首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
The Cenozoic volcanic rocks of the southern Andes are characterized by low 87Sr/86Sr ratios (0.7040–0.7045), which are consistent with an origin in the downgoing slab of oceanic lithosphere or the overlying mantle. These values are distinctly lower than those from corresponding rocks of the central Andes.The calc-alkaline rocks of the central Andes exhibit higher Sr isotopic values (0.705–0.713) and variable Rb/Sr ratios. Different explanations are possible for this behaviour as well as for the positive correlation between 87Sr/86Sr and Rb/Sr expressed in an apparent isochron of 380 ± 50 m.y. It is postulated that these magmas result from a mixing process between a primary magma with basaltic affinities and crustal material of relatively young age.A model is proposed for the generation of the “andesitic” magmas of the central Andes by which crustal rocks of the upper part of the crust are added to the base of the crust by an accretionary process at the margin of the continent. Melts from these upper crustal rocks act as contaminants in “andesitic” magmas.The role of crustal material is still more significant in the generation of the ignimbritic magmas; they are considered to result from a two-stage melting process by which igneous rocks, belonging to a former stage of development of the Andes, are engulfed in the subduction zone, where they melt.  相似文献   

2.
Purico-Chascon is an acid igneous complex less than 1.5 Ma old rising to 5800 m in the North Chilean Andes, and consisting of andesite-dacite cones and dacite domes on an ignimbrite shield. The rocks are subdivided into two groups: those from Chascon appear to exhibit evidence for magma mixing with more basic material now preserved as xenoliths, whereas among those at Purico no xenoliths have been found.87Sr/86Sr=0.7095?0.7081 at Purico, 0.7079?0.7069 at Chascon, and 0.7061-0.7057 in the xenoliths from the Chascon lavas:143Nd/144Nd=0.51222?0.51236 overall. The Purico lavas are characterised by higher SiO2, Rb/Sr,87Sr/86Sr, and REE abundances, and lower Sr/Nd, Sr/Ba and143Nd/144Nd than most Andean igneous suites. There is no indication ofselective crustal contamination of Sr, or any systematic change in isotope ratios during differentiation. Nonetheless the trend of, for example, high Sr/Nd and Sr contents in rocks with low87Sr/86Sr (0.704, Ecuador) to low Sr/Nd and Sr and high SiO2 in rocks with87Sr/86Sr=0.7081?0.7095 at Purico is interpreted as a shift from subduction zone related magmatism to one with greater crustal affinity. The formation of the least evolved Purico lavas (~60%SiO2) is discussed in terms of bulk assimilation of crustal material, mixing between crustal- and mantle-derived magmas, and partial melting of pre-existing crust. Although such models are still extremely primitive, the simplest explanation of the observed chemical variations is that the Purico rocks evolved from parental magmas derived by crustal anatexies. Thermal considerations suggest that such late-stage crustal anatexis is a predictable response to crustal thickening which in the Andes is thought to have taken place during the Cenozoic.  相似文献   

3.
The Salal Creek area, at the north end of the main group of vents for the Quaternary Garibaldi (Cascade) Volcanic Belt, southwestern British Columbia, was the site of several small eruptions of mafic lava during the past 1 Ma. In contrast to the calc-alkaline character of all other parts of the Garibaldi Belt and the geographically nearly coincident Miocene and older Pemberton Volcanic Belt, the Salal Creek area Quaternary lavas are predominantly alkaline basalt and hawaiite with typical alkaline volcanic petrography, chemistry, and fractionation trends. Trace elements Ti-Zr-Y show within-plate character for the suite. As for other Garibaldi Belt volcanic rocks, Rb is low, Rb/Sr very low, and 87Sr/86Sr ratio is low, averaging 0.7032. The oxygen isotopic composition average, 18O = 5.9, is normal for mantle-derived volcanic rocks.This distinct change in magma type at the end of a volcanic are may be the consequence of a smaller degree of melting, melting at a slightly greater depth than calc-alkaline magma production, or a descending-plate edge effect.Ponded flows and pillow-palagonite accumulations indicate that several Salal Creek area eruptions occurred in proximity to ice which filled major valleys during pre-Wisconsin glacial periods.  相似文献   

4.
Examples of positive correlations between initial 87Sr/86Sr and δ18O have now been shown to be very common in igneous rock series. These data in general require some type of mixing of mantle-derived igneous rocks with high-18O, high-87Sr crustal metamorphic rocks that once resided on or near the Earth's surface, such as sedimentary rocks or hydrothermally altered volcanic rocks. Mixing that involves assimilation of country rocks by magmas, however, is not a simple two-end-member process; heat balance requires appreciable crystallization of cumulates. In such cases, the isotopic compositions may strongly reflect this open-system behavior and indicate the process of assimilation, whereas the major element chemical compositions of the contaminated magmas will be largely controlled by crystal-melt equilibria and crystallization paths fixed by multicomponent cotectics. A variety of oxygen and strontium isotope “mixing” curves were therefore calculated for this process of combined assimilation-fractional crystallization. The positions and characteristics of the resultant curves on δ18O-87Sr/86Sr diagrams markedly diverge from simple two end-member mixing relationships. Based on the above, model calculations can be crudely fitted to two igneous rock suites (Adamello and Roccamonfina in Italy), but the shapes of the calculated curves appear to rule out magmatic assimilation as an explanation for most δ18O-87Sr/86Sr correlations discovered so far, including all of those involving calc-alkaline granitic batholiths and andesitic volcanic rocks. The isotopic relationships in such magma types must be inherited from their source regions, presumably reflecting patterns that existed in the parent rocks (or magmas) prior to or during melting.  相似文献   

5.
Rb/Sr isotopic data are presented for three different mantle-derived rock types from a single quarry in the Kiama area in southeastern Australia. These rocks comprise a latite (249 Ma), a basanitic dyke (191 Ma) and mantle-derived xenoliths entrained in the basanitic dyke. Interpretation of the Rb/Sr data with other geochemical results shows that significant crustal contamination of either the latite or the basanite is unlikely. It is suggested that metasomatic mantle events may closely coincide with the production of basaltic magma. Basaltic activity in this area in the late Permian, early Jurassic and Tertiary would imply that a high heat flow may have persisted in southeastern Australia over this time span.87Sr/86Sr values of the rocks studied are within the range of intraplate basalts worldwide and support the concept of a REE-enriched upper mantle beneath eastern Australia.  相似文献   

6.
Erciyes stratovolcano, culminating at 3917 m, is located in the Cappadocian region of central Anatolia. During its evolution, this Quaternary volcano produced pyroclastic deposits and lava flows. The great majority of these products are calc-alkaline in character and they constitute Kocdag and Erciyes sequences by repeated activities. Alkaline activity is mainly observed in the first stages of Kocdag and approximately first-middle stages of Erciyes sequences. Generally, Kocdag and Erciyes stages terminate by pyroclastic activities. The composition of lavas ranges from basalt to rhyolite (48.4–70.5 wt.% SiO2). Calc-alkaline rocks are represented mostly by andesites and dacites. Some compositional differences between alkaline basaltic, basaltic and andesitic rocks were found; while the composition of dacites remain unchanged. All these volcanics are generally enriched in LIL and HFS elements relative to the orogenic values except Rb, Ba, Nb depleted alkaline basalt. 87Sr/86Sr and 143Nd/144Nd isotopic composition of the volcanics range between 0.703344–0.703964, 0.512920–0.512780 for alkaline basalts and change between 0.704322–0.705088, 0.512731–0.512630 for alkaline basaltic rocks whereas calc-alkaline rocks have relatively high Sr and Nd isotopic ratios (0.703434–0.705468, 0.512942–0.512600). Low Rb, Ba, Nb content with high Zr/Nb, low Ba/Nb, La/Yb ratio and low Sr isotopic composition suggest an depleted source component, while high Ba, Rb, Nb content with high La/Yb, Ba/Nb, low Zr/Nb and low 87Sr/86Sr ratios indicate an OIB-like mantle source for the generation of Erciyes alkaline magma. These elemental and ratio variations also indicate that the different mantle sources have undergone different degree of partial melting episodes. The depletion in Ba, Rb, Nb content may be explained by the removal of these elements from the source by slab-derived fluids which were released from pre-collisional subduction, modified the asthenospheric mantle. The chemically different mantle sources interacted with crustal materials to produce calc-alkaline magma. The Ba/Nb increase of calc-alkaline samples indicates the increasing input of crustal components to Erciyes volcanics. Sr and Nd isotopic compositions and elevated LIL and HFS element content imply that calc-alkaline magma may be derived from mixing of an OIB-like mantle melts with a subduction-modified asthenospheric mantle and involvement of crustal materials in intraplate environments.  相似文献   

7.
143Nd/144Nd,87Sr/86Sr and REE results are reported on volcanic rocks from the islands of Dominica and St. Kitts in the Lesser Antilles. Particular attention is given to the lavas and xenoliths of the Foundland (basalt-andesite) and the Plat Pays (andesite-dacite) volcanic centres on Dominica. Combined major and trace element [2] and isotope results suggest that the bulk of the andesites and dacites on Dominica, and by analogy in the rest of the arc, are produced by fractional crystallisation of basaltic magma. The differences in the erupted products of the two volcanoes do not appear to be related to any significant differences in the source rocks of the magmas.Along the arc87Sr/86Sr ratios range from 0.7037 on St. Kitts, to 0.7041–0.7047 on Dominica, and 0.7039–0.7058 on Grenada [5], and these are accompanied by a parallel increase in K, Sr, Ba and the light REE's. Moreover, compared with LIL-element-enriched and -depleted rocks from MOR and intraplate environments, the basic rocks from the Lesser Antilles are preferentially enriched in alkaline elements (K, Ba, Rb, Sr) relative to less mobile elements such as the rare earths.143Nd/144Nd varies from 0.51308 on St. Kitts, to 0.51286 on Dominica, and 0.51264–0.51308 on Grenada [5], and all these samples have relatively high87Sr/86Sr ratios compared with the main trend of Nd and Sr isotopes for most mantle-derived volcanic rocks. Alkaline elements and87Sr appear to have been introduced from the subducted ocean crust, but the results on other, less mobile elements are more ambiguous — island arc tholeiites (as on St. Kitts) do not appear to contain significant amounts of REE's, Zr, Y, etc., from the subducted oceanic crust, but such a contribution may be present in more LIL-element-enriched calc-alkaline rock types.  相似文献   

8.
K, Rb and Sr concentrations and Sr isotopic compositions were determined for the Dai granitic rocks of trondhjemitic composition occurring in a serpentinite mass in the Nagato tectonic zone formed in the Late Paleozoic era, and for the granitic rocks of quartz dioritic composition recently dredged from the seamount of the Kyushu-Palao Ridge. Both granitic rocks are characterized by low abundances of K and Rb, low K2O/Na2O ratios, high K/Rb ratios, low Rb/Sr ratios and low initial87Sr/86Sr ratios. These characteristics suggest that strong similarities may exist between the Dai granitic rocks and the dredged granitic rocks, and that the Dai granitic rocks may be classified as oceanic plagiogranite. These oceanic plagiogranites may plausibly represent single-stage mantle-derived granites, possibly from the suboceanic mantle.  相似文献   

9.
The annular (6–8 km diameter) Golda Zuelva and Mboutou anorogenic complexes of North Cameroun are composed of a suite of alkaline plutonic rocks ranging from olivine gabbro to amphibole and biotite granite. For the Mboutou complex there are two overlapping centres. In the Golda Zuelva complex the plutonic rocks are associated with a later hawaiite to rhyolite volcanic suite. A Rb/Sr whole rock isochron gives an age of 66±3 Ma for the Golda Zuelva granites, with initial87Sr/86Sr ratio of 0.7020, and demonstrates that plutonism and volcanism were essentially contemporaneous and probably cogenetic. For Golda Zuelva and the north Mboutou centre18O/16O (5.6–6.2),87Sr/86Sr (0.7030–0.7045) and Pb isotopic ratios (207Pb/204Pb: 15.60–15.64) support a mantle origin for the initial magmas. Unlike Sr isotopes, the O isotopic ratios of the granitic end members at Golda Zuelva (~7.5) indicate crustal contamination. Post-magmatic alteration was not significant.For the younger south Mboutou centre the O-, Sr- and Pb-isotopic data indicate more extensive magma-crust interaction and in a different (higher level?) crustal environment with δ18O granite=3.3‰,87Sr/86Sr ratios up to 0.706 and Pb isotopic ratios more markedly displaced from the oceanic volcanic field. The low-18O granites probably record, at least in part, a magmatic process with subsequent minor post-magmatic alteration effects. The major and trace element systematics between the north and south Mboutou centres are directly comparable. The evolution of the magmas were dominated by fractional crystallisation and progressive crustal contamination processes.  相似文献   

10.
Eighteen basic rocks from Ascension Island (South Atlantic) give a mean87Sr/86Sr ratio of 0.70311 ± 17 for both volcanics and plutonic inclusions. The late-stage differentiated rocks (rhyolites and granitic inclusions) have much higher87Sr/86Sr ratios, up to 0.712. All these rocks display the same range of Nd isotopic compositions (εNdvalues from6.9to11.1with a mean on12samples of8.4 ± 0.6) implying a cogenetic relation between the two sequences. The D/H systematics lead to the same conclusion.In the NdSr diagram, the data plot close to the mantle array and show a positive correlation. This suggests a mixing between a depleted MORB-type mantle, i.e. the upper mantle, and a hot-spot with less depleted geochemical characteristics, i.e. the OIB mantle source.The total range of δ18O values lies between 4.8‰ for plagioclase cumulates and 6.7‰ for the most evolved rocks (peralkaline granites and comendites). The basic rocks have values around 5.3‰, typical of mantle-derived material. These oxygen data indicate that the high87Sr/86Sr ratios in the most evolved rocks (both volcanic and plutonic terms) result from the combination of two different processes: incorporation of slight amounts (< 1%) of high-temperature altered oceanic crust by the magma in the late stages of the differentiation process and then in-situ Rb decay since the time of formation of these rocks. Both processes were very effective because of the high Rb and low Sr contents of these evolved rocks.Oxygen isotope systematics in the Ascension Island granites and rhyolites indicate that a fractional crystallization process alone does not produce δ18O values higher than 6.7‰, i.e. that the ultimate δ18O enrichment, relative to the initial basic magma, is not greater than 1.5‰.  相似文献   

11.
The Cenozoic volcanic rocks of eastern China are subalkalic to alkalic basalts erupted in an early Tertiary back-arc rift environment and from scattered late Tertiary and Quaternary volcanic centers in a continental area crossed by active faults, driven by subduction of the Pacific plate and the collision of India and Eurasia. Immobile trace elements and major elements conform very well to each other in classification of the 59 rocks for which complete data are reported and they correctly identify the tectonic setting. LIL-element enrichments of the basalts lie between those of P-MORB and ocean island alkalic basalts, and show a secular increase.87Sr/86Sr ratios of basalts vary from 0.7029 to 0.7048. Alkalic basalts are systematically less radiogenic than geographically coextensive and contemporaneous tholeiitic basalts. Increase of radiogenic Sr with increasing crustal thickness and crustal age and with silica enrichment of the magmas suggests crustal contamination but this is inadequate to explain the LIL-element enrichment patterns and variable LIL-element enrichments. The preferred hypothesis is that the alkalic magmas come from a deeper source, with long-term LIL-element depletion and low Rb/Sr ratio but relatively recent LIL-element enrichment. Conversely the tholeiitic magmas are melts of subcontinental mantle lithosphere that is more LIL-element depleted than the alkalic source, at the time of magma genesis, but has had an elevated Rb/Sr ratio for much of its post-consolidation history.  相似文献   

12.
18O/16O and 87Sr/86Sr ratios were determined for Quaternary calc-alkalic volcanic rocks from six volcanic rock suites in the central and western Japan arcs. The δ18O values relative to SMOW and 87Sr/86Sr ratios range from +6.3 to +9.90/00 and 0.70357 to 0.70684, respectively. Both the O- and Sr-isotopic compositions are higher than those for island-arc primitive magmas and their differentiates. The isotopic compositions of the calc-alkalic rocks cannot be derived by a simple fractional crystallization of the primitive magmas. On the other hand, the 18O- and 87Sr-enrichment is confined to the rock suites located in well-developed island arcs having thick continental-type crust with low or negative Bouguer anomalies. Involvement of 18O- and 87Sr-rich crustal material in the magma formation is suggested.The isotopic compositions vary remarkably within individual rock suites as well as from volcano to volcano. The data points in δ18O vs. 87Sr/86Sr plot accord with a mixing model between primitive magmas and crustal material of dioritic composition on an average, assuming their comparative Sr contents. The primitive magmas involved could not be low-Sr tholeiites, but magmas more or less enriched in incompatible elements including Sr, which correspond to high-alkali tholeiites or alkali basalts and their evolved magmas. The nature of the primitive magmas seems to change from tholeiitic to more alkalic with progressing island-arc evolution.Mixing of crust-derived melts is more plausible than assimilation of solid-rocks for involving 20 to 30% crustal material in the magmas along simple mixing curves. Isotopic variations between the rock suites are ascribed to variable Sr concentration radio of the end-members, variable isotopic compositions of crustal material or variable mixing ratio of the end-members. Extremely high-δ 18O rocks with moderate increase in 87Sr/86Sr ratio suggest another mixing process in shallower magma chambers between andesite magmas and metasedimentary rocks having high δ 18O and 87Sr/86Sr values but low Sr content. Subsequent fractional crystallization of once-derived magmas would be the prominent process for the rock suites showing gradual increase in 18O up to 10/00 with uniform 87Sr/86Sr ratios.  相似文献   

13.
Volcanic rocks of the Sunda and Banda arcs range from tholeiitic through calcalkaline and shoshonitic to leucititic, the widest compositional span of mafic magmatism known from an active arc setting.Mafic rocks in our data set, which includes 315 new analyses of volcanic rocks from twelve Quaternary volcanoes, including Batu Tara in the previously geochemically unknown Flores-Lembata arc sector, are generally similar to those from other island arcs: most contain <1.3 wt. % TiO2 and 16–22 wt. % Al2O3, and have characteristically high K/Nb and La/Nb values. Abundances of P, Ba, Rb, Sr, La, Ce, Nd, Zr and Nb increase sympathetically with increasing K2O contents of mafic rocks but those of Na, Ti, Y and Sc vary little throughout the geochemical continuum from low-K tholeiitic to high-K leucititic rocks.Excluding Sumatra and Wetar, which possess mainly dacitic and rhyolitic volcanics, the Sunda-Banda arc is divisible into four geochemical arc sectors with boundaries that correlate with major changes in regional tectonic setting and geological history. From west to east, the West Java, Bali and Flores arc sectors each comprise volcanoes which become progressively more K-rich eastwards, culminating in the leucitite volcanoes Muriah, Soromundi and Sangenges, and Batu Tara, respectively. In the most easterly Banda sector, the volcanics vary from high- to low-K eastwards around the arc.Correlations between geochemistry and 87Sr/86Sr values show separate trends for each of the four arc sectors, believed to be the result of involvement of at least three geochemically and isotopically distinct components in the source regions of the arc magmatism.A dominant source component with a low K content and a low 87Sr/86Sr value, and common to all sectors, is probably peridotitic mantle. A second component, with low K content but high 87Sr/86Sr value, appears to be crustal material. This component is most apparent in the Banda sector, in keeping with that sector's tectonic setting close to Precambrian Australian continental crust, but it is also present to lesser extents in the West Java and Flores sectors.However, the most marked geochemical and isotopic variations shown by the arc volcanics are primarily due to the involvement of a third component, which is rich in K-group elements but has relatively low 87Sr/86Sr values. This component appears to be mantle-derived and is least overprinted by crustal material in the Bali sector volcanics where the Pb, Be, U-Th and O isotope characteristics of the rocks support the suggestion that their genesis has not involved incorporation of recently subducted, continent-derived sialic material.The high, regionally persistent, Th/U value (about 4.3) of the Sunda subarc mantle, obtained from U-Th isotopic data, suggests a close association could exist between the K-rich component and the southern hemisphere ‘DUPAL’ mantle isotopic anomaly.  相似文献   

14.
In the Northeast Japan arc, a number of Quaternary volcanoes form a long, narrow belt, parallel to the Japan Trench. 87Sr/86Sr ratios were determined in 52 specimens of volcanic rocks from 27 volcanoes in the Northeast Japan arc area. The results reveal that the ratios change systematically in space. Decreasing 87Sr/86Sr ratios across the arc were confirmed over a wide area of Northeast Japan. In the same direction, increases in both Rb and Sr contents were also found. The regular trends are considered to be a strong constraint for elucidation of subduction-originated magma genesis at the Eurasia plate vs. Pacific plate boundary. In the northern region of the Northeast Japan arc, 87Sr/86Sr ratios in volcanic rocks along the volcanic front were almost constant (0.7038–0.7045) and slightly higher than those from the Izu-Ogasawara arc (0.7032–0.7038). This suggests that “interactions” between the Eurasia plate and the Pacific plate, and those between the Philippine Sea plate and the Pacific plate are slightly different. The southern region of the Northeast Japan arc, where the direction of the volcanic front bends from southward to westward, showed anomalously high 87Sr/86Sr ratios, reaching to 0.7077. This region coincides with the triple junction of the Eurasia, Pacific and Philippine Sea plates, suggesting “anomalous interaction” at the triple junction.  相似文献   

15.
RB-Sr and Sm-Nd isotopic and trace-element-abundance values have been determined for 15 mafic and intermediate rocks from six Pleistocene volcanic centres of the Fly-Highlands province. 87Sr/86Sr and N d values range from 0.70362 to 0.70540, and +1.9 to +5.9, respectively. These new data can be accounted for by contamination of mantle-derived magmas by the continental crust through which the magmas have risen. They do not, however, preclude derivation of some of the Sr and Nd from subducted crust, nor are they inconsistent with Sr and Nd enrichments having taken place by means of mantle metasomatic events. Nevertheless, there is no Benioff zone beneath the Fly-Highlands province (although there is geological evidence for Cretaceous subduction). A preferred interpretation is that uncontaminated, mantle-derived magmas are related to the Pliocene crustal uplift that caused the development of the highlands and which formed in response to a mid-Tertiary continent/island-arc collision.  相似文献   

16.
Quaternary volcanoes in the Padang area on the west coast of Sumatra have produced two-pyroxene, calc-alkaline andesite and volumetrically subordinate rhyolitic and andesitic ash-flow tuffs. A sequence of andesite (pre-caldera), rhyolitic tuff and andesitic tuff, in decreasing order of age, is related to Maninjau caldera. Andesite compositions range from 55.0 to 61.2% SiO2 and from 1.13 to 2.05% K2O. Six K-Ar whole-rock age determinations on andesites show a range of 0.27 ± 0.12 to 0.83 ± 0.42 m.y.; a single determination on the rhyolitic ashflow tuff gave 0.28 ± 0.12 m.y.Eight 57Sr/26Sr ratios on andesites and rhyolite tuff west of the Semangko fault zone are in the range 0.7056 – 0.7066. These ratios are higher than those elsewhere in the Sunda arc but are comparable to the Taupo volcanic zone of New Zealand and calc-alkaline volcanics of continental margins. An 87Sr/86Sr ratio of 0.7048 on G. Sirabungan east of the Semangko fault is similar to an earlier determination on nearby G. Marapi (0.7047), and agrees with 87Sr/86Sr ratios in the rest of the Sunda arc. The reason for this distribution of 87Sr/86Sr ratios is unknown.The high 87Sr/86Sr ratios are tentatively regarded to reflect a crustal source for the andesites, while moderately fractionated REE patterns with pronounced negative Eu anomalies suggest a residue enriched in plagioclase with hornblende and/or pyroxenes. Generation of associated andesite and rhyolite could have been caused by hydrous fractional melting of andesite or volcanogenic sediments under adiabatic decompression.  相似文献   

17.
腾冲火山活动的时代和岩浆来源问题   总被引:35,自引:0,他引:35       下载免费PDF全文
47个腾冲火山岩样品的K-Ar年龄值域在0.09和17.84Ma之间。4条火山岩的40Ar/36Ar-40K/36Ar等时线年龄分别为2.93、0.81、0.31和0.13Ma。火山喷发的时代从中新世到更新世,喷发的高潮在晚更新世。腾冲火山目前还不是死火山,而腾冲及其邻区的热事件(侵入-热变质-喷发)又是连续发生的。20个样品的Rb和Sr含量、稳定Sr同位素初始比(0.70578-0.71437)以及其它地球化学资料还表明,这些火山岩是属于板块碰撞带生成的高钾钙碱性岩浆系列。火山岩的母岩浆来源于地幔的玄武岩浆,但在上升过程中受到过富含放射性成因Sr的地壳物质的强烈渐进混染。  相似文献   

18.
The Lower Pliocene volcanic rocks occurring in the Gölcük area of SW Turkey exhibit alkaline major element trends with a general potassic character. The development of volcanism can be divided into 2 major stages such as trachytic ancient lavas/domes and tephriphonolitic, trachyandesitic to trachytic Gölcük eruptions (ignimbrites, lava/dome extrusions, phreatomagmatic deposits, and finally, young domes). Volcanic rocks consist primarily of plagioclase, clinopyroxene (which ranges in composition from diopside to augite and are commonly zoned), biotite, and phlogopite. Amphibole phenocrysts are restricted to the pyroclastic deposits. Pseudoleucites are also seen only in the lava/dome extrusions. Oxides and apatites are common accessory phenocryst phases. As would be expected from their potassic–alkaline nature, the volcanic rocks of the Gölcük area contain high amounts of LILE (Ba, Sr, Rb and K), LREE, and Zr. Concentrations of compatible elements such as Cr, Ni and V are very low, possibly indicating fractionation of olivine and clinopyroxene. Correlation of SiO2, Rb/Sr and MgO with 87Sr/86Sr (0.703506–0.704142) exhibit an increasing trend in the direction of crustal contamination. However, the isotopic compositions of Sr are not as high to indicate a high level of crustal contamination. Geochemical data are consistent with the derivation of Gölcük volcanic rocks from a metasomatized and/or enriched lithospheric mantle source during crustal extension in the area. This metasomatism was probably occurred by fluids released from the northward subduction between African and Eurasian plates during Tertiary, as the Gölcük volcanic rocks display features of island-arc magmas with having high Ba/Nb (>28) ratios, and Nb and Ti depletions. Lower Pliocene volcanism in the Gölcük was response to extensional tectonics.  相似文献   

19.
Neodymium isotope and REE analyses of recent volcanic rocks and spinel lherzolite nodules from the Afar area are reported. The143Nd/144Nd ratios of the volcanic rocks range from 0.51286 to 0.51304, similar to the range recorded from Iceland. However, the87Sr/86Sr ratios display a distinctly greater range (0.70328–0.70410) than those reported from the primitive rocks of Iceland. Whole rock samples and mineral separates from the spinel lherzolite nodules exhibit uniform143Nd/144Nd ratios (ca. 0.5129) but varied87Sr/86Sr ratios in the range 0.70427–0.70528.The SrNd isotope variations suggest that the volcanic rocks may have been produced by mixing between two reservoirs with distinct isotopic compositions. Two possible magma reservoirs in this area are the source which produced the “MORB-type” volcanics in the Red Sea and Gulf of Aden and the anomalous source represented by the nodule suite. The isotopic composition of the volcanics is compatible with mixing between these two reservoirs.It is shown that the anomalous source with a high87Sr/86Sr ratio cannot have been produced by simple processes of partial melting and mixing within normal mantle. Instead the high87Sr/86Sr is equated with a fluid phase. A primitive cognate fluid, subducted seawater or altered oceanic lithosphere may have been responsible for the generation of the source with a high87Sr/86Sr ratio.  相似文献   

20.
New rare earth element (REE) data, Rb and Sr analyses and Sr isotope measurements are presented for pumice clasts collected from some North Chilean ignimbrites of dacite and rhyolite composition. The samples are light-REE enriched with chondrite-normalised Ce (CeN) of 17–98, YbN of 4–14 and CeN/YbN of 2.6–15. While some samples have no Eu anomalies, others do have anomalies with inferred Eu/Eu* values of down to ca. 0.4. Eleven samples have present-day87Sr/86Sr ratios between 0.7053 and 0.7100, and noting that some samples are up to 12 Ma old, initial87Sr/86Sr ratios are below ca. 0.709. These trace element and Sr isotope characteristics resemble those of contemporaneous andesite and dacite lavas, suggesting a common origin for all these rock types. The higher Rb/Sr ratios and larger Eu anomalies in most of the dacitic and rhyolitic ignimbrites are consistent with an origin by plagioclase-dominated fractional crystallization of mantle-derived andesite magma.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号