首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
A. Hani  S. Lallahem  J. Mania  L. Djabri 《水文研究》2006,20(20):4381-4390
The purpose of this study is to include expert knowledge as one part of the modelling system and thereby offer the chance to create a productive interactive system between expert, mathematical model, ASM, and artificial neural networks (ANNs). An attempt to determine outflow‐influencing parameters in order to simulate spring flow is presented. The Bouteldja dune aquifer is fed by rains and streaming water on the sandy argillaceous relieves in the Est. The lateral passage to the gravel of the Bouteldja Plain is marked by numerous bogs that correspond to the piezometric level. These bogs have long been an environment for migratory birds and a natural reserve for many species. However, the continued exploitation of about 30 wells has negatively influenced the hydrodynamic equilibrium of the aquifer and has brought a diminution of the sources' capacity. In this study, we tried by using a hydrodynamic model and the neural network to ascertain the state of the resources and to identify the factors responsible for the decreasing flows of the three principal springs of the area (Bougles, Bourdim and Titteri) by using neural networks. The results obtained show a continued exhaustion of the reserve since 1986 with a large cone of depression. The ANNs show that the decrease in flows of the springs is not only due to the unfavourable climatic conditions, but also to the intensive exploitation of the aquifer. These results show that the groundwater reserves are decreasing over time, thus highlighting the need to take some urgent measures to stop this phenomenon. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

2.
The paper presents an attempt to determine the characteristics of karst aquifers using information on groundwater level (GWL) in natural holes and boreholes with different data quantity and time resolution of GWL measurements. In this paper the particulars of karst aquifers were analysed for four examples from the Dinaric karst. In all four study areas, aquifers are formed in bare, deep and well‐developed Dinaric karst consisting of Cretaceous limestones. The first example represents a wide area of Imotsko polje in the karst. The aquifer was analysed on the basis of infrequent water level monitoring in natural karst water features (jamas, lakes, wells) and discharges of springs and rivers. The karst aquifer in this example is complex, non‐homogenous and variable in space and time, which is frequent in the Dinaric karst. Regardless of the aforementioned it was possible to determine its elementary characteristics. The second example represents 10 wells used for the water supply for the city of Pula. The GWL and salinity were measured once a week in the period between 1981 and 1996. Even though these measurements were relatively infrequent in space and time, they served as bases for assessment of average and maximum aquifer conditions as well as boundaries of saltwater intrusion. In the third example only a portion of aquifer of the karst spring Blaz, which is in the contact with the Adriatic Seas, has been analyzed. It is a spring with an intrusion of salt water. For purposes of study of saltwater intrusion, 26 piezometers were drilled in its vicinity in which GWL, salinity and temperature were measured once a day during 168 days, a period comprising one complete cycle of seawater intrusion and retreat. These measurements proved the existence of dispersed discharge from the aquifer into the sea and its non‐homogeneity in space. In the fourth example GWL was measured continuously in 10 deep (up to 300 m) piezometers in the hinterland of the Ombla Spring catchment. The measurement period lasted 2 years (January 1988 to December 1989). The analyses are made with hourly data. The results made it possible to determine numerous characteristics of the karst aquifer and a significant non‐homogeneity of groundwater distribution in karst aquifers, depending more on the underground karst phenomena than the surface karst forms. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

3.
Geochemical data indicate that the Springfield Plateau aquifer, a carbonate aquifer of the Ozark Plateaus Province in central USA, has two distinct hydrochemical zones. Within each hydrochemical zone, water from springs is geochemically and isotopically different than water from wells. Geochemical data indicate that spring water generally interacts less with the surrounding rock and has a shorter residence time, probably as a result of flowing along discrete fractures and solution openings, than water from wells. Water type throughout most of the aquifer was calcium bicarbonate, indicating that carbonate‐rock dissolution is the primary geochemical process occurring in the aquifer. Concentrations of calcium, bicarbonate, dissolved oxygen and tritium indicate that most ground water in the aquifer recharged rapidly and is relatively young (less than 40 years). In general, field‐measured properties, concentrations of many chemical constituents, and calcite saturation indices were greater in samples from the northern part of the aquifer (hydrochemical zone A) than in samples from the southern part of the aquifer (hydrochemical zone B). Factors affecting differences in the geochemical composition of ground water between the two zones are difficult to identify, but could be related to differences in chert content and possibly primary porosity, solubility of the limestone, and amount and type of cementation between zone A than in zone B. In addition, specific conductance, pH, alkalinity, concentrations of many chemical constituents and calcite saturation indices were greater in samples from wells than in samples from springs in each hydrochemical zone. In contrast, concentrations of dissolved oxygen, nitrite plus nitrate, and chloride generally were greater in samples from springs than in samples from wells. Water from springs generally flows rapidly through large conduits with minimum water–rock interactions. Water from wells flow through small fractures, which restrict flow and increase water–rock interactions. As a result, springs tend to be more susceptible to surface contamination than wells. The results of this study have important implications for the geochemical and hydrogeological processes of similar carbonate aquifers in other geographical locations. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

4.
In China, 9·5% of the landmass is karst terrain and of that 47,000 km2 is located in semiarid regions. In these regions the karst aquifers feed many large karst springs within basins of thousands of square kilometres. Spring discharges reflect the fluctuation of ground water level and variability of ground water storage in the basins. However, karst aquifers are highly heterogeneous and monitoring data are sparse in these regions. Therefore, for sustainable utilization and conservation of karst ground water it is necessary to simulate the spring flows to acquire better understanding of karst hydrological processes. The purpose of this study is to develop a parsimonious model that accurately simulates spring discharges using an artificial neural network (ANN) model. The karst spring aquifer was treated as a non‐linear input/output system to simulate the response of karst spring flow to precipitation and applied the model to the Niangziguan Springs, located in the east of Shanxi Province, China and a representative of karst springs in a semiarid area. Moreover, the ANN model was compared with a previous time‐lag linear model and it was found that the ANN model performed better. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

5.
Interpretation of spring recession curves   总被引:4,自引:0,他引:4  
Recession curves contain information on storage properties and different types of media such as porous, fractured, cracked lithologies and karst. Recession curve analysis provides a function that quantitatively describes the temporal discharge decay and expresses the drained volume between specific time limits (Hall 1968). This analysis also allows estimating the hydrological significance of the discharge function parameters and the hydrological properties of the aquifer. In this study, we analyze data from perennial springs in the Judean Mountains and from others in the Galilee Mountains, northern Israel. All the springs drain perched carbonate aquifers. Eight of the studied springs discharge from a karst dolomite sequence, whereas one flows out from a fractured, slumped block of chalk. We show that all the recession curves can be well fitted by a function that consists of two exponential terms with exponential coefficients alpha1 and alpha2. These coefficients are approximately constant for each spring, reflecting the hydraulic conductivity of different media through which the ground water flows to the spring. The highest coefficient represents the fast flow, probably through cracks, or quickflow, whereas the lower one reflects the slow flow through the porous medium, or baseflow. The comparison of recession curves from different springs and different years leads to the conclusion that the main factors that affect the recession curve exponential coefficients are the aquifer lithology and the geometry of the water conduits therein. In normal years of rainy winter and dry summer, alpha1 is constant in time. However, when the dry period is longer than usual because of a dry winter, alpha1 slightly decreases with time.  相似文献   

6.
River discharge in mountainous regions of the world is often dominated by snowmelt, but base flows are sustained primarily by groundwater storage and discharge. Although numerous recent studies have focused on base-flow discharge in mountain systems, almost no work has explicitly investigated the role of karst groundwater in these systems across a full range of flow conditions. We directly measured groundwater discharge from 48 karst springs in the Kaweah River and its five forks in the Sierra Nevada mountains, California, United States. Relationships between spring and river discharge showed that karst aquifers and springs provide significant storage and delayed discharge to the river. Regression models showed that, of all potential seasonal groundwater storage compartments in the river basin, the area of karst (0.1–4.4%) present provides the best explanation of base-flow recession in each fork of the Kaweah River (directly measured contributions from karst springs ranged from 3.5 to 16% during high-flow to 20 to 65% during base-flow conditions). These results show that, even in settings where karst represents a small portion of basin area, it may play an over-sized role in seasonal storage and water resources in mountain systems. Karst aquifers are the single most important non-snow storage component in the Kaweah River basin, and likely provide similar water storage capacities and higher base flows in other mountain river systems with karst when compared with systems without karst.  相似文献   

7.
A neural network model for predicting aquifer water level elevations   总被引:9,自引:0,他引:9  
Artificial neural networks (ANNs) were developed for accurately predicting potentiometric surface elevations (monitoring well water level elevations) in a semiconfined glacial sand and gravel aquifer under variable state, pumping extraction, and climate conditions. ANNs "learn" the system behavior of interest by processing representative data patterns through a mathematical structure analogous to the human brain. In this study, the ANNs used the initial water level measurements, production well extractions, and climate conditions to predict the final water level elevations 30 d into the future at two monitoring wells. A sensitivity analysis was conducted with the ANNs that quantified the importance of the various input predictor variables on final water level elevations. Unlike traditional physical-based models, ANNs do not require explicit characterization of the physical system and related physical data. Accordingly, ANN predictions were made on the basis of more easily quantifiable, measured variables, rather than physical model input parameters and conditions. This study demonstrates that ANNs can provide both excellent prediction capability and valuable sensitivity analyses, which can result in more appropriate ground water management strategies.  相似文献   

8.
Spatial heterogeneity in the subsurface of karst environments is high, as evidenced by the multiphase porosity of carbonate rocks and complex landform features that result in marked variability of hydrological processes in space and time. This includes complex exchange of various flows (e.g., fast conduit flows and slow fracture flows) in different locations. Here, we integrate various “state‐of‐the‐art” methods to understand the structure and function of this poorly constrained critical zone environment. Geophysical, hydrometric, and tracer tools are used to characterize the hydrological functions of the cockpit karst critical zone in the small catchment of Chenqi, Guizhou Province, China. Geophysical surveys, using electrical resistivity tomography (ERT), inferred the spatial heterogeneity of permeability in the epikarst and underlying aquifer. Water tables in depression wells in valley bottom areas, as well as discharge from springs on steeper hillslopes and at the catchment outlet, showed different hydrodynamic responses to storm event rainwater recharge and hillslope flows. Tracer studies using water temperatures and stable water isotopes (δD and δ18O) could be used alongside insights into aquifer permeability from ERT surveys to explain site‐ and depth‐dependent variability in the groundwater response in terms of the degree to which “new” water from storm rainfall recharges and mixes with “old” pre‐event water in karst aquifers. This integrated approach reveals spatial structure in the karst critical zone and provides a conceptual framework of hydrological functions across spatial and temporal scales.  相似文献   

9.
《Advances in water resources》2005,28(10):1083-1090
In order to assess the reliability of the springs near Matalom, Leyte, Philippines as a sustainable source of drinking water, we measured precipitation and outflow of five small and two large springs for the region for a period of a year and analyzed the recession spring flow data. Although monthly spring flow follows a similar pattern to that of the rainfall, the regression relationship between both parameters is poor except for the smallest spring. To determine the dry season spring flow behavior, we analyzed the spring flow data with a mechanistic recession flow model originally developed for prediction of stream drought flow in the northeastern U.S. by Brutsaert and Nieber in 1977. The model describes the dry season spring flow well assuming that the aquifer behaves as a linear reservoir. The analysis shows that the flow “half-life” for the springs is about one month. By adding the individual spring flows to derive a watershed outflow we were able to evaluate how well the simple watershed geometry underlying the analysis of Brutsaert and Nieber [Regionalized drought flow hydrographs from a mature glaciated plateau. Water Resour Res 1977;13(3):637–43] applies to the more complex watersheds.  相似文献   

10.
Hydrogeologic field work in remote settings is often challenging: assessing spring behaviour and aquifer characteristics can be expensive in both time commitment and resources needed to assess these systems. In this study, we document the hydrology and geochemistry of 47 perennial karst springs in the Kaweah River, a mountain river basin in the Sierra Nevada, California. After preliminary hydrogeochemical characterization and grouping, selected springs were continuously monitored to further assess aquifer characteristics in each group. Later, in areas without previous dye‐tracing work, traces were conducted to establish connections between large sinking streams and springs. The springs have a wide range of inter‐spring and intra‐spring variability in discharge and geochemistry. We assessed this variability by performing statistical comparisons with spring chemistry and principal components analysis of all measured variables. Results show that springs can be divided into two distinct groups: high elevation springs of the Mineral King Valley and lower elevation springs throughout the rest of the basin. Continuous discharge, temperature and specific conductivity data from four springs (two from each group) were then used to characterize the hydrograph recession behaviour of springs in each group. Both groups showed statistically similar baseflow recession slopes, suggesting that both groups contain baseflow storage compartments with similar hydrogeologic properties. The biggest difference between each group is the variability in amount of water remaining in the aquifer during baseflow conditions. High elevation springs have lower baseflow discharges, relative to peak flow, than lower elevation springs, despite the fact that more precipitation falls at higher elevation. This is likely caused by differences in the amount of soil and epikarst storage, which are related to recent geomorphic events: high elevation aquifers were glaciated as recent as 41 thousand years ago (kya), while there is no evidence that low elevation aquifers were glaciated. As a result, lower elevations have developed thicker soils, weathered bedrock and epikarst. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

11.
Karst spring measurements assess biogeochemical processes occurring within groundwater contributing areas to springs (springsheds) but can only provide aggregated information. To better understand spatially distributed processes that comprise these aggregated measures, we investigated aquifer denitrification evidence in groundwater wells (n = 16) distributed throughout a springshed in the Upper Floridan aquifer in northern Florida. Aquifer geochemistry, nitrate isotopes, and dissolved gases were compared against similar measurements at the spring outlet to evaluate spatial heterogeneity of denitrification evidence in relation to land surface–aquifer connectivity. Sample locations spanned spatial variation in recharge processes (i.e., diffuse vs. focused recharge) and proximity to sources of denitrification reactants (e.g., wetlands). Although no distinct spatial pattern in denitrification was uncovered, excess dissolved N2 gas measurements were only above detection in the unconfined springshed, with some evidence of a wetland proximity effect. Measured oxidation–reduction potential and dissolved oxygen poorly predicted denitrification, indicating that measured denitrification may be occurring upgradient from sampled wells. Despite dramatic spatial chemical heterogeneity across wells, mean values for recharge nitrate concentrations (0.02 to 5.56 mg N L?1) and excess N2 from aquifer denitrification (below detection to 1.37 mg N L?1) corresponded reasonably with mean spring outlet measurements for initial nitrate (0.78 to 1.36 mg N L?1) and excess N2 (0.15 to 1.04 mg N L?1). Congruence between groundwater and spring measurements indicates that combining sampling at the spring outlet and across the springshed is useful for understanding spatial aquifer denitrification. However, this approach would be improved with a high‐density sampling network with transects of wells along distinct groundwater flow paths.  相似文献   

12.
Oxygen and hydrogen isotopes were used in this study to detect a hydraulic connection between a sinkhole lake and a karst spring. In karst areas, surface water that flows to a lake can drain through sinkholes in the lakebed to the underlying aquifer, and then flows in karst conduits and through aquifer matrix. At the study site located in northwest Florida, USA, Lake Miccosukee immediately drains into two sinkholes. Results from a dye tracing experiment indicate that lake water discharges at Natural Bridge Spring, a first-magnitude spring 32 km downgradient from the lake. By collecting weekly water samples from the lake, the spring, and a groundwater well 10 m away from the lake during the dry period between October 2019 and January 2020, it was found that, when rainfall effects on isotopic signature in spring water are removed, increased isotope ratios of spring water can be explained by mixing of heavy-isotope-enriched lake water into groundwater, indicating hydraulic connection between the lake and the spring. Such a detection of hydraulic connection at the scale of tens of kilometers and for a first-magnitude spring has not been previously reported in the literature. Based on the isotope ratio data, it was estimated that, during the study period, about 8.5% the spring discharge was the lake water that drained into the lake sinkholes.  相似文献   

13.
Yan Meng  Li  Zhuojun  Jia  Long 《Water Resources》2020,47(4):530-536
Water Resources - In China’s Pearl River Delta, numerous sinkholes caused by excessive groundwater pumping from a karst aquifer have opened. These sinkholes can cause wells and springs to dry...  相似文献   

14.
《Advances in water resources》2007,30(4):1046-1052
Submarine springs discharge offshore groundwater from confined aquifers extending under the sea. The effects of these springs on the propagation of tidal oscillations in coastal confined aquifers are not known. This paper presents an approximate analytical solution of tidal head fluctuations in a confined aquifer with one submarine spring. The aquifer is assumed to extend in all directions infinitely. The spring is represented by a permeable round column on the seabed, which penetrates completely the impermeable layer overlying the confined aquifer. The error of the approximate solution is negligible if the distance from the spring to the coastline is much greater than the radius of the permeable column representing the spring. Through a hypothetical example, we demonstrate that it is possible to identify the spring’s location using tidal signals observed from inland wells. Tidal groundwater head fluctuations from three inland observation wells at least are needed to determine the 5 model parameters, including the location (2 parameters), the radius of the permeable column representing the spring, the diffusivity of the aquifer, and the tidal loading efficiency of the system.  相似文献   

15.
Artificial neural networks (ANNs) were developed to accurately predict highly time-variable specific conductance values in an unconfined coastal aquifer. Conductance values in the fresh water lens aquifer change in response to vertical displacements of the brackish zone and fresh water-salt water interface, which are caused by variable pumping and climate conditions. Unlike physical-based models, which require hydrologic parameter inputs, such as horizontal and vertical hydraulic conductivities, porosity, and fluid densities, ANNs can "learn" system behavior from easily measurable variables. In this study, the ANN input predictor variables were initial conductance, total precipitation, mean daily temperature, and total pumping extraction. The ANNs were used to predict salinity (specific conductance) at a single monitoring well located near a high-capacity municipal-supply well over time periods ranging from 30 d to several years. Model accuracy was compared against both measured/interpolated values and predictions were made with linear regression, and in general, excellent prediction accuracy was achieved. For example, although the average percent change of conductance over 90-d periods was 39%, the absolute mean prediction error achieved with the ANN was only 1.1%. The ANNs were also used to conduct a sensitivity analysis that quantified the importance of each of the four predictor variables on final conductance values, providing valuable insights into the dynamics of the system. The results demonstrate that the ANN technology can serve as a powerful and accurate prediction and management tool, minimizing degradation of ground water quality to the extent possible by identifying appropriate pumping policies under variable and/or changing climate conditions.  相似文献   

16.
Springflow hydrographs: eogenetic vs. telogenetic karst   总被引:3,自引:0,他引:3  
Florea LJ  Vacher HL 《Ground water》2006,44(3):352-361
Matrix permeability in the range of 10(-11) to 10(-14) m(2) characterizes eogenetic karst, where limestones have not been deeply buried. In contrast, limestones of postburial, telogenetic karst have matrix permeabilities on the order of 10(-15) to 10(-20) m(2). Is this difference in matrix permeability paralleled by a difference in the behavior of springs draining eogenetic and telogenetic karst? Log Q/Q(min) flow duration curves from 11 eogenetic-karst springs in Florida and 12 telogenetic-karst springs in Missouri, Kentucky, and Switzerland, plot in different fields because of the disparate slopes of the curves. The substantially lower flow variability in eogenetic-karst springs, which results in the steeper slopes of their flow duration curves, also makes for a strong contrast in patterns (e.g., "flashiness") between the eogenetic-karst and telogenetic-karst spring hydrographs. With respect to both spring hydrographs and the flow duration curves derived from them, the eogenetic-karst springs of Florida are more like basalt springs of Idaho than the telogenetic-karst springs of the study. From time-series analyses on discharge records for 31 springs and published time-series results for 28 additional sites spanning 11 countries, we conclude that (1) the ratio of maximum to mean (Q(max)/Q(mean)) discharge is less in springs of eogenetic karst than springs of telogenetic karst; (2) aquifer inertia (system memory) is larger in eogenetic karst; (3) eogenetic-karst aquifers take longer to respond to input signals; and (4) high-frequency events affect discharge less in eogenetic karst. All four of these results are consistent with the hypothesis that accessible storage is larger in eogenetic-karst aquifers than in telogenetic-karst aquifers.  相似文献   

17.
The Kanin massif is an important trans‐boundary aquifer, which stretches between Slovenia and Italy. The groundwater is only partially exploited, mainly for water supply, but the aquifer exhibits great potential for future exploitation. Since no consistent regional overview of the hydrogeological functioning of the Kanin massif was available, the decision was made to perform a study of this area, using a pragmatic approach based on 3D geological and hydrogeological modelling. The so‐called KARSYS approach was applied, with the aim of characterizing the groundwater reserves within this karst massif and of locating the main drainage axes that carry groundwater from the recharge areas to the respective springs. Delineation of the catchment areas of the corresponding springs was carried out, and some new explanations were obtained, especially with regard to the Mo?nica spring, which is located in Slovenia and forms a potential source of drinking water. It was found that this spring's catchment area extends as far as the Italian ski resort of Sella Nevea. The conceptual model also provides a possible explanation about the underground drainage towards the Boka spring and waterfall, which has been a challenge for decades. This new explanation is based on the existence of a perched groundwater body that feeds the Boka spring via a system of conduits. Despite some limitations, the results, which consist of a visualization of the underground drainage and groundwater storage within the Kanin massif, can be used as a basis for planning the sustainable management of karst waters in the studied area. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Most surface water bodies (i.e., streams, lakes, etc.) are connected to the groundwater system to some degree so that changes to surface water bodies (either diversions or importations) can change flows in aquifer systems, and pumping from an aquifer can reduce discharge to, or induce additional recharge from streams, springs, and lakes. The timescales of these interactions are often very long (decades), making sustainable management of these systems difficult if relying only on observations of system responses. Instead, management scenarios are often analyzed based on numerical modeling. In this paper we propose a framework and metrics that can be used to relate the Theis concepts of capture to sustainable measures of stream‐aquifer systems. We introduce four concepts: Sustainable Capture Fractions, Sustainable Capture Thresholds, Capture Efficiency, and Sustainable Groundwater Storage that can be used as the basis for developing metrics for sustainable management of stream‐aquifer systems. We demonstrate their utility on a hypothetical stream‐aquifer system where pumping captures both streamflow and discharge to phreatophytes at different amounts based on pumping location. In particular, Capture Efficiency (CE) can be easily understood by both scientists and non‐scientist alike, and readily identifies vulnerabilities to sustainable stream‐aquifer management when its value exceeds 100%.  相似文献   

19.
The aim of this research was to refine the actual conceptual model related to the activation of high‐altitude temporary springs within the carbonate Apennines in southern Italy. The research was carried out through geophysical, hydrogeological, hydrochemical and isotopic investigations at the Acqua dei Faggi experimental site during five hydrologic years. The research demonstrated that, in carbonate aquifers where low‐permeability faults cause the aquifer system to be compartmentalized, high‐altitude temporary springs may be recharged by groundwater. In such settings, neither surface water infiltration in karst systems nor perched temporary aquifers play a role of utmost importance. The rare (once or a few time a year) activation of such springs is due to the fact that groundwater unusually reach the threshold head that allows the spring to flow. The activation of the studied high‐altitude temporary spring also depended on relationships between a low‐permeability fault core and a karst system that locally interrupts the low‐permeability barrier. In fact, when the hydraulic head did not reach the karst system, the concentrated head loss within the fault core did not allow the spring to flow, because the groundwater entirely flowed through the fault towards the downgradient compartment. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

20.
《水文科学杂志》2013,58(1):192-205
Abstract

Considering the geological conditions of the southwest of Boroujerd and northwest of Doroud, Iran, karst development is analysed with respect to the hydrodynamic behaviour of the main draining springs of the units and the karstic aquifers are classified as either those developed in Cretaceous limestone or those developed in Oligomiocene limestone. For this purpose, the yields of the main karstic springs of the region—Absardeh and Zoorabad (Cretaceous karstic limestone aquifer), Kalamsooz and Azizabad (Oligomiocene karstic limestone aquifer)—were measured and analysed. Analysis of the recession curve is used for hydrodynamical analysis and to construct the conceptual model for estimation of karst development in the selected aquifers. Based on the results, the dynamic storage capacity of the saturated zone in Cretaceous limestone is evaluated as low to medium and that in Oligomiocene limestone as medium to high. The dynamic storage capacity of the unsaturated zone in Cretaceous limestone is evaluated as high and that in Oligomiocene limestone as low to medium. Moreover, the contribution of quickflow in karstic aquifers developed in the Cretaceous limestone drained by the Absardeh and Zoorabad springs is 23.5 and 82.2%, respectively, and that for the Kalamsooz and Azizabad springs (Oligomiocene limestone) is 5.7 and 22.5%, respectively. Flow in the Cretaceous limestone aquifer drained by the Zoorabad Spring is of concentrated type and the main flow occurs in the well-developed karstic conduits. The main flow in the Oligomiocene limestone aquifer, drained by the Kalamsooz Spring, occurs in a network of joints and fractures and the contribution of concentrated flow is very low. The transmissivity of the saturated zone in the karstic aquifer drained by the Zoorabad and Absardeh springs is medium to high and that for the Kalamsooz and Azizabad springs is found to be low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号