首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Well‐calibrated seismic interpretation in the Halten Terrace of Mid‐Norway demonstrates the important role that structural feedback between normal fault growth and evaporite mobility has for depocentre development during syn‐rift deposition of the Jurassic–Early Cretaceous Viking and Fangst Groups. While the main rift phase reactivated pre‐existing structural trends, and initiated new extensional structures, a Triassic evaporite interval decouples the supra‐salt cover strata from the underlying basement, causing the development of two separate fault populations, one in the cover and the other confined to the pre‐salt basement. Detailed displacement–length analyses of both cover and basement fault arrays, combined with mapping of the component parts of the syn‐rift interval, have been used to reveal the spatial and temporal evolution of normal fault segments and sediment depocentres within the Halten Terrace area. Significantly, the results highlight important differences with traditional models of normal fault‐controlled subsidence, including those from parts of the North Sea where salt is absent. It can now be shown that evaporite mobility is intimately linked to the along‐strike displacement variations of these cover and basement faults. The evaporites passively move beneath the cover in response to the extension, such that the evaporite thickness becomes greatest adjacent to regions of high fault displacement. The consequent evaporite swells can become large enough to have pronounced palaeobathymetric relief in hangingwall locations, associated with fault displacement maxima– the exact opposite situation to that predicted by traditional models of normal fault growth. Evaporite movement from previous extension also affects the displacement–length relationships of subsequently nucleated or reactivated faults. Evaporite withdrawal, on the other hand, tends to be a later‐stage feature associated with the high stress regions around the propagating tips of normal faults or their coeval hangingwall release faults. The results indicate the important effect of, and structural feedback caused by, syn‐rift evaporite mobility in heavily modifying subsidence patterns produced by normal fault array evolution. Despite their departure from published models, the results provide a new, generic framework within which to interpret extensional fault and depocentre development and evolution in areas in which mobile evaporites exist.  相似文献   

2.
Tectonic subsidence in rift basins is often characterised by an initial period of slow subsidence (‘rift initiation’) followed by a period of more rapid subsidence (‘rift climax’). Previous work shows that the transition from rift initiation to rift climax can be explained by interactions between the stress fields of growing faults. Despite the prevalence of evaporites throughout the geological record, and the likelihood that the presence of a regionally extensive evaporite layer will introduce an important, sub‐horizontal rheological heterogeneity into the upper crust, there have been few studies that document the impact of salt on the localisation of extensional strain in rift basins. Here, we use well‐calibrated three‐dimensional seismic reflection data to constrain the distribution and timing of fault activity during Early Jurassic–Earliest Cretaceous rifting in the Åsgard area, Halten Terrace, offshore Mid‐Norway. Permo‐Triassic basement rocks are overlain by a thick sequence of interbedded halite, anhydrite and mudstone. Our results show that rift initiation during the Early Jurassic was characterised by distributed deformation along blind faults within the basement, and by localised deformation along the major Smørbukk and Trestakk faults within the cover. Rift climax and the end of rifting showed continued deformation along the Smørbukk and Trestakk faults, together with initiation of new extensional faults oblique to the main basement trends. We propose that these new faults developed in response to salt movement and/or gravity sliding on the evaporite layer above the tilted basement fault blocks. Rapid strain localisation within the post‐salt cover sequence at the onset of rifting is consistent with previous experimental studies that show strain localisation is favoured by the presence of a weak viscous substrate beneath a brittle overburden.  相似文献   

3.
The thickness and distribution of early syn‐rift deposits record the evolution of structures accommodating the earliest phases of continental extension. However, our understanding of the detailed tectono‐sedimentary evolution of these deposits is poor, because in the subsurface, they are often deeply buried and below seismic resolution and sparsely sampled by borehole data. Furthermore, early syn‐rift deposits are typically poorly exposed in the field, being buried beneath thick, late syn‐rift and post‐rift deposits. To improve our understanding of the tectono‐sedimentary development of early syn‐rift strata during the initial stages of rifting, we examined quasi‐3D exposures in the Abura Graben, Suez Rift, Egypt. During the earliest stage of extension, forced folding above blind normal fault segments, rather than half‐graben formation adjacent to surface‐breaking faults, controlled rift physiography, accommodation development and the stratigraphic architecture of non‐marine, early syn‐rift deposits. Fluvial systems incised into underlying pre‐rift deposits and were structurally focused in the axis of the embryonic depocentre, which, at this time, was characterized by a fold‐bound syncline rather than a fault‐bound half graben. During this earliest phase of extension, sediment was sourced from the rift shoulder some 3 km to the NE of the depocentre, rather than from the crests of the flanking, intra‐basin extensional forced folds. Fault‐driven subsidence, perhaps augmented by a eustatic sea‐level rise, resulted in basin deepening and the deposition of a series of fluvial‐dominated mouth bars, which, like the preceding fluvial systems, were structurally pinned within the axis of the growing depocentre, which was still bound by extensional forced folds rather than faults. The extensional forced folds were eventually locally breached by surface‐breaking faults, resulting in the establishment of a half graben, basin deepening and the deposition of shallow marine sandstone and fan‐delta conglomerates. Because growth folding and faulting were coeval along‐strike, syn‐rift stratal units deposited at this time show a highly variable along‐strike stratigraphic architecture, locally thinning towards the growth fold but, only a few kilometres along‐strike, thickening towards the surface‐breaking fault. Despite displaying the classic early syn‐rift stratigraphic motif recording net upward‐deepening, extensional forced folding rather than surface faulting played a key role in controlling basin physiography, accommodation development, and syn‐rift stratal architecture and facies development during the early stages of extension. This structural and stratigraphic observations required to make this interpretation are relatively subtle and may go unrecognized in low‐resolution subsurface data sets.  相似文献   

4.
A series of analogue models are used to demonstrate how the multistage development of the Mid‐Polish Trough (MPT) could have been influenced by oblique basement strike–slip faults. Based on reinterpretation of palaeothickness, facies maps and published syntheses of the basin development, the following successive stages in the Mesozoic history of the south eastern part of the MPT were simulated in the models: (1) Oblique extension of the NW segment of the MPT connected with sinistral movement along the Holy Cross Fault (HCF, Early Triassic–latest Early Jurassic). (2) Oblique extension of both NW and SE segment of the MPT, parallel to the HCF (latest Early and Middle Jurassic). (3) Oblique extension of the SE segment of the MPT and much lesser extension of its NW segment connected with dextral movement along the HCF (Early Oxfordian–latest Early Kimmeridgian). (4) Oblique extension of the SE segment of the MPT and much lesser extension of its NW segment connected with dextral movement along the Zawiercie Fault (ZF, latest Early Kimmeridgian–Early Albian). (5) Oblique inversion of the NW segment of the MPT connected with dextral movement along the HCF (Early Albian–latest Cretaceous). (6) Oblique inversion of the SE segment of the MPT along the W–E direction (latest Cretaceous–Palaeogene). The different sense of movements of these two basement strike–slip faults (HCF and ZF) resulted in distinct segmentation of the basin and its SW margin by successive systems of extensional en‐echelon faults. The overall structure of this margin is controlled by the interference of the border normal faults with the en‐echelon fault systems related to successive stages of movement along the oblique strike–slip faults. This type of en‐echelon fault system is absent in the opposite NE‐margin of the basin, which was not affected by oblique strike–slip faults. The NE‐margin of the basin is outlined by a typical, steep and distinctly marked rift margin fault zone, dominated by normal and dip–slip/strike–slip faults parallel to its axis. Within the more extended segment of the basin, extensive intra‐rift faults and relay ramps develop, which produce topographic highs running across the basin. The change in the extension direction to less oblique relative to the basin axis resulted in restructuring of the fault systems. This change caused shifting of the basin depocentre to this margin. Diachronous inversion of the different segments of the basin in connection with movement along one of the oblique basement strike–slip faults resulted in formation of a pull‐apart sub‐basin in the uninverted SE‐segment of the basin. The results of the analogue models presented here inspire an overall kinematic model for the southeastern segment of the MPT as they provide a good explanation of the observed structures and the changes in the facies and palaeothickness patterns.  相似文献   

5.
The Alhama de Murcia and Crevillente faults in the Betic Cordillera of southeast Spain form part of a network of prominent faults, bounding several of the late Tertiary and Quaternary intermontane basins. Current tectonic interpretations of these basins vary from late‐orogenic extensional structures to a pull‐apart origin associated with strike–slip movements along these prominent faults. A strike–slip origin of the basins, however, seems at variance both with recent structural studies of the underlying Betic basement and with the overall basin and fault geometry. We studied the structure and kinematics of the Alhama de Murcia and Crevillente faults as well as the internal structure of the late Miocene basin sediments, to elucidate possible relationships between the prominent faults and the adjacent basins. The structural data lead to the inevitable conclusion that the late Miocene basins developed as genuinely extensional basins, presumably associated with the thinning and exhumation of the underlying basement at that time. During the late Miocene, neither the Crevillente fault nor the Alhama de Murcia fault acted as strike–slip faults controlling basin development. Instead, parts of the Alhama de Murcia fault initiated as extensional normal faults, and reactivated as contraction faults during the latest Miocene–early Pliocene in response to continued African–European plate convergence. Both prominent faults presently act as reverse faults with a movement sense towards the southeast, which is clearly at variance with the commonly inferred dextral or sinistral strike–slip motions on these faults. We argue that the prominent faults form part of a larger scale zone of post‐Messinian shortening made up of SSE‐ and NNW‐directed reverse faults and NE to ENE‐trending folds including thrust‐related fault‐bend folds and fault‐propagation folds, transected and displaced by, respectively, WNW‐ and NNE‐trending, dextral and sinistral strike–slip (tear or transfer) faults.  相似文献   

6.
《Basin Research》2018,30(Z1):363-381
Inversion of pre‐existing extensional fault systems is common in rift systems, back‐arc basins and passive margins. It can significantly influence the development of structural traps in hydrocarbon basins. The analogue models of domino‐style basement fault systems shown in this paper produced, on extension, characteristic hangingwall growth stratal wedges that, when contracted and inverted, formed classic inversion harpoon geometries and asymmetric hangingwall contractional fault‐propagation folds. Segmented footwall shortcut faults formed as the basement faults were progressively back‐rotated and steepened. The pre‐existing extensional fault architectures, basement fault geometries and the relative hangingwall and footwall block rotations exerted fundamental controls on the inversion styles. Digital image correlation (DIC) strain monitoring illustrated complex vertical fault segmentation and linkage during inversion as the major faults were reactivated and strain was progressively transferred onto footwall shortcut faults. Hangingwall deformation during inversion was dominated by significant back‐rotation as the inversion progressed. The mechanical stratigraphy of the cover sequences strongly influenced the fold and fault evolution of the reactivated fault systems. The implications of the experimental results for the interpretation and analysis of inversion structures are discussed and are compared with natural examples of inverted basement‐involved extensional faults observed in seismic datasets.  相似文献   

7.
In this study, we integrate 3D seismic reflection, wireline log, biostratigraphic and core data from the Egersund Basin, Norwegian North Sea to determine the impact of syn‐depositional salt movement and associated growth faulting on the sedimentology and stratigraphic architecture of the Middle‐to‐Upper Jurassic, net‐transgressive, syn‐rift succession. Borehole data indicate that Middle‐to‐Upper Jurassic strata consist of low‐energy, wave‐dominated offshore and shoreface deposits and coal‐bearing coastal‐plain deposits. These deposits are arranged in four parasequences that are aggradationally to retrogradationally stacked to form a net‐transgressive succession that is up to 150‐m thick, at least 20 km in depositional strike (SW‐NE) extent, and >70 km in depositional dip (NW‐SE) extent. In this rift‐margin location, changes in thickness but not facies are noted across active salt structures. Abrupt facies changes, from shoreface sandstones to offshore mudstones, only occur across large displacement, basement‐involved normal faults. Comparisons to other tectonically active salt‐influenced basins suggest that facies changes across syn‐depositional salt structures are observed only where expansion indices are >2. Subsidence between salt walls resulted in local preservation of coastal‐plain deposits that cap shoreface parasequences, which were locally removed by transgressive erosion in adjacent areas of lower subsidence. The depositional dip that characterizes the Egersund Basin is unusual and likely resulted from its marginal location within the evolving North Sea rift and an extra‐basinal sediment supply from the Norwegian mainland.  相似文献   

8.
Transtensional basins are sparsely described in the literature compared with other basin types. The oblique‐divergent plate boundary in the southern Gulf of California has many transtensional basins: we have studied those on San Jose island and two other transtensional basins in the region. One major type of transtensional basin common in the southern Gulf of California region is a fault‐termination basin formed where normal faults splay off of strike‐slip faults. These basins suggest a model for transtensional fault‐termination basins that includes traits that show a hybrid nature between classic rift and strike‐slip (pull‐apart) basins. The traits include combinations of oblique, strike‐slip and normal faults with common steps and bends, buttress unconformities between the fault steps and beyond the ends of faults, a common facies pattern of terrestrial strata changing upward and away from the faults into marine strata, small fault blocks within the basin that result in complex lateral facies relations, common Gilbert deltas, dramatic termination of the margin of the basin by means of fault reorganization and boundary faults dying and an overall short basin history (few million years). Similar transtensional fault‐termination basins are present in Death Valley and other parts of the Eastern California shear zone of the western United States, northern Aegean Sea and along ancient strike‐slip faults.  相似文献   

9.
Extensional faults and folds exert a fundamental control on the location, thickness and partitioning of sedimentary deposits on rift basins. The connection between the mode of extensional fault reactivation, resulting fault shape and extensional fold growth is well‐established. The impact of folding on accommodation evolution and growth package architecture, however, has received little attention; particularly the role‐played by fault‐perpendicular (transverse) folding. We study a multiphase rift basin with km‐scale fault displacements using a large high‐quality 3D seismic data set from the Fingerdjupet Subbasin in the southwestern Barents Sea. We link growth package architecture to timing and mode of fault reactivation. Dip linkage of deep and shallow fault segments resulted in ramp‐flat‐ramp fault geometry, above which fault‐parallel fault‐bend folds developed. The folds limited the accommodation near their causal faults, leading to deposition within a fault‐bend synclinal growth basin further into the hangingwall. Continued fold growth led to truncation of strata near the crest of the fault‐bend anticline before shortcut faulting bypassed the ramp‐flat‐ramp structure and ended folding. Accommodation along the fault‐parallel axis is controlled by the transverse folds, the location and size of which depends on the degree of linkage in the fault network and the accumulated displacement on causal faults. We construct transverse fold trajectories by tracing transverse fold hinges through space and time to highlight the positions of maximum and minimum accommodation and potential sediment entry points to hangingwall growth basins. The length and shape of the constructed trajectories relate to the displacement on their parent faults, duration of fault activity, timing of transverse basin infill, fault linkage and strain localization. We emphasize that the considerable wavelength, amplitudes and potential periclinal geometry of extensional folds make them viable targets for CO2 storage or hydrocarbon exploration in rift basins.  相似文献   

10.
Reactivation of pre‐existing intra‐basement structures can influence the evolution of rift basins, yet the detailed kinematic relationship between these structures and overlying rift‐related faults remains poorly understood. Understanding the kinematic as well as geometric relationship between intra‐basement structures and rift‐related fault networks is important, with the extension direction in many rifted provinces typically thought to lie normal to fault strike. We here investigate this problem using a borehole‐constrained, 3D seismic reflection dataset from the Taranaki Basin, offshore New Zealand. Excellent imaging of intra‐basement structures and a relatively weakly deformed, stratigraphically simple sedimentary cover allow us to: (a) identify a range of interaction styles between intra‐basement structures and overlying, Plio‐Pleistocene rift‐related normal faults; and (b) examine the cover fault kinematics associated with each interaction style. Some of the normal faults parallel and are physically connected to intra‐basement reflections, which are interpreted as mylonitic reverse faults formed during Mesozoic subduction and basement terrane accretion. These geometric relationships indicate pre‐existing intra‐basement structures locally controlled the position and attitude of Plio‐Pleistocene rift‐related normal faults. However, through detailed 3D kinematic analysis of selected normal faults, we show that: (a) normal faults only nucleated above intra‐basement structures that experienced late Miocene compressional reactivation, (b) despite playing an important role during subsequent rifting, intra‐basement structures have not been significantly extensionally reactivated, and (c) preferential nucleation and propagation of normal faults within late Miocene reverse faults and folds appears to be the key genetic relationship between contractionally reactivated intra‐basement structures and rift‐related normal faults. Our analysis shows that km‐scale, intra‐basement structures can control the nucleation and development of newly formed, rift‐related normal faults, most likely due to a local perturbation of the regional stress field. Because of this, simply inverting fault strike for causal extension direction may be incorrect, especially in provinces where pre‐existing, intra‐basement structures occur. We also show that a detailed kinematic analysis is key to deciphering the temporal as well as simply the spatial or geometric relationship between structures developed at multiple structural levels.  相似文献   

11.
The lateral propagation of faults and folds is known to be an important process during the development of mountain belts, but little is known about the manner in which along‐strike fault–fold growth is expressed in pre‐ and syntectonic (growth) strata. We use a coupled tectonic and stratigraphic model to investigate the along‐strike stratigraphic expression of fault‐related folds/uplifts that grow in both the transport and strike directions. We consider faults that propagate following a quadratic (nonself‐similar evolution) or linear (self‐similar evolution) scaling law, using different slip distributions per episode of fault propagation, under general background sedimentation. We find that the long‐strike geometry of pre‐ and syntectonic strata and the geometry of growth axial surfaces reflect the mode of fault propagation. The geometry of strata observed in the model is similar to that observed in natural contractional structures when: (1) the evolution of the fault is nonself‐similar, or (2) the fault grows as a result of thrust faulting events with similar displacements along strike that are terminated abruptly at the fault tips.  相似文献   

12.
In the mid‐Cretaceous Lasarte sub‐basin (LSB) [northeastern Basque‐Cantabrian Basin (BCB)] contemporaneous and syn‐depositional thin‐ and thick‐skinned extensional tectonics occur due to the presence of a ductile detachment layer that decoupled the extension. Despite the interest in extension modes of rift basins bearing intra‐stratal detachment layers, complex cases remain poorly understood. In the LSB, field results based on mapping, stratigraphic, sedimentological and structural data show the relationship between growth strata and tectonic structures. Syn‐depositional extensional listric faults and associated folds and faults have been identified in the supra‐detachment thin‐skinned system. But stratigraphic data also indicate the activation of sub‐detachment thick‐skinned extensional faults coeval with the development of the thin‐skinned system. The tectono‐sedimentary evolution of the LSB, since the Late Aptian until the earliest Late Albian, has been interpreted based on thin‐ and thick‐skinned extensional growth structures, which are fossilized by post‐extensional strata. The development of the thin‐skinned system is attributed to the presence of a ductile detachment layer (Upper Triassic Keuper facies) which decoupled the extension from deeper sub‐detachment basement‐involved faulting under a regional extensional/transtensional regime.  相似文献   

13.
Because salt can decouple sub‐ and supra‐salt deformation, the structural style and evolution of salt‐influenced rifts differs from those developed in megoscopically homogenous and brittle crust. Our understanding of the structural style and evolution of salt‐influenced rifts comes from scaled physical models, or subsurface‐based studies that have utilised moderate‐quality 2D seismic reflection data. Relatively few studies have used high‐quality 3D seismic reflection data, constrained by borehole data, to explicitly focus on the role that along‐strike displacement variations on sub‐salt fault systems, or changes in salt composition and thickness, play in controlling the four‐dimensional evolution of supra‐salt structural styles. In this study, we use 3D seismic reflection and borehole data from the Sele High Fault System (SHFS), offshore Norway to determine how rift‐related relief controlled the thickness and lithology of an Upper Permian salt‐bearing layer (Zechstein Supergroup), and how the associated variations in the mechanical properties of this unit influenced the degree of coupling between sub‐ and supra‐salt deformation during subsequent extension. Seismic and borehole data indicate that the Zechstein Supergroup is thin, carbonate‐dominated and immobile at the footwall apex, but thick, halite‐dominated and relatively mobile in high accommodation areas, such as near the lateral fault tips and in the immediate hangingwall of the fault system. We infer that these variations reflect bathymetric changes related to either syn‐depositional (i.e. Late Permian) growth of the SHFS or underfilled, fault scarp‐related relief inherited from a preceding (i.e. Early Permian) rift phase. After a period of tectonic quiescence in the Early Triassic, regional extension during the Late Triassic triggered halokinesis and growth of a fault‐parallel salt wall, which was followed by mild extension in the Jurassic and forced folding of Triassic overburden above the fault systems upper tip. During the Early Cretaceous, basement‐involved extension resulted in noncoaxial tilting of the footwall, and the development of an supra‐salt normal fault array, which was restricted to footwall areas underlain by relatively thick mobile salt; in contrast, at the footwall apex, no deformation occurred because salt was thin and immobile. The results of our study demonstrate close coupling between tectonics, salt deposition and the style of overburden deformation for >180 Myr of the rift history. Furthermore, we show that rift basin tectono‐stratigraphic models based on relatively megascopically homogeneous and brittle crust do not appropriately describe the range of structural styles that occur in salt‐influenced rifts.  相似文献   

14.
In order to better understand the development of thrust fault‐related folds, a 3D forward numerical model has been developed to investigate the effects that lateral slip distribution and propagation rate have on the fold geometry of pre‐ and syn‐tectonic strata. We consider a fault‐propagation fold in which the fault propagates upwards from a basal decollement and along‐strike normal to transport direction. Over a 1 Ma runtime, the fault reaches a maximum length of 10 km and accumulates a maximum displacement of 1 km. Deformation ahead of the propagating fault tip is modelled using trishear kinematics while backlimb deformation is modelled using kink‐band migration. The applicability of two different lateral slip distributions, namely linear‐taper and block‐taper, are firstly tested using a constant lateral propagation rate. A block‐taper slip distribution replicates the geometry of natural fold‐thrusts better and is then used to test the sensitivity of thrust‐fold morphology to varied propagation rates in a set of fault‐propagation folds that have identical final displacement to length (Dmax/Lmax) ratios. Two stratigraphic settings are considered: a model in which background sedimentation rates are high and no topography develops, and a model in which a topographic high develops above the growing fold and local erosion, transport and deposition occur. If the lateral propagation rate is rapid (or geologically instantaneous), the fault tips quickly become pinned as the fault reaches its maximum lateral extent (10 km), after which displacement accumulates. In both stratigraphic settings, this leads to strike‐parallel rotation of the syn‐tectonic strata near the fault tips; high sedimentation rates relative to rates of uplift result in along‐strike thinning over the structural high, while low sedimentation rates result in pinchout against it. In contrast, slower lateral propagation rates (i.e. up to one order of magnitude greater than slip rate) lead to the development of along‐strike growth triangles when sedimentation rates are high, whereas when sedimentation rates are low, offflap geometries result. Overall we find that the most rapid lateral propagation rates produce the most realistic geometries. In both settings, time‐equivalent units display both nongrowth and growth stratal geometries along‐strike and the transition from growth to nongrowth has the potential to delineate the time of fault/fold growth at a given location. This work highlights the importance of lateral fault‐propagation and fault tip pinning on fault and fold growth in three dimensions and the complex syn‐tectonic geometries that can result.  相似文献   

15.
Studies of salt‐influenced rift basins have focused on individual or basin‐scale fault system and/or salt‐related structure. In contrast, the large‐scale rift structure, namely rift segments and rift accommodation zones and the role of pre‐rift tectonics in controlling structural style and syn‐rift basin evolution have received less attention. The Norwegian Central Graben, comprises a complex network of sub‐salt normal faults and pre‐rift salt‐related structures that together influenced the structural style and evolution of the Late Jurassic rift. Beneath the halite‐rich, Permian Zechstein Supergroup, the rift can be divided into two major rift segments, each comprising rift margin and rift axis domains, separated by a rift‐wide accommodation zone – the Steinbit Accommodation Zone. Sub‐salt normal faults in the rift segments are generally larger, in terms of fault throw, length and spacing, than those in the accommodation zone. The pre‐rift structure varies laterally from sheet‐like units, with limited salt tectonics, through domains characterised by isolated salt diapirs, to a network of elongate salt walls with intervening minibasins. Analysis of the interactions between the sub‐salt normal fault network and the pre‐rift salt‐related structures reveals six types of syn‐rift depocentres. Increasing the throw and spacing of sub‐salt normal faults from rift segment to rift accommodation zone generally leads to simpler half‐graben geometries and an increase in the size and thickness of syn‐rift depocentres. In contrast, more complex pre‐rift salt tectonics increases the mechanical heterogeneity of the pre‐rift, leading to increased complexity of structural style. Along the rift margin, syn‐rift depocentres occur as interpods above salt walls and are generally unrelated to the relatively minor sub‐salt normal faults in this structural domain. Along the rift axis, deformation associated with large sub‐salt normal faults created coupled and decoupled supra‐salt faults. Tilting of the hanging wall associated with growth of the large normal faults along the rift axis also promoted a thin‐skinned, gravity‐driven deformation leading to a range of extensional and compressional structures affecting the syn‐rift interval. The Steinbit Accommodation Zone contains rift‐related structural styles that encompass elements seen along both the rift margin and axis. The wide variability in structural style and evolution of syn‐rift depocentres recognised in this study has implications for the geomorphological evolution of rifts, sediment routing systems and stratigraphic evolution in rifts that contain pre‐rift salt units.  相似文献   

16.
Lower Cretaceous early syn‐rift facies along the eastern flank of the Eastern Cordillera of Colombia, their provenance, and structural context, reveal the complex interactions between Cretaceous extension, spatio‐temporal trends in associated sedimentation, and subsequent inversion of the Cretaceous Guatiquía paleo‐rift. South of 4°30′N lat, early syn‐rift alluvial sequences in former extensional footwall areas were contemporaneous with fan‐delta deposits in shallow marine environments in adjacent hanging‐wall areas. In general, footwall erosion was more pronounced in the southern part of the paleorift. In contrast, early syn‐rift sequences in former footwall areas in the northern rift sectors mainly comprise shallow marine supratidal sabkha to intertidal strata, whereas hanging‐wall units display rapid transitions to open‐sea shales. In comparison with the southern paleo‐rift sector, fan‐delta deposits in the north are scarce, and provenance suggests negligible footwall erosion. The southern graben segment had longer, and less numerous normal faults, whereas the northern graben segment was characterized by shorter, rectilinear faults. To the east, the graben system was bounded by major basin‐margin faults with protracted activity and greater throw as compared with intrabasinal faults to the west. Intrabasinal structures grew through segment linkage and probably interacted kinematically with basin‐margin faults. Basin‐margin faults constitute a coherent fault system that was conditioned by pre‐existing basement fabrics. Structural mapping, analysis of present‐day topography, and balanced cross sections indicate that positive inversion of extensional structures was focused along basin‐bounding faults, whereas intrabasinal faults remained unaffected and were passively transported by motion along the basin‐bounding faults. Thus, zones of maximum subsidence in extension accommodated maximum elevation in contraction, and former topographic highs remained as elevated areas. This documents the role of basin‐bounding faults as multiphased, long‐lived features conditioned by basement discontinuities. Inversion of basin‐bounding faults was more efficient in the southern than in the northern graben segment, possibly documenting the inheritance and pivotal role of fault‐displacement gradients. Our observations highlight similarities between inversion features in orogenic belts and intra‐plate basins, emphasizing the importance of the observed phenomena as predictive tools in the spatiotemporal analysis of inversion histories in orogens, as well as in hydrocarbon and mineral deposits exploration.  相似文献   

17.
The Southern Tail‐End Graben, Danish Central Graben, is characterized by a lateral variation in the thickness and mobility of pre‐rift Zechstein Supergroup evaporites, allowing investigation of how supra‐basement evaporite variability influences rift structural style and tectono‐stratigraphy. The study area is divided into two structural domains based on interpretations of the depositional thickness and mobility of the Zechstein Supergroup. Within each domain, we examine the overall basin morphology and the structural styles in the pre‐Zechstein and supra‐Zechstein (cover) units. Furthermore, integration of two‐way travel‐time (TWT)‐structure and ‐thickness maps allows fault activity and evaporite migration maps to be generated for pre‐ and syn‐rift stratal units within the two domains, permitting constraints to be placed on: (i) the timing of activity on pre‐Zechstein and cover faults and (ii) the onset, duration and migration direction of mobile evaporites. The northern domain is interpreted to be free from evaporite‐influence, and has developed in a manner typical of brittle‐only, basement‐involved rifts. Syn‐rift basins display classical half‐graben geometries bounded by thick‐skinned faults. In contrast, the southern domain is interpreted to be evaporite‐influenced, and cover structure reflects a southward increase in the thickness and mobility of the Zechstein Supergroup evaporites. Fault‐related and evaporite‐related folding is prominent in the southern domain, together with variable degrees of decoupling of sub‐Zechstein and cover fault and fold systems. The addition of mobile evaporites to the rift results in: (i) complex and spatially variable modes of tectono‐stratigraphic evolution; (ii) syn‐rift stratal geometries which are condensed above evaporite swells and over‐thickened in areas of withdrawal; (iii) compartmentalized syn‐rift depocentres; and (iv) masking of rift‐related megasequence boundaries. Through demonstrating these deviations from the characteristics of rifts free from evaporite influence, we highlight the first order control evaporites may exert upon rift structural style and the distribution and thicknesses of syn‐rift units.  相似文献   

18.
The Oligo-Miocene Most Basin is the largest preserved sedimentary basin within the Eger Graben, the easternmost part of the European Cenozoic Rift System (ECRIS). The basin is interpreted as a part of an incipient rift system that underwent two distinct phases of extension. The first phase, characterised by NNE–SSW- to N–S-oriented horizontal extension between the end of Eocene and early Miocene, was oblique to the rift axis and caused evolution of a fault system characterised by en-échelon-arranged E–W (ENE–WSW) faults. These faults defined a number of small, shallow initial depocentres of very small subsidence rates that gradually merged during the growth and linkage of the normal fault segments. The youngest part of the basin fill indicates accelerated subsidence caused probably by the concentration of displacement at several major bounding faults. Major post-depositional faulting and forced folding were related to a change in the extension vector to an orthogonal position with respect to the rift axis and overprinting of the E–W faults by an NE–SW normal fault system. The origin of the palaeostress field of the earlier, oblique, extensional phase remains controversial and can be attributed either to the effects of the Alpine lithospheric root or (perhaps more likely because of the dominant volcanism at the onset of Eger Graben formation) to doming due to thermal perturbation of the lithosphere. The later, orthogonal, extensional phase is explained by stretching along the crest of a growing regional-scale anticlinal feature, which supports the recent hypothesis of lithospheric folding in the Alpine–Carpathian foreland.  相似文献   

19.
Extensional fault‐propagation folds are now recognised as being an important part of basin structure and development. They have a very distinctive expression, often presenting an upward‐widening monocline, which is subsequently breached by an underlying, propagating fault. Growth strata, if present, are thought to provide a crucial insight into the manner in which such structures grow in space and time. However, interpreting their stratigraphic signal is neither straightforward nor unique. Both analogue and numerical models can provide some insight into fold growth. In particular, the trishear kinematic model has been widely adopted to explain many aspects of the evolution and geometry of such fault‐propagation folds. However, in some cases the materials/rheologies used to represent the cover do not reproduce the key geometric/stratigraphic features of such folds seen in nature. This appears to arise from such studies not addressing adequately the very heterogenous mechanical stratigraphy seen in many sedimentary covers. In particular, flexural slip between beds/layers is often not explicitly modelled but, paradoxically, it appears to be an important deformation mechanism operative in such settings. Here, I present a 2D discrete element model of extensional fault‐propagation folding which explicitly includes flexural slip between predefined sedimentary units or layers in the cover. The model also includes growth strata and shows how they may reflect the various evolutionary stages of fold and fault growth. When flexural slip is included in the modelling scheme, the resultant breached monoclines and their growth strata are strikingly similar to some of those seen in nature. Results are also compared with those obtained using simple, homogeneous, frictional‐cohesive and elastic cover materials. Both un‐lithified and lithified growth strata are considered and clearly show that, rather than just being passive recorders of structural evolution, growth strata can themselves have an important effect on fault‐related fold growth. Implications for the evolution of and strain within, the resultant growth structures are discussed. A final focus of this study is the relationship that trishear might have with the upward‐widening zone of flexural slip activation away from a fault tip singularity.  相似文献   

20.
ABSTRACT Geological mapping and sedimentological investigations in the Guilin region, South China, have revealed a spindle‐ to rhomb‐shaped basin filled with Devonian shallow‐ to deep‐water carbonates. This Yangshuo Basin is interpreted as a pull‐apart basin created through secondary, synthetic strike‐slip faulting induced by major NNE–SSW‐trending, sinistral strike‐slip fault zones. These fault zones were initially reactivated along intracontinental basement faults in the course of northward migration of the South China continent. The nearly N–S‐trending margins of the Yangshuo Basin, approximately coinciding with the strike of regional fault zones, were related to the master strike‐slip faults; the NW–SE‐trending margins were related to parallel, oblique‐slip extensional faults. Nine depositional sequences recognized in Givetian through Frasnian strata can be grouped into three sequence sets (Sequences 1–2, 3–5 and 6–9), reflecting three major phases of basin evolution. During basin nucleation, most basin margins were dominated by stromatoporoid biostromes and bioherms, upon a low‐gradient shelf. Only at the steep, fault‐controlled, eastern margin were thick stromatoporoid reefs developed. The subsequent progressive offset and pull‐apart of the master strike‐slip faults during the late Givetian intensified the differential subsidence and produced a spindle‐shaped basin. The accelerated subsidence of the basin centre led to sediment starvation, reduced current circulation and increased environmental stress, leading to the extensive development of microbial buildups on platform margins and laminites in the basin centre. Stromatoporoid reefs only survived along the windward, eastern margin for a short time. The architectures of the basin margins varied from aggradation (or slightly backstepping) in windward positions (eastern and northern margins) to moderate progradation in leeward positions. A relay ramp was present in the north‐west corner between the northern oblique fault zone and the proximal part of the western master fault. In the latest Givetian (corresponding to the top of Sequence 5), a sudden subsidence of the basin induced by further offset of the strike‐slip faults was accompanied by the rapid uplift of surrounding carbonate platforms, causing considerable platform‐margin collapse, slope erosion, basin deepening and the demise of the microbialites. Afterwards, stromatoporoid reefs were only locally restored on topographic highs along the windward margin. However, a subsequent, more intense basin subsidence in the early Frasnian (top of Sequence 6), which was accompanied by a further sharp uplift of platforms, caused more profound slope erosion and platform backstepping. Poor circulation and oxygen‐depleted waters in the now much deeper basin centre led to the deposition of chert, with silica supplied by hydrothermal fluids through deep‐seated faults. Two ‘subdeeps’ were diagonally arranged in the distal parts of the master faults, and the relay ramp was destroyed. At this time, all basin margins except the western one evolved into erosional types with gullies through which granular platform sediments were transported by gravity flows to the basin. This situation persisted into the latest Frasnian. This case history shows that the carbonate platform architecture and evolution in a pull‐apart basin were not only strongly controlled by the tectonic activity, but also influenced by the oceanographic setting (i.e. windward vs. leeward) and environmental factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号