首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
We present a mathematically rigorous proof that the r-mode spectrum of relativistic stars to the rotational lowest order has a continuous part. A rigorous definition of this spectrum is given in terms of the spectrum of a continuous linear operator. This study verifies earlier results by Kojima concerning the nature of the r-mode spectrum.  相似文献   

5.
6.
We studied the evolution of isolated strange stars (SSs) synthetically, considering the influence of r -mode instability. Our results show that the cooling of SSs with non-ultrastrong magnetic fields is delayed by heating due to r -mode damping for millions of years, while the spin-down of the stars is dominated by gravitational radiation (GR). Especially for the SSs in a possible existing colour–flavour locked (CFL) phase, the effect of r -mode instability on the evolution of stars becomes extremely important because the viscosity, neutrino emissivity and specific heat involving pairing quarks are blocked. It leads to the cooling of these colour superconducting stars being very slow and the stars can remain at high temperature for millions of years, which differs completely from previous understanding. In this case, an SS in CFL phase can be located at the bottom of its r -mode instability window for a long time, but does not spin-down to a very low frequency for hours.  相似文献   

7.
8.
9.
10.
Quasi-toroidal oscillations in slowly rotating stars are examined within the framework of general relativity. Unlike the Newtonian case, the oscillation frequency to first order of the rotation rate is not a single value, even for uniform rotation. All the oscillation frequencies of the r -modes are purely neutral and form a continuous spectrum limited to a certain range. The allowed frequencies are determined by the resonance condition between the perturbation and the background mean flow. The resonant frequency varies with the radius according to the general relativistic dragging effect.  相似文献   

11.
We study the effects of temperature on strange stars. It is found that the maximum mass of the star decreases with the increase of temperature, as at high temperatures the equations of state become softer. Moreover, if the temperature of a strange star increases, keeping its baryon number fixed, its gravitational mass increases and its radius decreases. This leads to a limiting temperature, where it turns into a black hole. These features are the result of a combined effect of the change of gluon mass and the quark distribution with temperature. We report on a new type of radial oscillation of strange stars, driven by what we call 'chromothermal' instability. We also discuss the relevance of our findings in the astrophysics of core collapse supernovae and gamma-ray bursts.  相似文献   

12.
13.
The first results of numerical analysis of classical r-modes of rapidly rotating compressible stellar models are reported. The full set of linear perturbation equations of rotating stars in Newtonian gravity is solved numerically without the slow rotation approximation. A critical curve of gravitational wave emission induced instability, which restricts the rotational frequencies of hot young neutron stars, is obtained. Taking the standard cooling mechanisms of neutron stars into account, we also show the 'evolutionary curves' along which neutron stars are supposed to evolve as cooling and spinning down proceed. Rotational frequencies of 1.4-M stars suffering from this instability decrease to around 100 Hz when the standard cooling mechanism of neutron stars is employed. This result confirms the results of other authors, who adopted the slow rotation approximation.  相似文献   

14.
15.
16.
17.
18.
19.
We study low-amplitude crustal oscillations of slowly rotating relativistic stars consisting of a central fluid core and an outer thin solid crust. We estimate the effect of rotation on the torsional toroidal modes and on the interfacial and shear spheroidal modes. The results compared against the Newtonian ones for wide range of neutron star models and equations of state.  相似文献   

20.
We investigate the role of neutron star superfluidity for magnetar oscillations. Using a plane-wave analysis, we estimate the effects of a neutron superfluid in the elastic crust region. We demonstrate that the superfluid imprint is likely to be more significant than the effects of the crustal magnetic field. We also consider the region immediately beneath the crust, where superfluid neutrons are thought to coexist with a type II proton superconductor. Since the magnetic field in the latter is carried by an array of fluxtubes, the dynamics of this region differ from standard magnetohydrodynamics. We show that the presence of the neutron superfluid (again) leaves a clear imprint on the oscillations of the system. Taken together, our estimates show that the superfluid components cannot be ignored in efforts to carry out 'magnetar seismology'. This increases the level of complexity of the modelling problem, but also points to the possibility of using observations to probe the superfluid nature of supranuclear matter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号