首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We apply the reconstruction technique of Nusser & Dekel to the recently available Point Source Catalogue Redshift Survey (PSCz) in order to subtract the non-Gaussianities that are expected to develop in the mild non-linear regime of gravitational evolution. We study the evolution of isodensity contours defined using an adaptive smoothing algorithm, in order to minimize the problems derived from the non-commutativity of the smoothing operator and the time-evolution operator. We study the topology of these isodensity contours and concentrate on the evolution of the amplitude drop of the genus compared to a Gaussian field with an identical power spectrum, in order to quantify the level of phase-correlation present in the field. In order to test the method and to quantify the level of statistical uncertainty, we apply the method to a set of mock PSCz catalogues derived from the N -body simulations of two standard cold dark matter (CDM) models, kindly granted to us by the Virgo consortium. We find the method to be reliable in recovering the correct amplitude drops. When applied to PSCz, the level of phase correlations observed is very low on all scales ranging from 5 to 60  h −1 Mpc, providing support to the theory that structure originated from Gaussian initial conditions.  相似文献   

2.
We present a comparison between the voids in two nearly all-sky redshift surveys: the Optical Redshift Survey (ORS) and the IRAS 1.2-Jy survey. While the galaxies in these surveys are selected differently and their populations are known to be biased relative to each other, the two void distributions are similar. We compare the spatial distribution of the two void populations and demonstrate the correlation between them. The voids also agree with regard to the overall void statistics a filling factor of 0.45 of the volume, an average void diameter and an average galaxy underdensity in the voids Our measurements of the underdensities of the voids in the two surveys enable us to estimate the relative bias in the voids between optical and IRAS samples. We find ( b opt b IRAS )void1, showing that on average there is little or no biasing between the two void populations.  相似文献   

3.
We have investigated the statistical clustering properties of galaxies by calculating the two-point galaxy correlation function from the optically selected Durham/UKST Galaxy Redshift Survey. This survey is magnitude-limited to b J∼17, contains ∼2500 galaxies sampled at a rate of one-in-three and surveys a ∼4×106 ( h −1 Mpc)3 volume of space. We have empirically determined the optimal method of estimating the two-point correlation function from just such a magnitude-limited survey. Applying our methods to this survey, we find that our redshift-space results agree well with those from previous optical surveys. In particular, we confirm the previously claimed detections of large-scale power out to ∼40 h −1 Mpc scales. We compare with two common models of cosmological structure formation and find that our two-point correlation function has power significantly in excess of the standard cold dark matter model in the 10–30 h −1 Mpc region. We therefore support the observational results of the APM galaxy survey. Given that only the redshift-space clustering can be measured directly, we use standard modelling methods and indirectly estimate the real-space two-point correlation function from the projected two-point correlation function. We then invert this projected correlation function to obtain an estimate of the spatial two-point correlation function in real space. This correlation function in real space has a lower amplitude than that in redshift space, but a steeper slope.  相似文献   

4.
We have investigated the redshift-space distortions in the optically selected Durham/UKST Galaxy Redshift Survey using the two-point galaxy correlation function perpendicular and parallel to the observer's line of sight, ξ(σ, π). On small, non-linear scales we observe an elongation of the constant ξ(σ, π) contours in the line-of-sight direction. This is a result of the galaxy velocity dispersion and is the common 'Finger of God' effect seen in redshift surveys. Our result for the one-dimensional pairwise rms velocity dispersion is 〈 w 21/2=416±36 km s−1, which is consistent with those from recent redshift surveys and canonical values, but inconsistent with SCDM or LCDM models. On larger, linear scales we observe a compression of the ξ(σ, π) contours in the line-of-sight direction. This is caused by the infall of galaxies into overdense regions, and the Durham/UKST data favours a value of (Ω0.6/ b )∼0.5, where Ω is the mean mass density of the Universe and b is the linear bias factor that relates the galaxy and mass distributions. Comparison with other optical estimates yields consistent results, with the conclusion that the data do not favour an unbiased critical-density universe.  相似文献   

5.
6.
We present a state-of-the-art linear redshift distortion analysis of the recently published IRAS Point Source Catalog Redshift Survey (PSC z ). The procedure involves linear compression into 4096 KarhunenLoève (signal-to-noise) modes culled from a potential pool of 3105 modes, followed by quadratic compression into three separate power spectra, the galaxygalaxy, galaxyvelocity and velocityvelocity power spectra. Least squares-fitting to the decorrelated power spectra yields a linear redshift distortion parameter  相似文献   

7.
We make use of three-dimensional clustering analysis, inertia tensor methods, and the minimal spanning tree technique to estimate some physical and statistical characteristics of the large-scale galaxy distribution and, in particular, of the sample of overdense regions seen in the Las Campanas Redshift Survey (LCRS). Our investigation provides additional evidence for a network of structures found in our core sampling analysis of the LCRS : a system of rich sheet-like structures, which in turn surround large underdense regions criss-crossed by a variety of filamentary structures.
We find that the overdense regions contain ∼40–50 per cent of LCRS galaxies and have proper sizes similar to those of nearby superclusters. The formation of such structures can be roughly described as a non-linear compression of protowalls of typical cross-sectional size ∼ 20–25  h −1 Mpc; this scale is ∼5 times the conventional value for the onset of non-linear clustering – to wit, r 0, the autocorrelation length for galaxies.
The comparison with available simulations and theoretical estimates shows that the formation of structure elements with parameters similar to those observed is presently possible only in low-density cosmological models, Ωm h ∼0.2–0.3, with a suitable large-scale bias between galaxies and dark matter.  相似文献   

8.
9.
10.
11.
12.
13.
14.
15.
16.
We present the radial velocities and blue, optical magnitudes for all of the galaxies within the Durham/UKST Galaxy Redshift Survey. This catalogue consists of ∼2500 galaxy redshifts to a limiting apparent magnitude of B J⋍17 mag, covering a ∼1500-deg2 area around the South Galactic Pole. The galaxies in this survey were selected from the Edinburgh/Durham Southern Galaxy Catalogue and were sampled, in order of apparent magnitude, at a rate of one galaxy in every three. The spectroscopy was performed at the 1.2-m UK Schmidt Telescope in Australia using the FLAIR multi-object spectrograph. We show that our radial velocity measurements made with this instrument have an empirical accuracy of ±150 km s−1. The observational techniques and data reduction procedures used in the construction of this survey are also discussed. This survey demonstrates that the UKST can be used to make a three-dimensional map of the large-scale galaxy distribution, via a redshift survey to b J⋍17 mag, over a wide area of the sky.  相似文献   

17.
18.
19.
We present a new catalogue, the Imperial IRAS -FSC Redshift Catalogue (IIFSCz), of 60 303 galaxies selected at 60 μm from the IRAS Faint Source Catalogue (FSC). The IIFSCz consists of accurate position, optical, near-infrared and/or radio identifications, spectroscopic redshift (if available) or photometric redshift (if possible), predicted far-infrared (FIR) and submillimetre (submm) fluxes ranging from 12 to 1380 μm based upon the best-fitting infrared template. About 55 per cent of the galaxies in the IIFSCz have spectroscopic redshifts, and a further 20 per cent have photometric redshifts obtained through either the training set or the template-fitting method. For S(60) > 0.36 Jy, the 90 per cent completeness limit of the FSC, 90 per cent of the sources have either spectroscopic or photometric redshifts. Scientific applications of the IIFSCz include validation of current and forthcoming infrared and submm/mm surveys such as AKARI , Planck and Herschel , follow-up studies of rare source populations, large-scale structure and galaxy bias, local multiwavelength luminosity functions and source counts. The catalogue is publicly available at http://astro.imperial.ac.uk/~mrr/fss/ .  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号