首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We use ROSAT HRI spatial data and ASCA spectral measurements for a sample of seven nearby, early-type spiral galaxies, to address the question of whether a low-luminosity active galactic nucleus (LLAGN) is present in galaxies that have a LINER 2 classification. The brightest discrete X-ray source in the ROSAT HRI observations is invariably found to be positionally coincident with the optical galactic nucleus, and in most cases its flux dominates the X-ray emission from the central region of the galaxy. All seven galaxies have X-ray spectra consistent with a two-component, soft thermal plus hard power-law, spectral form. If we exclude the two galaxies with relatively hard X-ray spectra, NGC 3628 and NGC 4594, for which there is supporting evidence for a LLAGN (or alternatively in the case of NGC 3628 a dominant ultraluminous X-ray binary), then the remaining galaxies show surprisingly similar X-ray spectral properties. Specifically the flux ratio F X(0.5–1)/ F X(2–5) , which measures the relative strengths of the thermal and non-thermal emission components, shows little scatter about a mean of 0.66, a value very similar to that measured in the classic starburst galaxy NGC 253. As there is no obvious reason why the luminosity of the hard power-law continuum emanating from a putative LLAGN should be very closely correlated with the thermal emission of the surrounding region, this suggests that that the broad-band (0.5–5 keV) X-ray emission from these LINER 2 galaxies may originate in a common set of processes probably associated with the starburst phenomenon. Conversely, it appears that in many LINER 2 galaxies and perhaps the majority, the nuclear X-ray luminosity does not derive directly from the presence of a LLAGN.  相似文献   

2.
We find a significant anticorrelation between the hard X-ray photon index Γ and the Eddington ratio   L bol/ L Edd  for a sample of low-ionization nuclear emission-line regions and local Seyfert galaxies, compiled from literature with Chandra or XMM–Newton observations. This result is in contrast with the positive correlation found in luminous active galactic nuclei (AGN), while it is similar to that of X-ray binaries (XRBs) in the low/hard state. Our result is qualitatively consistent with the spectra produced from advection-dominated accretion flows (ADAFs). It implies that the X-ray emission of low-luminosity active galactic nuclei (LLAGN) may originate from the Comptonization process in ADAF, and the accretion process in LLAGN may be similar to that of XRBs in the low/hard state, which is different from that in luminous AGN.  相似文献   

3.
4.
5.
6.
7.
8.
9.
X-ray spectroscopy offers an opportunity to study the complex mixture of emitting and absorbing components in the circumnuclear regions of active galactic nuclei (AGN), and to learn about the accretion process that fuels AGN and the feedback of material to their host galaxies. We describe the spectral signatures that may be studied and review the X-ray spectra and spectral variability of active galaxies, concentrating on progress from recent Chandra, XMM-Newton and Suzaku data for local type 1 AGN. We describe the evidence for absorption covering a wide range of column densities, ionization and dynamics, and discuss the growing evidence for partial-covering absorption from data at energies ≳ 10 keV. Such absorption can also explain the observed X-ray spectral curvature and variability in AGN at lower energies and is likely an important factor in shaping the observed properties of this class of source. Consideration of self-consistent models for local AGN indicates that X-ray spectra likely comprise a combination of absorption and reflection effects from material originating within a few light days of the black hole as well as on larger scales. It is likely that AGN X-ray spectra may be strongly affected by the presence of disk-wind outflows that are expected in systems with high accretion rates, and we describe models that attempt to predict the effects of radiative transfer through such winds, and discuss the prospects for new data to test and address these ideas.  相似文献   

10.
11.
We present and discuss the results of very-long baseline interferometry (VLBI, EVN) observations of three low-luminosity     broad emission line active galactic nuclei (AGNs) carefully selected from a sample of flat-spectrum radio sources (CLASS). Based on the total and the extended radio power at 5 and at 1.4 GHz respectively, these objects should be technically classified as radio-quiet AGN and thus the origin of their radio emission is not clearly understood. The VLBI observations presented in this paper have revealed compact radio cores which imply a lower limit on the brightness temperature of about     . This result rules out a thermal origin for the radio emission and strongly suggests an emission mechanism similar to that observed in more powerful radio-loud AGNs. Since, by definition, the three objects show a flat (or inverted) radio spectrum between 1.4 and 8.4 GHz, the observed radio emission could be relativistically beamed. Multi-epoch VLBI observations can confirm this possibility in two years' time.  相似文献   

12.
We present a sample of 21 ROSAT bright active galactic nuclei (AGNs), representing a range of spectral classes, and selected for follow-up snapshot observations with XMM–Newton . The typical exposure was between 5 and 10 ks. The objects were primarily selected on the bases of X-ray brightness and not on hardness ratio; thus the sample cannot be strictly defined as a 'soft'sample. One of the main outcomes from the XMM–Newton observations was that all of the AGN, including 11 type 1.8–2 objects, required low levels of intrinsic absorption  ( N H≲ 1021 cm−2)  . The low absorption in type 2 systems is a challenge to account for in the standard orientation-based unification model, and we discuss possible physical and geometrical models which could elucidate the problem. Moreover, there does not appear to be any relation between the strength and shape of the soft excess, and the spectral classification of the AGN in this sample. We further identify a number of AGN which deserve deeper observations or further analysis: for example, the low-ionization nuclear emission regions (LINERs) NGC 5005 and NGC 7331, where optically thin thermal and extended emission is detected, and the narrow-line Seyfert 1 II Zw 177, which shows a broad emission feature at ∼ 5.8 keV.  相似文献   

13.
14.
15.
16.
17.
18.
Hard X-ray selection is the most efficient way to discriminate between accretion-powered sources, such as active galactic nuclei (AGN), and sources dominated by starlight. Hard X-rays are also less affected than other bands by obscuration. We have therefore carried out the BeppoSAX High Energy Large Area Survey (HELLAS) in the largely unexplored 5–10 keV band, finding 180 sources in ∼50 deg2 of sky with flux≳5×10−14 erg cm−2 s−1. After correction for the non-uniform sky coverage this corresponds to resolving about 30 per cent of the hard cosmic X-ray background (XRB). Here we report on a first optical spectroscopic identification campaign, finding 12 AGN out of 14 X-ray error boxes studied. Seven AGN show evidence for obscuration in X-ray and optical bands, a fraction higher than in previous ROSAT or ASCA – ROSAT surveys (at 95–99 and 90 per cent confidence levels respectively), thus supporting the scenario in which a significant fraction of the XRB is created by obscured AGN.  相似文献   

19.
Long-term X-ray variability of the low-luminosity active galactic nucleus of M81 was studied, using 16 ASCA observations spanning 5.5 yr. The object exhibits a factor of 3 variation over the 5.5 yr. The source intensity was relatively constant within each observation which lasted typically for one day, but intra-day variability by 30 per cent was detected on the 15th observation. The power-spectral density (PSD) was estimated in a 'forward' manner, over a frequency range of 10−8.2–10−4.3 Hz (period range of 0.25 d–5.5 yr), by utilizing the structure function and extensive Monte Carlo simulations in order to overcome the very sparse and uneven data samplings. When the PSD is assumed to be white below a 'break frequency' f b and falls off as ∝  f − α above f b, where f is frequency and α is a positive parameter, the M81 light curve is well described with 1/ f b≥800 d and α =1.4±0.2.  相似文献   

20.
A total of 235 active galactic nuclei (AGN) from two different soft X-ray surveys [the ROSAT Deep Survey (DRS) and the ROSAT International X-ray Optical Survey (RIXOS)] with redshifts between 0 and 3.5 are used to study the clustering of X-ray selected AGN and its evolution. A 2σ significant detection of clustering of such objects is found on scales < 40–80 h −1 Mpc in the RIXOS sample, while no clustering is detected on any scales in the DRS sample. Assuming a single power-law model for the spatial correlation function (SCF), quantitative limits on the AGN clustering have been obtained: a comoving correlation length 1.5 ≲  r 0 ≲ 3.3  h −1 Mpc is implied for comoving evolution, while 1.9 ≲  r 0 ≲ 4.8 for stable clustering and 2.2 ≲  r 0 ≲ 5.5 for linear evolution. These values are consistent with the correlation lengths and evolutions obtained for galaxy samples, but imply smaller amplitude or faster evolution than recent ultraviolet and optically selected AGN samples. We also constrain the ratio of bias parameters between X-ray selected AGN and IRAS galaxies to be ≲ 1.7 on scales ≲ 10  h −1 Mpc, a somewhat smaller value than is inferred from local large-scale dynamical studies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号