these objects by the presence of excess fission xenon have been re-exposed at a much later epoch, or mixed with some younger soil components, before the compaction event. The present data do not question the hypothesis of a secular isotopic variation of lunar trapped nitrogen, but cannot prove that very light nitrogen was trapped together with parentless fission xenon in the soil components of the highlands soil breccias. The very unusual release pattern of nitrogen in breccia 60255 can result from nitrogen isotopic homogenization with gas loss.  相似文献   

3.
Abundances and isotopic compositions of all the stable noble gases have been measured in 19 different depths of the Apollo 15 deep drill core, 7 different depths of the Apollo 16 deep drill core, and in several surface fines and breccias. All samples analyzed from both drill cores contain large concentrations of solar wind implanted gases, which demonstrates that even the deepest layers of both cores have experienced a lunar surface history. For the Apollo 15 core samples, trapped4He concentrations are constant to within a factor of two; elemental ratios show even greater similarities with mean values of4He/22Ne= 683±44,22Ne/36Ar= 0.439±0.057,36Ar/84Kr= 1.60±0.11·103, and84Kr/132Xe= 5.92±0.74. Apollo 16 core samples show distinctly lower4He contents,4He/22Ne(567±74), and22Ne/36Ar(0.229±0.024), but their heavy-element ratios are essentially identical to Apollo 15 core samples. Apollo 16 surface fines also show lower values of4He/22Ne and22Ne/36Ar. This phenomenon is attributed to greater fractionation during gas loss because of the higher plagioclase contents of Apollo 16 fines. Of these four elemental ratios as measured in both cores, only the22Ne/36Ar for the Apollo 15 core shows an apparent depth dependance. No unambiguous evidence was seen in these core materials of appreciable variations in the composition of the solar wind. Calculated concentrations of cosmic ray-produced21Ne,80Kr, and126Xe for the Apollo 15 core showed nearly flat (within a factor of two) depth profiles, but with smaller random concentration variations over depths of a few cm. These data are not consistent with a short-term core accretion model from non-irradiated regolith. The Apollo 15 core data are consistent with a combined accretion plus static time of a few hundred million years, and also indicate variable pre-accretion irradiation of core material. The lack of large variations in solar wind gas contents across core layers is also consistent with appreciable pre-accretion irradiation. Depth profiles of cosmogenic gases in the Apollo 16 core show considerably larger concentrations of cosmogenic gases below ~65 cm depth than above. This pattern may be interpreted either as an accretionary process, or by a more recent deposition of regolith to the upper ~70 cm of the core. Cosmogenic gas concentrations of several Apollo 16 fines and breccias are consistent with ages of North Ray Crater and South Ray Crater of ~50·106 and ~2·106 yr, respectively.  相似文献   

4.
We performed nitrogen and argon isotopic analyses in single 200-μm-sized ilmenite grains of lunar regolith samples 71501, 79035 and 79135. Cosmogenic and trapped components were discriminated using stepwise heating with a power-controlled CO2 laser. Cosmogenic 15N and 38Ar correlate among different ilmenite grains, yielding a mean 15Nc/38Arc production ratio of 14.4±1.0 atoms/atom. This yields a 15N production rate in bulk lunar samples of 3.8-5.6 pg (g rock)−1 Ma−1, which agrees well with previous estimates. The trapped δ15N values show large variations (up to 300‰) among different grains of a given soil, reflecting complex histories of mixing between different end-members. The 36Ar/14N ratio, which is expected to increase with increasing contribution of solar ions, varies from 0.007 to 0.44 times the solar abundance ratio. The trapped δ15N values correlate roughly with the 36Ar/14N ratios from a non-solar end-member characterized by a 36Ar/14N ratio close to 0 and variable but generally positive δ15N values, to lower δ15N values accompanied by increasing 36Ar/14N ratios, supporting the claim of Hashizume et al. (2000) that solar nitrogen is largely depleted in 15N relative to meteoritic or terrestrial nitrogen. Nevertheless, the 36Ar/14N ratio of the 15N-depleted (solar) end-member is lower than the solar abundance ratio by a factor of 2.5-5. We explain this by a reprocessing of implanted solar wind atoms, during which part of the chemically inert rare gases were lost. We estimate that the flux of non-solar N necessary to account for the observed δ15N values is comparable to the flux of micrometeorites and interplanetary dust particles estimated for the Earth. Hence we propose that the variations in δ15N values observed in lunar regolith can be simply explained by mixing between solar wind contributions and micrometeoritic ones infalling on the Moon. Temporal variations of δ15N values among samples of different antiquities could be due to changes in the micrometeoritic flux through time, in which case such flux has increased by up to an order of magnitude during the last 0.5 Ga.  相似文献   

5.
Oxygen isotope measurements of phosphate from fish teeth and bones   总被引:2,自引:0,他引:2  
In situ measurements of lunar surface brightness temperatures made as a part of the Apollo Lunar Surface Experiments Package at the Apollo 15 Hadley Rille landing site are reported. Data derived from 5 thermocouples of the Heat Flow Experiment, which are lying on or just above the surface, are used to examine the thermal properties of the upper 15 cm of the lunar regolith using eclipse and nighttime cool-down temperatures. Application of finite-difference techniques in modeling the lunar soil shows the thermocouple data are best fit by a model consisting of a low-density and low-thermal conductivity surface layer approximately 2 cm thick overlying a region increasing in conductivity and density with depth. Conductivities on the order of 1 × 10?5 W/cm-°K are postulated for the upper layer, with conductivity increasing to the order of 1 × 10?4 W/cm-°K at depths exceeding 20 cm. An increase in mean temperature with depth indicates that the ratio of radiative to conductive transfer at 350°K is 2.7 for at least the upper few centimeters of lunar soil; this value is nearly twice that measured for returned lunar fines. The thermal properties model deduced from Apollo 15 surface temperatures is consistent with earth-based microwave observations if electrical properties measured on returned lunar fines are assumed.  相似文献   

6.
We report new high-precision laser fluorination three-isotope oxygen data for lunar materials. Terrestrial silicates with a range of δ18O values (− 0.5 to 22.9‰) were analyzed to independently determine the slope of the terrestrial fractionation line (TFL; λ = 0.5259 ± 0.0008; 95% confidence level). This new TFL determination allows direct comparison of lunar oxygen isotope systematics with those of Earth. Values of Δ17O for Apollo 12, 15, and 17 basalts and Luna 24 soil samples average 0.01‰ and are indistinguishable from the TFL. The δ18O values of high- and low-Ti lunar basalts are distinct. Average whole-rock δ18O values for low-Ti lunar basalts from the Apollo 12 (5.72 ± 0.06‰) and Apollo 15 landing sites (5.65 ± 0.12‰) are identical within error and are markedly higher than Apollo 17 high-Ti basalts (5.46 ± 0.11‰). Evolved low-Ti LaPaz mare-basalt meteorite δ18O values (5.67 ± 0.05‰) are in close agreement with more primitive low-Ti Apollo 12 and 15 mare basalts. Modeling of lunar mare-basalt source composition indicates that the high- and low-Ti mare-basalt mantle reservoirs were in oxygen isotope equilibrium and that variations in δ18O do not result from fractional crystallization. Instead, these differences are consistent with mineralogically heterogeneous mantle sources for mare basalts, and with lunar magma ocean differentiation models that result in a thick feldspathic crust, an olivine–pyroxene-rich mantle, and late-stage ilmenite-rich zones that were convectively mixed into deeper portions of the lunar mantle. Higher average δ18O (WR) values of low-Ti basalts compared to terrestrial mid ocean ridge basalts (Δ=0.18‰) suggest a possible oxygen isotopic difference between the terrestrial and lunar mantles. However, calculations of the δ18O of lunar mantle olivine in this study are only 0.05‰ higher than terrestrial mantle olivine. These observations may have important implications for understanding the formation of the Earth–Moon system.  相似文献   

7.
207Pb/206Pb of “low temperature sited” (LTS) lead as reported by Silver (1975) increases with40Ar/36Ar of trapped argon in thirteen samples from lunar maria. This strongly supports an earlier conclusion by (1972) that large (40Ar/36Ar)T ratios represent ancient regolith records, and provides a rough (40Ar/36Ar)T timescale.The erasure of (40Ar/36Ar)T records in surface soils by the excavation of deep-seated, “fresh” bedrock and by erosion of particle surfaces via ion sputtering must have been counteracted by conserving processes in the regolith. Two such processes are relatively well understood: agglutinate formation and the excavation and comminution of soil breccias which have preserved an ancient (40Ar/36Ar)T record. The frequency distribution of (40Ar/36Ar)T in 82 “soils” from all Apollo missions suggests a third process, which requires that sizeable “pockets” of ancient regolith materials including soils have survived deep turnover for billions of years.Large-scale mobility of LTS lead throughout all of the regolith does not appear to occur.Inert gas ions with sufficient energy for trapping may have reached the lunar surface more than 3 b.y. ago.The Apollo 11 microbreccias appear to have been formed more than 3 b.y. ago from regoliththen extant on the surface.  相似文献   

8.
Tritium is measured as a function of depth in a Surveyor 3 sample. The upper limit for solar-wind-implanted tritium gives a3H/1H limit for the solar wind of 1 × 10?11. The temperature release patterns of14C from lunar soils are measured. The14C release patterns from surface soils differ from a trench bottom soil and gives evidence for the presence of14C in the solar wind with a14C/1H ratio of approximately 4 × 10?11. The implications of these radio nuclide abundances in the solar wind are discussed.  相似文献   

9.
A summary of experiments and analyses concerning electromagnetic induction in the Moon and other extraterrestrial bodies is presented. Magnetic step-transient measurements made on the lunar dark side show the eddy current response to be the dominant induction mode of the Moon. Analysis of the poloidal field decay of the eddy currents has yielded a range of monotonic conductivity profiles for the lunar interior: the conductivity rises from 3·10?4 mho/m at a depth of 170 km to 10?2 mho/m at 1000 km depth. The static magnetization field induction has been measured and the whole-Moon relative magnetic permeability has been calculated to be μμ0 = 1.01 ± 0.06. The remanent magnetic fields, measured at Apollo landing sites, range from 3 to 327 γ. Simultaneous magnetometer and solar wind spectrometer measurements show that the 38-γ remanent field at the Apollo 12 site is compressed to 54 γ by a solar wind pressure increase of 7·10?8 dyn/cm2. The solar wind confines the induced lunar poloidal field; the field is compressed to the surface on the lunar subsolar side and extends out into a cylindrical cavity on the lunar antisolar side. This solar wind confinement is modeled in the laboratory by a magnetic dipole enclosed in a superconducting lead cylinder; results show that the induced poloidal field geometry is modified in a manner similar to that measured on the Moon. Induction concepts developed for the Moon are extended to estimate the electromagnetic response of other bodies in the solar system.  相似文献   

10.
Nitrogen isotope fractionations have been measured in Fischer-Tropsch and Miller-Urey reactions in order to determine whether these processes can account for the large15N/14N ratios found in organic matter in carbonaceous chondrites. Polymeric material formed in the Fischer-Tropsch reaction was enriched in15N by only 3‰ relative to the starting material (NH3). The15N enrichment in polymers from the Miller-Urey reaction was 10–12‰. Both of these fractionations are small compared to the 80–90‰ differences observed between enstatite chondrites and carbonaceous chondrites. These large differences are apparently due to temporal or spatial variations in the isotopic composition of nitrogen in the solar nebula, rather than to fractionation during the production of organic compounds.  相似文献   

11.
The Gd and Sm isotopic compositions have been measured in the Luna 16, G-2 soil. This sample has the largest low energy neutron fluence ψ = 5.9 × 1016n/cm2 (E < 0.18eV) yet observed in a lunar sample. The ratio of the number of neutrons captured per atom by149Sm to157Gd is 0.76 which is distinct from the value of 0.86 observed at the Apollo 11, 12 and 14 sites. This indicates a softer neutron energy spectrum at the Sea of Plenty.  相似文献   

12.
The Luna 16 regolith sample differs from Apollo 11, 12 and 14 regolith and basalt samples by having smaller negative Eu and Sr anomalies and nearly chondritic Eu/Sm and Eu/Sr ratios although the overall REE, Ba, Sr and U concentrations are 25 to 45 times chondrites. Major element data, in particular FeO vs. Al2O3, show that the Luna 16 regolith sample is composed of materials that follow a quantitatively different Fe/Al variation than do Apollo 11, 12, 14 and 15 samples. The small Eu and Sr anomalies and the displaced Fe/Al variation are two chemical features unique to the Luna 16 regolith sample. The Luna 16 regolith sample can contain little if any of the rock types abundant at Apollo sites, thus indicating that the unique chemical features are typical of local or nearby materials and indicate a separate petrogenetic province for major component rock types of the Luna 16 regolith.  相似文献   

13.
The Apollo 16 soils have the largest low energy neutron fluences (up to 1017 n/cm2, E < 0.18eV) yet observed in lunar samples. Variations in the isotopic ratios 158Gd/157Gd and 150Sm/149Sm (up to 1.9% and 2.0% respectively) indicate that the low energy neutron fluence in the Apollo 16 drill stem increases with depth throughout the section sampled. Such a variation implies that accretion has been the dominant regolith “gardening” process at this location. The data may be fit by a model of continuous accretion of pre-irradiated material at a rate of ~70 g/(cm2 · 108yr) or by models involving as few as two slabs of material in which the first slab could have been deposited as long as 109 yr ago.The ratio of the number of neutrons captured per atom by Sm to the number captured per atom by Gd is lower than in previously measured lunar samples, which implies a lower energy neutron spectrum at this site. The variation of this ratio with chemical composition is qualitatively similar to that predicted by Lingenfelter, Canfield and Hampel.Variations are observed in the ratio 152Gd/160Gd which are fluence correlated and probably result from neutron capture by151Eu.  相似文献   

14.
The lunar crust at the Apollo 16 landing site contains substantial amounts of a “primitive component” in which the ferromagnesian group of elements is concentrated. The composition of this component can be retrieved via an analysis of mixing relationships displayed by lunar breccias. It is found to be a komatiite which is compositionally similar to terrestrial komatiites both in major and minor elements. The komatiite component of the lunar crust is believed to have formed by extensive degrees of melting of the lunar interior at depths greater than were involved in the formation of the lunar magma ocean which was parental to the crust. After formation of the anorthositic crust, it was invaded by extensive flows and intrusions of komatiite magma from these deeper source regions. The komatiites became intimately mixed with the anorthosite by intensive meteoroid impacts about 4.5 b.y. ago, thereby accounting for the observed mixing relationships displayed by the crust. The compositional similarity between lunar and terrestrial komatiites strongly implies a corresponding similarity between the compositions of their source regions in the lunar interior and the Earth's upper mantle. The composition of the lunar interior can be modelled more specifically by combining the komatiite composition with its liquidus olivine composition (as determined experimentally) in proportions chosen so as to produce a cosmochemically acceptable range of Mg/Si ratios for the bulk Moon. Except for higher FeO and lower Na2O, the range of compositions thereby obtained for the bulk moon is very similar to the composition of the Earth's upper mantle.The effects of meteoritic contamination on the abundances of cobalt and nickel in lunar highland breccias were subtracted on the assumption that the contaminating projectiles were chondritic. The cobalt and nickel residuals thereby obtained were found to correlate strongly with the (Mg + Fe) content of the breccias, demonstrating that the Co and Ni are associated with the ferromagnesian component of the breccias and are genuinely indigenous to the Moon. The lunar highland Co and Ni residuals also display striking Ni/Co versus Ni correlations which follow a similar trend to those displayed by terrestrial basalts, picrites and komatiites. The lunar trends provide further decisive evidence of the indigenous nature of the Co and Ni residuals and suggest the operation of extensive fractionation controlled by olivine-liquid equilibria in producing the primitive component of the lunar breccias. Indigenous nickel abundances at the Apollo 14, 15 and 17 sites are much lower than at the Apollo 16 site, although rocks from all sites follow the same Ni/Co versus Ni trends. It is suggested that the primitive component at the Apollo 14, 15 and 17 sites was generally of basaltic composition, in contrast to the komatiitic nature of the Apollo 16 primitive component.  相似文献   

15.
Nitrogen contents range from a few parts per million in ordinary chondrites and achondrites to several hundred parts per million in enstatite chondrites and carbonaceous chondrites. Four major isotopic groups are recognized: (1) C1 and C2 carbonaceous chondrites have δ15N of+30to+50%.; (2) enstatite chondrites have δ15N of?30to?40‰; (3) C3 chondrites have low δ15N with large internal variations; (4) ordinary chondrites have δ15N of?10to+20‰. The major variations are primary, representing isotopic abundances established at the time of condensation and accretion. Secondary processes, such as spallation reactions, solar wind implantation and metamorphic loss may cause small but observable isotopic variations in particular cases. The large isotopic difference between enstatite chondrites and carbonaceous chondrites cannot be accounted for by equilibrium condensation from a homogeneous nebular gas, and requires either unusually large kinetic effects, or a temporal or spatial variation of isotopic composition of the nebula. Nitrogen isotopic heterogeneity in the nebula due to nuclear processes has not been firmly established, but may be required to account for the large variations found within the Allende and Leoville meteorites. The unique carbonaceous chondrite, Renazzo, has δ15N of+170%., which is well beyond the range of all other data, and also requires a special source. It is not yet possible, from the meteoritic data, to establish the mode of accretion of nitrogen onto the primitive Earth.  相似文献   

16.
Measurements of cosmic-ray produced53Mn are reported for a series of lunar surface samples down to a depth of 416 g/cm2. These results clearly illustrate the decrease in activity with depth as the incident galactic cosmic rays are absorbed. Below 60 g/cm2 the production rate decreases exponentially with a mean length, λ, of about 220 g/cm2. These results indicate that, at the Apollo 15 site, the lunar regolith has been unmixed, on a meter scale, for the last 5 my. The neutron activation technique for53Mn, which allowed samples smaller than 200 mg to be used for these measurements, is described.  相似文献   

17.
The activity of solar cosmic-ray-produced53Mn has been measured as a function of depth in the upper 100 g/cm2 (~55 cm) of lunar cores 60009–60010 and 12025–12028. Additional samples which supplement our earlier work were analyzed from the Apollo 15 and 16 drill stems. These data, taken in conjunction with our previously published results and the22Na and26Al data of the Battelle Northwest group, indicate that in at least three of the four cases studied the regolith has been measureably disturbed within the last 10 m.y. In one case gardening to 19 g/cm2 is required. Activities measured in the uppermost 2 g/cm2 indicate frequent mixing within this depth range. No undisturbed profiles were observed nor were any major discontinuities observed in the profiles. The Monte Carlo gardening model of Arnold has been used to derive profiles for the gardened moon-wide average of53Mn and26Al as a function of depth. The53Mn and26Al experimental results are compared with these theoretical predictions. Agreement is good in several respects, but the calculated depths of disturbance appear to be too low.  相似文献   

18.
A comparison of lunar ilmenites (Apollo 11, 10047, 13) with terrestrial ilmenites by means of electron microprobe analysis, X-ray and Mössbauer spectrometry showed that the lunar samples contained no Fe3+ but excess Ti3+. This causes an increase of thec-axis as compared with stoichiometric ilmenite.  相似文献   

19.
The Gd isotopic composition in 19 lunar rock and soil samples from three Apollo sites is reported. The analytical techniques and the high precision mass spectrometric measurements are discussed. Enrichments in158GdO/157GdO due to neutron capture range up to 0.75%. Integrated ‘thermal’ neutron fluxes derived from the isotopic anomalies of Gd are compared with spallation Kr data from aliquot samples to construct a model which gives both average cosmic-ray irradiation depths and effective neutron exposure ages (Tn) for some rocks. In the case of rock 12053, this yields an average sample location of ∼300 g/cm2 below the lunar surface and an effective irradiation age of ∼230 my, compared to 99 my obtained by the81Kr-Kr method. Rock 14310 is the first lunar sample where Kr anomalies due to resonance neutron capture in Br are observed. A81Kr-Kr exposure age of 262 ± 7 my is calculated for this rock.  相似文献   

20.
A review of cratering data and available semi-empirical calculations suggests that the variation of ejecta thickness,t, with increasing range from lunar craters may be approximately modelled by the expression: t=0.14R0.74(r/R?3.0 wherer is range from the center of the crater andR, the crater radius, all in meters. This equation has been used to estimate the thickness of ejecta deposits at each of the Apollo sites contributed from the large multi-ringed frontside lunar basins. Predicted average thickness of Imbrium ejecta at Apollo 15 is 812 m; at Apollo 14, 130 m; at Apollo 17, 102 m; and at Apollo 16, 50 m. Since the sequence of formation of these basins is known, the stratigraphic column resulting from superimposed ejecta blankets can be calculated. Results suggest that pre-Nubium crustal material at upland Apollo sites lies at depths greater than 280 (Apollo 14) to 1940 m (Apollo 17). Predicted stratigraphic sections for the Apollo sites are tabulated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号