首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Inhomogeneous aggregates of late-stage titanite enriched in Zr have been described recently from post-magmatic parageneses in silica-undersaturated rocks. In the natural samples, simple isovalent substitution of the large Zr ([vi]R4+=0.72 Å) for Ti ([vi]R4+=0.605 Å) is limited to an empirical maximum of 0.25 afu (15.3 wt.% ZrO2). As the natural material is not suitable for crystallographic study, a series of CaTi1-xZrxOSiO4 titanite samples have been synthesized by standard ceramic methods at ambient pressure in air, and their crystal structure determined by Rietveld refinement of laboratory powder X-ray diffraction patterns. All of the synthetic Zr-doped titanite varieties adopt space group A2/a and consist of distorted CaO7 polyhedra together with less distorted (Ti1-xZrx)O6 octahedra and SiO4 tetrahedra. Cell dimensions and atomic coordinates together with volumes and distortion indices are given for all polyhedra. The empirical limit for Zr substitution in synthetic (F,OH)-free titanite is 0.5 afu (29.6 wt.% ZrO2). The existence of a Zr analogue of titanite in nature is considered to be unlikely.  相似文献   

2.
平衡热液体系中硫同位素演化的几个图解   总被引:1,自引:0,他引:1       下载免费PDF全文
根据含硫矿物的同位素组成推断热液矿床成因是很有意义的。 1968年首先由H.Sakai指出热液的温度和pH值可以影响硫化物的同位素组成。接着,1972年H.Ohmoto以及1979年他和R.O.Rye系统讨论了平衡条件下热液的物理化学条件对硫同位素分馏的影响,建立了高温热液系统和低温热液系统的热液流体以及含硫矿物与热液成分和物理化学条件(温度、压力、氧逸度和酸碱度等)之间的数学表达式。  相似文献   

3.
电感耦合等离子体质谱法测定硫时不同形态硫的影响   总被引:1,自引:0,他引:1  
电感耦合等离子体质谱(ICP-MS)常常被应用于矿石、蛋白质和化石燃料等材料中硫含量的测定。文章综合研究比较了四极杆电感耦合等离子体质谱(Q-ICP-MS)和扇形磁场电感耦合等离子体质谱(SF-ICP-MS)测定硫的灵敏度、检出限及空白干扰。重点考察了两种不同的样品介质(水和2% HNO3)中不同形态的硫对SF-ICP-MS测定硫信号的影响,并且深入研究了影响的原因。结果表明,硫含量相同但形态不同的含硫阴离子(S2-、S2O32-、SO32-、SO42-)在2%的HNO3介质中的信号比在水介质中的信号稳定,2%的HNO3更适合于作为ICP-MS测定硫的介质。在2%的HNO3介质中,S2-、SO32-中S的ICP-MS测量灵敏度(即标准曲线的斜率)分别为7828 cps/(μg·L-1)、5528 cps/(μg·L-1),SO42-和S2O32-的测量灵敏度分别是为1321 cps/(μg·L-1)、1299 cps/(μg·L-1)。S2-和SO32-的灵敏度分别约为SO42-的6倍和4倍;而S2O32-的灵敏度与SO42-基本一致。主要原因在于S2-、SO32-形态的硫在HNO3介质中形成了气态的H2S和SO2,相当于提高了雾化效率,从而使这两种形态硫的灵敏度大幅度提高。  相似文献   

4.
Using a conventional high-T furnace, the solid solutions between magnesiochromite and manganochromite, (Mg1−x Mn x )Cr2O4 with x = 0.00, 0.19, 0.44, 0.61, 0.77 and 1.00, were synthesized at 1,473 K for 48 h in open air. The ambient powder X-ray diffraction data suggest that the Vx relationship of the spinels does not show significant deviation from the Vegard’s law. In situ high-T powder X-ray diffraction measurements were taken up to 1,273 K at ambient pressure. For the investigated temperature range, the unit-cell parameters of the spinels increase smoothly with temperature increment, indicating no sign of cation redistribution between the tetrahedral and octahedral sites. The VT data were fitted with a polynomial expression for the volumetric thermal expansion coefficient (aT = a0 + a1 T + a2 T - 2 \alpha_{T} = a_{0} + a_{1} T + a_{2} T^{ - 2} ), which yielded insignificant a 2 values. The effect of the composition on a 0 is adequately described by the equation a 0 = [17.7(8) − 2.4(1) × x] 10−6 K−1, whereas that on a 1 by the equation a 1 = [8.6(9) + 2.1(11) × x] 10−9 K−2.  相似文献   

5.
A Raman spectroscopic study of Fe-rich sphalerite (Zn1 − x Fe x S) has been carried out for six samples with 0.10 ≤ x ≤ 0.24. Both the intensities and frequencies of the TO and LO modes of sphalerite are approximately independent of Fe concentration. However, the substitution of Zn by Fe results in five additional bands with frequencies between the TO (271 cm−1) and LO (350 cm−1) modes. Three of these bands are attributed to resonance modes (i.e. Y 1, Y 2 and Y 3 modes). The fourth band (B mode) is assigned to a breathing mode of the nearest-neighbor sulfur atoms around the Fe atoms. The band at 337 cm−1 is attributed to the presence of Fe3+. The excellent correlations between the normalized intensities of these five different modes and x Fe show that these modes depend on Fe-content. Another extra mode at 287 cm−1 is assigned to the presence of Cd in sphalerite.  相似文献   

6.
Summary Phosphates of compositions (Na1–xLix)1.5Mn1.5Fe1.5(PO4)3 were synthesized by solid state reactions in air, and pure alluaudite-type compounds were obtained for x=0.00, 0.25, and 0.50. Rietveld refinements of X-ray powder diffraction data indicate the occurrence of Mn2+ in the M(1) site, and of Fe3+ and Mn2+ in the M(2) site. For x=0.25 and 0.50, A(1) is occupied by Li+ and Na+, whereas A(2) is occupied by Na+ and vacancies. A careful examination of the number of electrons occurring in the A sites of the alluaudite-type compounds (Na1–xLix)MnFe2(PO4)3 and (Na1–xLix) CdIn2(PO4)3 confirms that lithium occupies only the A(1) crystallographic site of the alluaudite structure.  相似文献   

7.
地热水中的硫化物(H_2S、HS~-和S~(2-))通常受到硫酸根、亚硫酸根、硫代硫酸根等硫元素的共存干扰,并且硫化物具有热、光、氧不稳定性,在水样保存、前处理、标准溶液配制等环节影响着测试的准确度和精密度。本文在现场采集的地热水水样中加入乙酸锌及氢氧化钠,使硫化物形成硫化锌沉淀而与溶液分离,将此沉淀溶于双氧水和逆王水,使低价态的S2-氧化成稳定的SO_4~(2-),选择易于纯化且性质稳定的硫酸钠配制硫标准储备液,以182.624 nm谱线作为硫元素分析谱线,应用电感耦合等离子体发射光谱法测定出地热水样中的硫化物含量。硫的浓度在0.1~100 mg/L范围内与其发射强度呈线性(相关系数为0.9994);方法检出限为0.009 mg/L,相对标准偏差(n=11)低于1.80%,实际水样中硫化物的加标回收率介于99.0%~103.0%。与前人相关测试方法相比,本方法的技术指标具有优势。  相似文献   

8.
57Fe-Mössbauer spectra of eleven Fe-Mg-bearing staurolite samples, synthesized at 5, 20 and 25 kbar and 680°C, ranging in composition from xFe?=1.00 to xFe?=0.15, and of two Zn-Fe-bearing staurolite samples, synthesized at 20 kbar and 700°C with xFe?=0.10 and xFe?=0.32 were collected at room temperature. The spectra reveal that about 80% of Fetot (in case of Fe-Mg-bearing staurolite) and about 70% of Fetot (in case of Fe-Zn-bearing staurolite) are located as Fe2+ at the three subsites Fe1, Fe2 and Fe3 of the tetrahedral T2-site. The refinement of the spectra results in almost identical values for the isomer shift (IS) (±1.0 mm/s) but significantly different values for the quadropole splitting (QS) for the three subsites which is in accordance with the different distortions of these sites. About 8% of Fetot (in case of Fe-Mg-bearing staurolite) and 13% of Fetot (in case of Fe-Zn-bearing staurolite) are located as Fe2+ at the octahedral M4 site, while the remainder percents of Fetot indistinguishably occur as Fe2+ at the octahedral M1 and M2 sites of the kyanite-like part of the structure. Within the whole Fe-Mg-staurolite solid solution series the Mössbauer parameters QS of the sites M4 and (M1, M2) vary systematically with composition whereas IS remains constant. There is a high negative correlation of the total Mg-content with Fe-occupation of all the Fe-bearing sites indicating a continuous substitution of Fe2+ by Mg on all these sites. Synthetic Fe-staurolites show no increasing occupation of the octahedral sites by two-valent cations with pressure, as was assumed by several authors.  相似文献   

9.
Rhythmic zoning is ubiquitous in igneous rocks. Based on polymerization and regular solution models, a non-ideal, disequilibrium and non-linear interface equation has been established to describe the process of crystal growth:f = 1/[1 + (β/x s )(1 -x s )exp(-W / RT)(1 - 2f)] wheref and xs represent respectively the mole fraction of a component in the crystal and melt at the interface;W the total exchange energy;R the gas constant; andT the temperature; β=k B /k A , withk A andk B representing respectively the rate constants of components A and B. Results of numerical simulation of the equation demonstrate that a domain of triple valuedness exists ifW / RT < -2. This model, together with the mass balance equation, explains reasonably the rhythmic phenomena in silicate solid solutions, indicating that self-organization is responsible for this process during mineral growth.  相似文献   

10.
Acid mine drainage biogeochemistry at Iron Mountain,California   总被引:2,自引:0,他引:2  

The Richmond Mine at Iron Mountain, Shasta County, California, USA provides an excellent opportunity to study the chemical and biological controls on acid mine drainage (AMD) generation in situ, and to identify key factors controlling solution chemistry. Here we integrate four years of field-based geochemical data with 16S rRNA gene clone libraries and rRNA probe-based studies of microbial population structure, cultivation-based metabolic experiments, arsenopyrite surface colonization experiments, and results of intermediate sulfur species kinetics experiments to describe the Richmond Mine AMD system. Extremely acidic effluent (pH between 0.5 and 0.9) resulting from oxidation of approximately 1 × 105 to 2 × 105 moles pyrite/day contains up to 24 g/1 Fe, several g/1 Zn and hundreds of mg/l Cu. Geochemical conditions change markedly over time, and are reflected in changes in microbial populations. Molecular analyses of 232 small subunit ribosomal RNA (16S rRNA) gene sequences from six sites during a sampling time when lower temperature (<32°C), higher pH (>0.8) conditions predominated show the dominance of Fe-oxidizing prokaryotes such as Ferroplasma and Leptospirillum in the primary drainage communities. Leptospirillum group III accounts for the majority of Leptospirillum sequences, which we attribute to anomalous physical and geochemical regimes at that time. A couple of sites peripheral to the main drainage, "Red Pool" and a pyrite "Slump," were even higher in pH (>1) and the community compositions reflected this change in geochemical conditions. Several novel lineages were identified within the archaeal Thermoplasmatales order associated with the pyrite slump, and the Red Pool (pH 1.4) contained the only population of Acidithiobacillus. Relatively small populations of Sulfobacillus spp. and Acidithiobacillus caldus may metabolize elemental sulfur as an intermediate species in the oxidation of pyritic sulfide to sulfate. Experiments show that elemental sulfur which forms on pyrite surfaces is resistant to most oxidants; its solublization by unattached cells may indicate involvement of a microbially derived electron shuttle. The detachment of thiosulfate (S2O32-) as a leaving group in pyrite oxidation should result in the formation and persistence of tetrathionate in low pH ferric iron-rich AMD solutions. However, tetrathionate is not observed. Although a S2O32--like species may form as a surface-bound intermediate, data suggest that Fe3+ oxidizes the majority of sulfur to sulfate on the surface of pyrite. This may explain why microorganisms that can utilize intermediate sulfur species are scarce compared to Fe-oxidizing taxa at the Richmond Mine site.

  相似文献   

11.
The nature of the stability of an incommensurate 3D modulation (ITM) in the structure of Baikal lazurite was evaluated using the methods of experimental geochemistry and X-ray photoelectron spectroscopy. It was shown that ITM with a period of 4.6a is preserved in the lazurite structure at 550°C almost without changes within the time interval from t = 100 h to at least 2000 h, although its initial (t = 0) development was not restored. In contrast to higher temperatures (≥ 600°C), the activities of gas species have no significant influence on the process of modulation release, except for the region of low O2, S2, and SO2 fugacities, where the type of modulation changes, and the monosulfide ion appears in the lazurite composition. At T = 550°C and probably at lower temperatures, SO2 fugacity ceases to be the critical parameter of ITM existence. The ordered state of polysulfide and sulfate clusters corresponding to the ITM period of Baikal cubic lazurite is stable at T = 550°C and is an example of forced equilibrium. It develops in response to a crystal chemical event occurring at a temperature of T x within 600–550°C and is related to the thermal compression of the structure resulting in the isolation of structural cages containing clusters with different states of sulfur. Their mutual interaction, which leads to the rapid release of the modulation at higher temperatures owing to the equalizing of cluster sizes in the cages, ceases. As a result, the proportions of reduced (S22−, and S x 2−) and oxidized (SO42−, So32−, and S2O32− sulfur species show negligible variations, and there is only partial reduction of sulfate to sulfite and thiosulfate. Lazurite samples with disulfide and polysulfide ions behave similarly, which suggests that an important condition for the preservation of ITM is the presence of sulfur-bearing anions with different sizes rather than particular sulfur species in structural cages. The degree of ordering in the distribution of clusters attained at T x remains unchanged owing to the development of forced equilibrium maintained by the energy balance between framework deformation and cluster ordering. Natural lazurite with an ITM structure could not form at temperatures higher than T x , i.e., above 550–600°C  相似文献   

12.
A suite of (Mn1-x Fe x )Nb2O6 (x=0, 0.05, 0.25, 0.50, 0.75, 1) columbite samples has been prepared by solid-state reaction from oxides. X-ray diffraction and spectroscopic investigations have been carried out in order to gain different perspectives on how the solid solution adapts at different length scales to cation mixing. X-ray powder diffraction and powder absorption IR spectroscopy data are presented. The powder diffraction data show that there is no significant excess volume of mixing on the Fe–Mn columbite join. All the unit-cell parameters decrease linearly as a function of increasing Fe content. Substitution of Fe2+ for the larger Mn2+ cation causes a decrease in the volume of the A polyhedron, which also becomes more regular with respect to both bond-length and edge-length distortion parameters. No significant variation of the B site has been observed. Wavenumber shifts of the IR peaks nearly all vary linearly with composition, consistent with linear variations of the lattice parameters. Line broadening has been quantified by autocorrelation analysis of the IR spectra. This is interpreted as suggesting that there is some element of local strain or positional disorder at the length scale of second or third nearest neighbours around sites occupied by Fe.  相似文献   

13.
A new thermodynamic model for multi-component spinel solid solutions has been developed which takes into account thermodynamic consequences of cation mixing in spinel sublattices. It has been applied to the evaluation of thermodynamic functions of cation mixing and thermodynamic properties of Fe3O4–FeCr2O4 spinels using intracrystalline cation distribution in magnetite, lattice parameters and activity-composition relations of magnetite–chromite solid solutions. According to the model, cation distribution in binary spinels, (Fe1-x2+ Fex3+)[Fex2+Fe2-2y-x3+Cr2y]O4, and their thermodynamic properties depend strongly on Fe2+–Cr3+ cation mixing. Mixing of Fe2+–Fe3+ and Fe3+–Cr3+ can be accepted as ideal. If Fe2+, Fe3+ and Cr are denoted as 1, 3 and 4 respectively, the equation of cation distribution is –RT ln(x2/((1–x)(2–2yx)))= G13* + (1–2x)W13+y(W14W13–W34) where G13* is the difference between the Gibbs energy of inverse and normal magnetite, Wij is a Margules parameter of cation mixing and G13*, J/mol =–23,000+13.4 T, W14=36 kJ/mol, W13=W34=0. The positive nonconfigurational Gibbs energy of mixing is the main reason for changing activity–composition relations with temperature. According to the model, the solvus in Fe3O4–FeCr2O4 spinel has a critical temperature close to 500°C, which is consistent with mineralogical data.  相似文献   

14.
We report solid phase sulfur speciation of six cores from sediments underlying oxic, suboxic and anoxic-sulfidic waters of the Black Sea. Our dataset includes the five sulfur species [pyrite-sulfur, acid volatile sulfides (AVS), zerovalent sulfur (S(0)), organic polysulfides (RSx), humic sulfur] together with reactive iron and manganese, as quantified by dithionite extraction, and total organic carbon. Pyrite – sulfur was the major phase in all cores [200-400 µmol (g dry wt)- 1] except for the suboxic core. However, zerovalent sulfur and humic sulfur also reached very significant levels: up to about 109 and 80 µmol (g dry wt)- 1, respectively. Humic sulfur enrichment was observed in the surface fluff layers of the eastern central basin sediments where Unit-1 type depositional conditions prevail. Elemental sulfur accumulated as a result of porewater sulfide oxidation by reactive iron oxides in turbidities from the anoxic basin margin and western central basin sediments. The accumulation of elemental sulfur to a level close to that of pyrite-S in any part of central Black Sea sediments has never been reported before and our finding indicates deep basin turbidites prevent the build-up of dissolved sulfide in the sediment. This process also contributes to diagenetic pyrite formation whereas in the non-turbiditic parts of the deep basin water column formed (syngenetic) pyrite dominates the sulfur inventory. In slope sediments under suboxic waters, organic sulfur (humic sulfur + organic polysulfides) account for 33-42% of total solid phase S, indicating that the suboxic conditions favor organosulfur formation. Our study shows that the interactions between depositional patterns (Unit 1 vs. turbidite), redox state of overlying waters (oxic-suboxic-sulfidic) and organic matter content determine sulfur speciation and enable the accumulation of elemental sulfur and organic sulfur species close to a level of pyrite-S.  相似文献   

15.
Samples of the eosphorite-childrenite [(Mn2+, Fe2+)AlPO4(OH)2H2O] series from Divino das Laranjeiras and Araçuaí (Minas Gerais State) and Parelhas (Rio Grande do Norte State) pegmatites have been investigated by X-ray diffraction, microprobe analysis and Mössbauer spectroscopy at 295 and 77 K. The Mössbauer spectra of ernstite [(Mn2+, Fe3+)AlPO4(OH)2-xOx] showed the existence of ferric ions in both A and B sites, whereas ferrous ions seem to be located exclusively in the A site. Nonoxidised samples show ferrous ions located in both sites, and no Fe3+ could be detected. The interpretation of the Mössbauer spectra of both, oxidised and nonoxidised samples, is difficult because the hyperfine parameters of these minerals are rather similar, rendering it difficult to make proper site assignments.  相似文献   

16.
Synthetic titanite, CaTiOSiO4, and the series of (Ca1−x Na x )(Ti1−x Ta x )OSiO4 and Ca(Ti1−2x Ta x Al x )OSiO4 solid solutions have been prepared by ceramic methods, and their crystal structure determined by the Rietveld analysis. At ambient conditions, titanite can contain up to 20 mol% NaTaOSiO4 or 60 mol% Ca(Al0.5Ta0.5)OSiO4. These limits might differ in natural samples due to combination with substitutions involving fluorine and/or hydroxyl replacing oxygen together with vacancies at cationic sites. All cations located at the vii X- and vi Y-sites in the structures of tantalian titanite are disordered. Expansion of the <Si–O> bond from 1.618 to 1.621 Å in CaTi0.8Ta0.1Al0.1OSiO4 and CaTi0.6Ta0.2Al0.2OSiO4 to 1.644 Å in the CaTi0.4Ta0.3Al0.3OSiO4 titanite suggests the possible presence of some Al3+ in the tetrahedral site replacing Si4+ in the latter. All tantalian titanites crystallize in the space group A2/a. This implies that both single-site and complex double-site substitutional schemes induce P21/a A2/a phase transition(s). The (Ca1−x Na x )(Ti1−x Ta x )OSiO4 substitution scheme incorporates larger cations at both the vii X and vi Y sites, whereas the Ca(Ti1−2x Ta x Al x )OSiO4 scheme involves only vi Y-site (Al3+,Ta5+) cations with a slightly smaller “average” radius. Unit cell dimensions change insignificantly or increase incrementally with increase of average cationic radii in the (Ca1−x Na x )(Ti1−x Ta x )OSiO4 series, and with an insignificant decrease in the viR Y average cationic radii in the Ca(Ti1−2x Ta x Al x )OSiO4 series. Both Ta-doped titanite and CaTiOSiO4 consist of distorted polyhedra with the XO7, YO6 coordination polyhedra and the SiO4 tetrahedron in tantalian titanite being less distorted compared to those of the pure CaTiOSiO4.  相似文献   

17.
The pH and fO 2 dependences of the [Se2–]/[S2–] ratio in chloride solutions at 100°, 200° and 300°C are predicted thermodynamically. Under the high fO 2 conditions where sulfate species are dominant in solution, the [Se2–]/[S2–] ratio always increases with increasing pH and/or fO 2. Under the low fO 2 conditions where sulfide species are dominant in solution, the pH and fO 2 dependences of the [Se2–]/[S2–] ratio are seriously affected by the presence of native selenium. With native selenium present, the [Se2–]/[S2–] ratio decreases with increasing fO 2, but almost independent of pH in geologically important pH regions. When native selenium is absent, the [Se2–]/[S2–] ratio is solely a function of pH and independent of fO 2. Combining the above with the pH and fO 2 dependences of 34S value of aqueous sulfur species, we discuss the possible influences of the pH and fO 2 of ore-forming solutions on the relationship between the Se/S ratio and 34S value of hydrothermal sulfide minerals. The results are applied to some Japanese sulfide ore deposits.  相似文献   

18.
储雪蕾 《地质科学》1993,28(4):390-394
分子内不同结构位置上两个同种元素的原子间的直接同位素交换,服从假一级化学反应速度定律。这两位置原子间的同位素交换分数F仅为反应时间t的函数,且有ln(1-F)=-(kf+kr)t。由此分析Uyama等(1985)的实验结果,表明热液中硫代硫酸盐(HSSO3H)分子内-SO3H和-SH之间的直接硫同位素交换很慢,它们之间实际存在的较快速同位素交换是通过与硫化物反应形成多硫化物这个可逆反应来实现的。  相似文献   

19.
The form or speciation of a metal in natural waters can change its kinetic and thermodynamic properties. For example, Cu(II) in the free ionic form is toxic to phytoplankton, while copper complexed to organic ligands is not toxic. The form of a metal in solution can also change its solubility. For example, Fe(II) is soluble in aqueous solutions while Fe(III) is nearly insoluble. Natural organic ligands interactions with Fe(III) can increase the solubility by 20-fold in seawater. Ionic interaction models that can be used to determine the activity and speciation of divalent and trivalent metals in seawater and other natural elements will be discussed. The model is able to consider the interactions of metals with the major (Cl-, SO4 2-, HCO3 -, CO3 2-, Br-, F-) and minor (OH-, H2PO4 -, HPO4 2-, PO4 3-, HS-) anions as a function of temperature (0 to 50 °C), ionic strength [0 to 6 m (m = mol kg-1)] and pH (1 to 13). Recently, it has been shown that many divalent metals are complexed with organic ligands. Although the composition of these ligands is not known, a number of workers have used voltammetry to determine the concentration of the ligand [L n ] and the stability constant (K ML) for the formation of the complex  相似文献   

20.
热水解-离子色谱法连续测定地质物料中的氟、氯和硫   总被引:2,自引:0,他引:2  
研究报导了一种快速、高效和无干扰地测定地质物料中氟、氯和硫的热水解离子色谱方法。自行设计和组装了热水解装置。实验研究和选择了热水解条件、离子色谱测定的最佳工作状态,从而获得了准确可靠的结果。用本法对10个地球化学标准参考样(GSR-3,6;GSS-1,3,6,8;GSD-11,12)进行分析测定,其结果与这些标样的最佳估计值和推荐值非常一致。该方法的检出限分别为:氟6.6ppm;氯30.8ppm;硫酸根36.8ppm。方法的精密度(RSD,%)对氟含量为577ppm,氯含量为70ppm和硫酸根含量为420ppm的样品来说,分别为1.8%,12.3%和3.8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号