首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
An experiment was designed to assess the relative importance of sediment accumulation and bioturbation in determining the vertical distribution of nuclides in estuarine sediments. A diver-collected core, 120 cm long, was raised from central Long Island Sound and analyzed down its length for:210Pb and226Ra;239, 240Pu; and Mn, Zn, Cu, and Pb. Sampling for chemical analysis was guided by X-radiography of the core. Excess210Pb (relative to226Ra) is roughly homogeneous in the top 2–4 cm of the core, then decreases quasi-exponentially to zero at (or above) 15 cm.239, 240Pu and excess Zn, Cu, and Pb, relative to background values at greater depths in the core, are distributed like excess210Pb in the top 10–15 cm. The absence of Mn enrichment at the top of the core, in contrast to other cores raised from this station, suggests that 1–3 cm of sediment was lost by erosion at the site of this core sometime prior to sampling. Below 15 cm excess210Pb and excess Zn, Cu, and Pb are found only in the bulk sample from 25 to 30 cm and in clearly identifiable burrow fillings dissected from 70 cm and 115 cm depth. Infilling of large burrows, excavated and then abandoned by crustaceans, is therefore a mechanism for transfer of surficial material to depth in these sediments.The bioturbation rate in the top several centimeters at this station has been determined previously using234Th (24-day half-life). The distribution of239, 240Pu can be used to estimate a bioturbation rate for the underlying layer (to ~10 cm depth); this rate is found to be 1–3% of the maximum mixing rate for the top 2–3 cm. Using these two mixing rates in a composite-layer, mixing + sedimentation model, the distribution of excess210Pb in the top 15 cm was used to constrain the sediment accumulation rate, ω. While the apparent rate of sediment accumulation (assuming no mixing below 2–4 cm) is 0.11 cm/yr, the model requires ω < 0.05 cm/yr. Thus in an area of slow sediment accumulation, a low rate of bioturbation below the surficial zone of rapid mixing causes an increase of at least a factor of two in apparent accumulation rate.  相似文献   

2.
The flux of226Ra from bottom sediments has been determined from patterns of226Ra/230Th disequilibrium in ten deep-sea cores from the world oceans. Values range from ? 0.0015 dpm/cm2 yr (in the Atlantic) to 0.21 dpm/cm2 yr (in the north equatorial Pacific). The flux is poorly related to sediment type, but is inversely correlated in a non-linear fashion with sediment accumulation rate. There is a direct relationship between the production rate of226Ra near the sediment-water interface (i.e. the integrated230Th activity in the biologically mixed zone) and the226Ra flux. The226Ra concentration in near-bottom water follows the geographic variation in the226Ra flux. The high flux from north equatorial Pacific sediments especially is reflected in the high bottom water226Ra concentrations in that area. The data suggest that both rate of circulation and the magnitude of the radium flux influence the near-bottom226Ra concentration.  相似文献   

3.
Analysis of water samples from the New York Bight area and Narragansett Bay reveals that a small fraction of the total Pu (probably Pu (III + IV) species) is continuously removed to the sediments at a rate similar to that of the particle-reactive isotope228Th. A more “soluble” Pu species appears to be released at times from the sediments to the water column in these nearshore regions. Sediments in shallow areas of the New York Bight south of Rhode Island and Narragansett Bay have high Pu inventories and relatively deep penetration of this element, although the net sediment accumulation rate is generally low (<0.03 g/cm2 yr). The high Pu inventories can be explained if both sediment resuspension and sediment mixing are assumed to be the major controlling factors for the effective transfer of Pu from the water column to the sediments. By simultaneous modelling of the depth distribution of three tracers which operate on vastly different time scales:234Th (half-life 24 days),210Pb (half-life 22 years) and239,240Pu (introduced into the environment during the past 30 years), bioturbation rates ranging from 4 to 32 cm2/yr in the surface mixed layer (5–10 cm thick) and from 0.3 to 2.5 cm2/yr in the layer below (up to 40 cm thick) and net sediment accumulation rates of approximately zero to 0.14 g/cm2 yr were calculated for these areas.  相似文献   

4.
A model that predicts the flux of222Rn out of deep-sea sediment is presented. The radon is ultimately generated by230Th which is stripped from the overlying water into the sediment. Data from many authors are compared with the model predictions. It is shown that the continental contribution of ionium is not significant, and that at low sedimentation rates, biological mixing and erosional processes strongly affect the surface concentration of the ionium. Two cores from areas of slow sediment accumulation, one from a manganese nodule region of the central Pacific and one from the Rio Grande Rise in the Atlantic were analyzed at closely spaced intervals for230Th,226Ra, and210Pb. The Pacific core displayed evidence of biological mixing down to 12 cm and had a sedimentation rate of only 0.04 cm/kyr. The Atlantic core seemed to be mixed to 8 cm and had a sedimentation rate of 0.07 cm/kyr. Both cores had less total excess230Th than predicted.Radium sediment profiles are generated from the230Th model. Adsorbed, dissolved, and solid-phase radium is considered. According to the model, diffusional losses of radium are especially important at low sedimentation rates. Any particulate, or excess radium input is ignored in this model. The model fits the two analyzed cores if the fraction of total radium available for adsorption-desorption is about 0.5–0.7, and ifK, the distribution coefficient, is about 1000.Finally, the flux of radon out of the sediments is derived from the model-generated radium profiles. It is shown that the resulting standing crop of222Rn in the overlying water may be considered as an added constraint in budgeting230Th and226Ra in deep-sea sediments.  相似文献   

5.
Following Roether et al. [1] an upwelling model has been tested to explain the distribution of bomb-produced tritium at the GEOSECS I test station off Baja, California. We have extended their treatment to include the time histories for tritium and for bomb radiocarbon now available for this station. If the CO2 gas exchange rate at this station is similar to the ocean average value of 20 moles/m2 yr, then the upwelling rate must be quite small (<3 m/yr). However, a satisfactory match to the time histories of14C and of3H is achieved only if an upwelling rate of 40 m/yr is used. In this case, however, a CO2 exchange rate of 70 moles/m2 yr would be required to match the observed surface water14C/C ratios and a tritium input 4 times the expected value would be needed. The inconsistency in the bomb14C time history obtained using the accepted CO2 exchange rate is likely the result of horizontal effects which void the validity of one dimensional modeling in this region of the ocean.  相似文献   

6.
Measurements of five cosmogenic32Si vertical profiles in Atlantic waters (27°N to 60°S) are presented. The amounts of dissolved SiO2 extracted range from 2 to 54 g; the amounts of water from which SiO2 was extracted range between 540 kg and 270, 000 kg. In additon, SiO2 recovered from four surface particulate composites (64°N to 61°S) were also analyzed for32Si.32Si measurements were made by milking and counting the daughter activity, 32P. The net32P activities range from 0.7 to 6.8 cph; typical errors in measurements of the32P activities are 20–30%.The32Si concentrations vary from 0.6 dpm/106 kg of water in the North Atlantic surface waters to 235 dpm/106 kg at 400 m depth in the circumpolar waters. The vertical profiles of32Si at the five Atlantic stations approximately follow the Si profiles but the depth gradients are different. This would be expected also considering the in-situ release mechanisms due to dissolution and advection/diffusion from the bottom waters. Except for the circumpolar station 89, where the Si and32Si profiles show the effect of marked vertical mixing (nearly depth independent profiles), the profiles show the following features: (1) specific activities of32Si (32Si/SiO2 ratios) are lowest at intermediate depths, and (2) on an average the surface specific activities are higher, by 2–4 times, than the bottom water values. These data are consistent with generation of the highest specific activity32Si waters at the surface, where Si concentrations are lowest and precipitation adds cosmogenic32Si scavenged from the troposphere. Rapid removal of biogenic silica to the water-sediment interface, without much dissolution during transit, leads to the second regime of high32Si specific activities.The32Si inventories in the water column in the latitude belt 27°N-27°S are in the range (1–1.4) × 10−2 dpm32Si/cm2, which is consistent with the expected fallout of cosmogenic32Si. However, the32Si column inventories south of 40°S are higher by a factor of 5–7, whereas the corresponding Si inventories increase by only a factor of 3. This excess32Si in the Southern Ocean cannot be explained by direct fallout from the stratosphere or by melting of Antarctic snow and ice. Instead, this excess is maintained primarily by the southward deep-water transport of32Si dissolved from sinking particulates.  相似文献   

7.
《Continental Shelf Research》2006,26(17-18):2225-2240
Stratigraphic completeness is a fundamental consideration when deciphering the mass accumulation history of sediments and the geologic record of earth and ocean processes. In this study, stratigraphic completeness was examined in the context of late Holocene sedimentary successions using published sediment accumulation rates for five ocean margin systems (Amazon shelf, Hudson estuary, northern California shelf, Mid-Atlantic slope, Santa Monica Bay). Plots of mass accumulation rate versus time span of averaging were used to determine how rates scale with measurement period, and to estimate levels of stratigraphic completeness for comparison within and among margin systems. Statistically significant inverse correlations between accumulation rate and time span of averaging are indicated for all but one of these systems—most of the sedimentary records examined are stratigraphically incomplete. At the 103-yr level of resolution, completeness is 20–48% for strongly tidal estuarine (Hudson estuary) and deltaic shelf (Amazon shelf) sites, 51–91% for accretionary shelves (northern California shelf) and slopes (Mid-Atlantic slope), and 85–100% for a sediment-starved slope (Santa Monica bay). Mass accumulation rates converge to a relatively narrow range (0.01–0.1 g cm−2 yr−1) at the 104-yr level of resolution, consistent with the notion that there are universal controls on sediment accumulation rate, i.e., rate of sea-level rise and sediment supply. Among sites on the Amazon and northern California shelves, within-system completeness varies by ∼10–20% on account of site-specific sedimentary processes that preferentially trap or disperse suspended sediment. Overall, stratigraphic completeness increases with water depth shelf-to-slope, yet depth is not a robust predictor of completeness in general owing to differences in strata-forming processes among shallow-marine environments. Significantly, completeness varies inversely with instantaneous deposition rate as the most sediment-rich systems tend to exhibit the most incomplete sedimentary records. The findings of this study emphasize the importance of considering time span and fidelity when interpreting the accumulation history of modern and Holocene sedimentary strata.  相似文献   

8.
At the appropriate times, silica diffusion in clay is possibly the rate determining process for the dissolution of vitrified waste disposed of in a clay layer. For testing this hypothesis, combined glass dissolution/silica diffusion experiment are performed. SON68 glass coupons doped with the radioactive tracer 32Si are sandwiched between two cores of humid Boom Clay, heated to 30 °C. Due to glass dissolution, 32Si is released and diffuses into the clay. At the end of an experiment, the mass loss of the glass coupon is measured and the clay core is sliced to determine the diffusion profile of the 32Si released from the glass in the clay.Both mass loss and the 32Si diffusion profile in the clay are described well by a model combining glass dissolution according to a linear rate law with silica diffusion in the clay. Fitting the experiments to this model leads to an apparent silica diffusion coefficient in the clay between 7 × 10−13 m2/s and 1.2 × 10−12 m2/s. Previously determined values from diffusion experiments at 25 °C are around 6 × 10−13 m2/s (In-Diffusion experiments) and 2 × 10−13 m2/s (percolation experiments). The maximal glass dissolution rate for glass next to clay is around 1.6 × 10−7 g glass/m2 s (i.e. 0.014 g glass/m2 day). In undisturbed clay, the measured silica concentration is around 5 mg/L. Combining these values with the previously measured (In-Diffusion experiments) product of accessible porosity and retardation factor, leads in two ways to a silica glass saturation concentration in clay between 8 and 10 mg Si/L.Another candidate for the rate determining process of the dissolution of vitrified waste disposed in a clay layer is silica precipitation. Although silica precipitation due to glass dissolution has been shown experimentally at 90 °C, extending the model with silica precipitation does not lead to much better fits, nor could meaningful values of a possible precipitation rate be obtained.  相似文献   

9.
The nature of sedimentation and mixing are examined in abyssal red clay sediments from the North Central Pacific using three types of indicators: 230Th/232Th, organic14C, and137Cs and 239.240Pu.230Th/232Th analysed revealed that the clay sedimentation rate in three box cores collected within a 50 km radius was less than 1.0 mm/103 yr. However, analyses of the organic carbon in thin layers of sediment revealed that radiocarbon was present much deeper in the cores (down to 20 cm) than was expected from the 230Th/232Th distribution. In addition, both the stratigraphy and inventory of radiocarbon was significantly different between box cores. The distributions and inventories of137Cs and239.240Pu were similar to that found for radiocarbon, further illustrating the spatial variability of radionuclides in oligotrophic North Pacific red clays. These data suggest that bioturbational processes are important for transporting organic carbon down into the sediment column.  相似文献   

10.
Unsupported226Ra (t12 = 1620years) in marine sediments can provide a basis for measuring rates of accumulation of the order of centimeters per thousand years. The excess radium apparently enters the sediments incorporated in phytoplankton. The sensitivity of the method depends upon the initial value of the unsupported226Ra and of the value of230Th, a parent of226Ra, in the sedimentary components.226Ra dating was applied to a sediment taken from the slope of the San Clemente Basin in the Southern California coastal region. Rates of sedimentation over two half-lives of the nuclide were found to be either 5.2 or 5.3 cm/1000 years depending upon which of two models for the geochronology is used. One model assumes that the230Th brings to the deposit an amount of226Ra in equilibrium with it. The other is based upon the growth of the226Ra from the230Th in the sedimentary components.238+239Pu and210Pb levels in the upper strata indicated sedimentation rates of the order of 100–500 cm/1000 years, i.e. much faster accumulations. We suggest these derived rates are spurious and reflect bioturbative activities of surface-living organisms.  相似文献   

11.
Adsorption studies with sediment from the Bay of Quinte (Lake Ontario) indicate that the adsorption isotherm for sulfate concentration greater than 20 mg/l can be described by a Langmuir-type equation. The accompanying changes in δ34S of the solutions range from +0.9 to +6.0‰ indicating enrichment of32S in the sediments. The corresponding isotopic fractionation between the adsorbed sulfate and the sulfate remaining in solution ranges from ?10 to ?24‰, the larger fractionations being associated with low sulfate concentrations. The adsorbed sulfate is shown to significantly afftect the isotopic composition of the sediment in contact with the sulfate-bearing solution. The desorption of adsorbed sulfate is considered a possible mechanism for enriching natural freshwaters with32S.  相似文献   

12.
Illite clay particles with adsorbed137Cs were added as a submillimeter layer to the surface of silt-clay sediments contained in rectangular Plexiglas cells stored in a temperature-regulated aquarium, in order to trace the effect of the oligochaete, Tubifex tubifex, and the amphipod, Pontoporeia hoyi, on mass redistribution near the sediment-water interface. A well-collimated NaI gamma detector scanned each sediment column (~10 cm deep) at daily or weekly intervals for six months, depicting the time evolution of radioactivity with and without added benthos. In a cell with tubificids (~5 × 104 m?2), which feed below 3 cm and defecate on surface sediments, the labeled layer was buried at a rate of 0.052 ± 0.007 cm/day (20°C). When labeled particles entered the feeding zone,137Cs reappeared in surface sediments creating a bimodal activity profile. In time, the activity tended toward a uniform distribution over the upper 6 cm, decreasing exponentially below to undetectable levels by 9 cm. In a cell with amphipods (~1.6 × 104 m?2) uniform activity developed rapidly (~17 days) down to a well-defined depth (1.5 cm). The mixing of sediments by Pontoporeia is described by a simple quantitative model of eddy diffusive mixing of sediment solids. The value of the diffusion coefficient, 4.4 cm2/yr (7°C) was computed from a least squares fit of theoretical to observed profile broadening over time. In a cell without benthos, small but measurable migration of137Cs indicated an effective molecular diffusion coefficient of 0.02 cm2/yr.  相似文献   

13.
The deployment of particle interceptor traps (PITs) in the three inner basins of the Southern California Bight (Santa Barbara, Santa Monica, and San Pedro) where preserved, laminated, bottom sediments occur, provides a natural calibration between the parameters determined with the PITs and those derived from the historical sedimentary deposits. The accumulation rates and chemical composition of the PIT materials compare favorably with these recently deposited bottom sediments. The ratio of the measured particle collection rate to the sediment accumulation rate for these three basins averaged0.93±0.20. Radionuclide (210Pb,228Th/232Th) and trace element (Fe, Cu, Zn, Cd, Pb) compositions of the PIT materials and surface sediments agree within, generally, 30% in each basin.An application of PITs as a sampling system in an outer basin (San Nicolas) where the sedimentary record has been obscured by bioturbation is also presented to further demonstrate the utility of PITs for spatial and temporal studies of various aspects of particle transport and sediment deposition. Based on the calibration of the PITs in the three inner basins we conclude from the comparison of the radionuclide and trace element compositions between the PIT materials and surface sediments from the San Nicolas Basin that recently deposited sedimentary material has been mixed by bioturbation with older material from the last several hundred years. Excess210Pb and the228Th/232Th activity ratio in the PIT material are 6 and 15 times higher than in the surface sediment. Total Pb and1N HNO3-leachable Pb are 4- and 8-fold higher in the PIT material.  相似文献   

14.
To monitor the composition and the vertical flux of particulate matter from the sea surface, a sediment trap was moored in Cuenca Alfonso, Bahía de La Paz, a zone of high productivity in the southwestern Gulf of California. Carbonate-free samples from 2002 to 2005 were analyzed for Corg, N, δ13C, and δ15N. The results show seasonal and interannual variability, with the δ13C and δ15N values larger in spring and summer than in fall and winter. The C:N ratio and δ13C increased by 1.5 units from 2002 to 2003–2005, suggesting a change in the supply of organic matter and-or the use or preferential degradation of Norg. There was no interannual variation in δ15N. The occasional high δ15N values suggest that physical mechanisms, such as the shoaling and advection into the bay of 15N-rich subsurface equatorial water, occur over short time periods. The latter is presumed to be related to the periodic development of a significant cyclonic gyre in the southern Gulf.  相似文献   

15.
《Continental Shelf Research》2006,26(17-18):2178-2204
Continental-shelf lithofacies are described from a series of cores collected in the northern Gulf of Alaska, a high-energy paraglacial shelf experiencing rapid rates of sediment accumulation. Short-lived tracers (234Th and chlorophyll-a) indicate that during the annual peak in fluvial sediment input (summer), biologic sediment mixing coefficients in the surficial seabed are generally lower than other coastal environments (<20 cm2 yr−1) and mixing extends downward <10 cm.210Pb geochronology indicates that sediment accumulation rates (time scales of 10–100 yr) are 0.1–3 cm yr−1. The measured bioturbation and accumulation rates lead to predictions of moderate to bioturbated lithofacies, as observed. Primary depositional fabric is preferentially preserved where sediment accumulation rates >2 cm yr−1 and non-steady sediment deposition occurs. Depositional fabric is also observed in strata at 50–100 m water depths and is similar in appearance to beds that may form through deposition of wave-induced fluid-mud flows, which have been observed forming on other shelves with moderate to high wave energy. Five general lithofacies can be identified for the study area: inner-shelf sand facies, interbedded sandy mud facies, moderate-to-well-bioturbated mud facies, gravelly mud facies, and Tertiary bedrock facies. The moderate-to-well-bioturbated mud facies is areally dominant, representing over 50% of the shelf area, although roughly equal volumes (∼0.4 km3) of strata with some preservation of primary fabric are annually accumulating. Lithofacies on this paraglacial shelf generally resemble mid- and low-latitude allochthonous shelf strata to a much greater degree than Holocene glacimarine strata formed on shelves dominated by icebergs and floating ice shelves. Paraglacial strata may be differentiated from non-glacial shelf strata by lower organic carbon concentrations, a relatively lower degree of bioturbation, and increased preservation of primary depositional fabric.  相似文献   

16.
Four cores recovered within the framework of the INTERPOL Project have been analysed for their grain size and geochemistry; sediment accumulation rates (SARs) were also determined from 210Pb and 137Cs profiles. Two cores are representative of the Axios and Aliakmon Rivers depositional environment, whilst the third core represents the Pinios River province; the fourth core represents an environment of outer shelf relict sands. Apparent SARs ranged between 0.667 g cm−2 yr−1 (Axios and Aliakmon Rivers) and 0.414 g cm−2 yr−1 (Pinios River). Trawling activities and biomixing are critical processes that may be responsible for the mixing of the surface sediments, as observed from the excess 210Pb profiles. The thickness of the surface mixed layer was 4.5 cm in the vicinity of Axios and Aliakmon Rivers and in the area of Pinios River, 3.75 cm on the outer shelf and 1 cm in the area where no trawling was observed. Sediment accumulation appeared to be regulated by variations in the riverine discharge, shelf transport pathways and winnowing processes. Major element variations, such as Si, Al, Ti, V and Ni, were dominated by terrigenous supply as aluminosilicate minerals and quartz, whereas most Ca and Sr were biogenic. Si/Al and Ca/Al ratios have been used to express changes in sediment accumulation and winnowing. Redox processes were depicted by Mn, which showed an increase in the depth of its redoxcline, from 1 cm in inshore stations to 2 cm on the outer shelf. Si/Al ratios follow the Ca/Al ratios and can be used to assess percentage winnowing in the sediment. Increases in these ratios indicate a decrease in sediment input rates and are seen in the upper parts of most of the cores. Anthropogenic or ‘excess’ metal contents have been calculated from Zn/V and Pb/V ratios. Their distributions in the cores showed that by far the highest contamination is associated with the Axios River output, whilst sediments influenced by the Pinios River were relatively uncontaminated.  相似文献   

17.
Previous studies have shown how biogenic silica particles undergo conversion to aluminosilicate phases in large tropical deltaic systems, thus affecting the world ocean budget of major seawater cations. This study tackles the important question of the silica budget in the coastal zone of the Mississippi River Delta, providing evidence for the role of biogenic silica diagenesis in this subtropical system from direct examination of individual diatom particles, sediment leachates and pore-water composition. The estimated reactive silica stored in the study area (5990 km2) is based on operational leaches that account for altered biogenic silica particles and other authigenic aluminosilicate phases in addition to fresh biogenic silica. Early diagenesis of silica in the delta front occurs mainly where more siliceous material is deposited. An inner-shelf area, where hypoxic conditions are found, significantly contributes to the formation of authigenic products of Si alteration. Data suggest that the limiting factor of silica alteration processes is the availability of detrital phases such as Al and Fe. The estimated total reactive silica accumulation in the study area is 1.45×1010 mol Si year−1, representing ∼2.2% of the long-term bulk sediment accumulation. On the basis of a conservative appraisal, the authigenic mineral components account for ∼40% of the long-term reactive silica storage. This study shows that non-tropical deltaic systems are significantly more important sinks of silica than previously thought and that, where conditions are favourable, a consistent portion of reactive silica not leaving the shelf is stored within the delta in the form of authigenic components.  相似文献   

18.
A large number of sediment cores collected during 2005-2010 from the Taiwan Strait were analyzed for radionuclides (210Pb, 137Cs and 7Be) to elucidate sedimentation dynamics in this all-important gateway linking two largest marginal seas in the western Pacific (namely, the South China Sea and the East China Sea). Apparent sediment accumulation rates derived from 210Pb and 137Cs profiles vary from <0.1 to >2 cm/yr, averaging ∼0.4 cm/yr and showing a spatial pattern closely related to hydrodynamics and sediment source-to-sink pathways. Spatial-temporal variation of 7Be activity in surface sediments off Taiwan’s west coast indicates episodic deposition of flood layers and their mobility from river estuaries toward the north. In conjunction with particle size distribution in surface sediments and the structure of sediment strata revealed by sub-bottom echo images; the radionuclide data can be used to outline three different sediment source-to-sink dispersal systems. Based on sediment loads of surrounding rivers and the distribution of sediment accumulation rates, lateral transport is required to account for the budget and size distribution of sediments in the strait.  相似文献   

19.
Sea floor hydrothermal activity in the Guaymas Basin, Gulf of California, is quite different from that associated with ridge crest spreading centers. Injection of hydrothermal fluids occurs in the bottom of a semi-enclosed basin and water column anomalies produced by this activity increase to much higher values than in the open ocean. In the Guaymas Basin the hydrothermal venting generates large clouds of fine suspended particulate matter (SPM) 100–300 m above active mounds and chimneys. These hydrothermal clouds have potential temperature anomalies of about 0.010–0.020°C, are enriched in dissolved silica, particulate manganese, and depleted in dissolved oxygen relative to areas away from the vents. The particulate manganese values increase from about 3 nmol/kg at ~ 1000 m, well above the enclosing topography of the subsill basin, to 100–150 nmol/kg in the clouds of SPM and in the bottom nepheloid layer. The particulate Mn in the hydrothermal clouds appears to originate from both direct precipitation of dissolved Mn2+ injected by the vents and entrainment of Mn-rich SPM in the rising hydrothermal plumes. Injection of silica-rich vent fluids into the basin bottom waters produces a silica anomaly of 10–15 μmol relative to the other deep basins of the Gulf of California. Spillover of Guaymas Basin deep water produces a silica plume just above the basin sill depth which is detectable to the mouth of the Gulf. A simple two-endmember mixing model indicates that the deep waters of the Guaymas Basin contain approximately 0.1% hydrothermal fluid. Oxygen anomalies associated with the hydrothermal clouds are on the order of 5 μmol relative to regions away from active vents. The basin as a whole shows a depletion in oxygen of about 13 μmol relative to the other deep basins of the Gulf. The mixing model shows that this oxygen consumption can be explained by the oxidation of dissolved sulfide and methane injected by the hydrothermal vents. Box models of the deep basins of the southern Gulf of California indicate that the Guaymas Basin has a significantly higher source term for dissolved silica and sink term for dissolved oxygen than the other basins. The calculated flux of hydrothermal fluids into the Guaymas Basin is 10–12 m3/s.  相似文献   

20.
The10Be method of dating of marine sediment cores is applied to five North Pacific cores. Assuming a constant10Be precipitation rate and varying sedimentation rates with time during the past 2.5 m.y. dating confirms to that obtained from paleomagnetic stratigraphy. The10Be concentration variations with depth in the cores are primarily due to changes in sediment dilution and do not reflect cosmic ray intensity or global climate variations. The limits of10Be deposition rate variation in the investigated cores are less than ± 10% for periods of (2–7) × 105 years and less than ±30% for periods of 1 × 105 years. The data set gives a half-life of10Be is 1.50 × 106 years. The latitudinal effect of10Be concentrations and10Be/9Be ratios relates to a frequency of particulate matter occurrence (detrital and biological particles) in the oceans and to oceanic circulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号