首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The occurrences of 5772 microwave bursts recorded by the Sagamore Hill and Manilla Solar Radio Observatories over the period January 1968 to July 1970, covering the maximum phase of the current solar cycle at frequencies 2695, 4995 and 8800 MHz and their energy excesses have been examined in relation to the S-component of solar radio emission. The average slowly varying component has been determined by the superposed epoch method commonly known as the Chree analysis. Similar treatment of the bursts, data, mentioned above has been made to examine any probable 27-day variation and the results obtained have been compared with that of the S-component. Further, spectra of the microwave bursts under the so-called spectral type - inverted U, particularly those having a peak at 4995 MHz, have also been examined and compared with the average spectrum of the S-component. Some of the important results obtained from the present analysis are: (1) the nature of variation of both the average number of occurrences and energy excesses of the microwave bursts follow in general the average 27-day variation of the S-component, (2) the number of occurrences and energy excesses of the microwave bursts are comparatively greater in the ascending phase of the 27-day cycle than those in the descending phase, (3) bursts at progressively higher frequencies originate at lower levels in the solar atmosphere than those of the associated S-component, and (4) the average spectrum of the microwave bursts of inverted U spectral type having a peak at 4995 MHz is quite identical in nature to that of the S-component.  相似文献   

2.
The fractal dimensions of solar radio fluxes at 245, 410, 610, 1415, 2695, 2800, 4995, 8800, and 15400 MHz are calculated for the data period 1976–1990. The fractal dimension used here is an index to quantify the time variability of radio emission. The fractal dimensions were found to have values in the range of 1.2–2.0 for time scales of 10 days, 1–10 months, and 10 months. The lowest values were found around 3 GHz. The annual variations of fractal dimensions are small and are not in concert with the solar cycle for most of the fractal dimension at the analyzed frequencies except those for 4995 and 8800 MHz. The annual variations of the fractal dimensions are similar for the sunspot number and radio emission around 3 GHz; this implies a close relation between them. According to a simulation, larger fractal dimensions correspond to shorter e-folding time constants in the distribution of radio-source lifetimes.  相似文献   

3.
Aurass  H.  Kurths  J.  Voigt  W. 《Solar physics》1978,60(2):361-365
A statistical treatment of the mean daily solar radio flux between 9400 and 1000 MHz (cm-region) for two solar cycles leads to the following results: No differences have been found between the synodic rotation rates T mon calculated for different single frequency time series as a whole (rigid rotation of emitting regions). From a piece-wise time series analysis it is concluded that T mon averaged over all observed frequencies and over times belonging to related years of the two cycles shows a well-expressed dependence on cycle with a maximum of 28.8d following 2 y after the activity minimum and a minimum of 27d shortly after polar magnetic field reversal. Discrete spectral lines with periods smaller than T mon point on the existence of elementary longitudinal regions of extension between 25° and 33°. The observed facts would support a relation between the sources of the large-scale magnetic field and the S-component.  相似文献   

4.
We propose that when all sources on the solar disc are taken into account, the S component at 10.7 cm wavelength is dominated by thermal free-free (bremsstrahlung) emission. It is not produced only in the vicinity of sunspots; more than 60% of the total flux may be due to a widely-distributed emission associated with the hot complexes of activity. Using a model for the solar atmosphere based upon an assumption of weak (or vertical) magnetic fields, the spectrum of the S-component is calculated and its sensitivity to changes in the model parameters investigated. Variation of the thicknesses of the chromosphere, transition region and mixed zone cause only small changes in the S-component spectrum; there is a much stronger dependence upon the plasma density, particularly at the base of the corona. The behaviour of the S-component at 10.7 cm wavelength is examined in more detail. We find that the largest contribution to the 10.7 cm flux originates in the low corona, that structural changes affect it only slightly, but that it is strongly density-related. This dependence upon few quantities, together with its relative localization in the low corona, contributes to the usefulness of the 10.7 cm flux as an index of solar activity.Summer Student Worker, 1988.  相似文献   

5.
This paper deals with the observed data on the solar S-component sources at millimetre wavelengths. The observations were made in 1968 and 1969 using the 22-m radio telescope of the Crimean Astrophysical Observatory at six wavelengths: 2, 4, 6, 8, 13 and 17 mm. The enhanced intensity of the solar active region in comparison with the quiet Sun level varies proportionally to –2 if the wavelength is within the range of 2 ÷ 6 mm. In the wavelength band of 6 ÷ 17 mm almost flat spectra of the solar S-component sources is observed. Assuming the bremsstrahlung mechanism of the radio emission for the quiet Sun and the solar active regions an attempt has been made to treat the above presented data. It appears that the most probable explanation of the 2 ÷ 6 mm spectrum is that the S-component sources are opaque. In the 6 ÷ 17 mm wavelength band there are two possibilities: the active region may be either transparent or opaque. But in the last case the source brightness temperature must be proportional to 2. Some differences in the spectra of the sources, identified with flocculi and with bipolar sunspot groups, were mentioned. The cold regions (as compared with the quiet Sun) were observed up to = 2 mm and identified with the filaments. However, its visibility falls when the wavelength decreases.  相似文献   

6.
A. Böhme 《Solar physics》1989,122(1):13-27
The flux density of a noise storm continuum is known to depend on importance parameters of the associated sunspot group, e.g., its total area A. A study of the continua at 287, 234, 113, and 64 MHz, however, reveals in case of the two cycles Nos. 20 and 21 that the radiation signatures of sunspot groups, with a value of A kept fixed, vary systematically with time indicating regular changes of relevant parameters of the overlying loop systems with the phase of the solar cycle. A trend of intense continua at high frequencies (for definition, cf. Figures 1, 2(b)) to occur preferably during the first activity maximum of a solar cycle has been obtained in either case suggesting a decrease of the emissivity of sunspot groups with time. Vice versa, intense continua at lower frequencies (for definition, cf. Figures 1, 2(b)) were mainly observed during the later phase of both cycles. The latter effect is shown to be attributed rather to a long-term variation of the spectral characteristics of the type-I continua than to an enhanced number of intense type-III continua. From the result obtained it follows that non-potential loops extending to great heights into the corona or developing at least conditions favourable for the generation of an intense type-I continuum even at the frequencies < 100 MHz tend to occur more frequently above sunspot groups during the later phase of a solar cycle than above the comparable groups of its first activity maximum.Furthermore, characteristic periods have been found for both cycles during which the emissivity, especially of the very large sunspot groups, was significantly diminished with reference to the comparable groups of the adjacent time intervals.  相似文献   

7.
The purpose of this paper is to present the correlation of seasonal variation of 5893 Å line intensity with relative sunspot numbers, solar flare numbers and the variable component of 10.7 cm solar flux. A study has been made and the following important results have been obtained.
  1. The intensity of 5893 Å line at Calcutta shows periodic variation with different solar parameters during descending part of secondary peak of 21st solar cycle (1984–1985).
  2. 5893 Å line intensity of Mt. Abu also shows periodic variation with solar parameters during the period 1965–1968 when there was a peak phase of 20th solar cycle.
  3. A possible explanation for such type of variation is also presented.
  相似文献   

8.
The time and spatial characteristics of 324 large sunspots (S50 millionths of the solar hemisphere) selected from the Abastumani Astrophysical Observatory photoheliogram collection (1950–1990) have been studied. The variations of sunspot angular rotation velocity residuals and oscillations of sunspot tilt angle were analyzed. It has been shown that the differential rotation rate of selected sunspots correlates on average with the solar cycle. The deceleration of differential rotation of large sunspots begins on the ascending arm of the activity curve and ends on the descending arm reaching minimum near the epochs of solar activity maxima. This behavior disappears during the 21st cycle. The amplitudes and periods of sunspot tilt-angle oscillations correlate well with the solar activity cycle. Near the epochs of activity maximum there appear sunspots with large amplitudes and periods showing a significant scatter while the scatter near the minimum is rather low. We also found evidence of phase difference between the sunspot angular rotation velocity and the amplitudes and periods of tilt-angle oscillations.  相似文献   

9.
A strong S-component of solar radiation was identified during the total solar eclipse of November 12, 1966. Its characteristics, as measured at 4.28 cm, were studied in terms of flux and polarization, and its spectral features were derived by the use of data from other observatories. The whole source presented approximately the typical characteristics suggested by some authors in the last few years, and further it has been shown that it could be resolved into at least two enhanced regions, one showing unpolarized radiation with a brightness temperature T b 1.2 × 106 °K, and the other showing 50% of left-handed circularly polarized radiation, with T b 0.7 × 106 °K. The source's overall characteristics favour the presence of non-thermal absorption at the emitting regions.  相似文献   

10.
It has been proposed that the observed solar neutrino flux exhibits important correlations with solar particles, galactic cosmic rays, and the sunspot cycle, with the latter correlation being opposite in phase and lagging behind the sunspot cycle by about one year. Re-examination of the data-available interval 1971–1981, employing various tests of statistical significance, however, suggests that such a claim is, at present, unwarrantable. For example, on the associations of solar neutrino flux and cosmic-ray flux with the Ap geomagnetic index, neither were found to be statistically significant (at the 95% level of confidence), regardless of the choice of lag (-1, 0, or +1 yr). Presuming linear fits, all correlations with Ap had coefficients of determination (r 2, where r is the linear correlation coefficient) less than 16%, meaning that 16% of the variation in the selected test parameters could be explained by the variation in Ap. Similarly, on the associations of solar neutrino flux and cosmic ray flux with sunspot number, only the latter association proved to be of statistical importance. Using the best linear fits, the correlation between yearly averages of solar neutrino flux and sunspot number had r 2 19%, the correlation between weighted moving averages (of order 5) of solar neutrino flux and sunspot number had r 2 45%, and the correlation between cosmic-ray flux and sunspot number had r 2 76%, all correlations being inverse associations. Solar neutrino flux was found not to correlate strongly with cosmic-ray flux, and the Ap geomagnetic index was found not to correlate strongly with sunspot number.  相似文献   

11.
The variation in intensity of the solar X-ray resonance (1s 2 1 S 0 - 1s2p 1 P 1), intercombination (1s 2 1 S 0 - 1s2p 3 P 1), and forbidden (1s2 1 S 0 - 1s2s 3 P 1) lines of helium-like Ovii with 2800 MHz solar radio flux is presented for three solar rotations. A high correlation (r 0.80) exists between the intensities of all three X-ray lines and the 2800 MHz solar flux. The ratio of the forbidden to the intercombination line intensities is found to be essentially independent of long term solar activity. This ratio is used to determine upper limits on the coronal electron density and to make inferences concerning the change in density with solar activity.  相似文献   

12.
Patrick C. Crane 《Solar physics》1998,177(1-2):243-253
Fourier analysis (DFT/CLEAN) of the international sunspot number (R) series since 1932 has revealed two long (250–500 days) and distinct episodes of solar activity exhibiting persistent 13 -day variations. The first episode lasts 500 days near the maximum of solar cycle 20, and the second, 250 days near the end of the current solar cycle 22. The solar radio flux density (F 10_7cm) series since 1947 has also been analyzed. During the first episode both solar indices exhibit distinct 27- and 13-day variations (the first report of 13-day variations in F 10_7cm). During the second episode neither index exhibits distinct 27-day variations and only R exhibits 13-day variations. Conditions affecting the appearance of 13-day variations in F 10_7cm are discussed.  相似文献   

13.
Selected mm-wave observations with arc-min resolution of active regions in the central part of the solar disk obtained by the Metsähovi Radio Research Station during the years 1978–1984 are discussed from the perspective of recently developed mean S-component models.It is concluded that the mm-wave emission has a considerable (but at present unresolved) spatial fine structure. Compatibility with optical and EUV observations is only achieved by the assumption of embedding of bright plage elements in a quasi-quiet background according to filling factors of less than about 5% in the mm-wave range. Basing on model calculations, predictions are made concerning the mm-wave brightness of the sunspot and plage components. Averaging over the whole S-component sources provides a good correspondence between observation and calculation. The necessary elimination of well identified burst sources (15% of cases) and of a group of further unspecified small-scale sources (30%) from the above material indicates a greater contribution of hot-temperature radiation to the mean emission from solar active regions at mm-wavelengths than had formerly been expected.  相似文献   

14.
The absorption of cosmic radio noise passing through the ionosphere may be described as a function of radio wave frequencyA(f e ) f e -n , with n 2.0 for spatially uniform precipitation of electrons and n < 2.0 for spatially nonuniform precipitation. Using multifrequency riometer recordings at SANAE, the following observations are reviewed: (1) The frequency distribution of the power index, n, obtained from 4 min averaged absorptions during 1983, shows a most probable value around n 1.5, indicating that mostly energetic electrons are precipitated spatially structured onto the upper atmosphere, as in optical aurora. (2) Multifrequency riometer recordings suggest that field-aligned ionospheric irregularities have scattered additional cosmic radio waves from the central region of the Galaxy into the fields of views of the riometer antennae during an auroral absorption event in the early morning hours of 27 July, 1982. With the power reflectivity by ionospheric irregularities inversely proportional to the fourth power of radio wave frequency, as required by the Bragg condition, an estimated 70% increase in the 20 MHz radio flux at 01:22 UT, at the strong absorption peak, can explain the strongly reduced absorption observed in 20 MHz relative to 30 and 51.4 MHz. (3) Gradual increases in absorptions observed at all three riometer frequencies from onset at 11:50 UT of the largest solar proton ground level enhancement on 29 September, 1989, until 18:00 UT, suggest diffusion of the much more intense low energy protons from the polar cap to the L=4.0 geomagnetic field shell and subsequent precipitation at SANAE due to the South Atlantic Geomagnetic Anomaly. (4) The flux of electron energy deposited per second at SANAE is closely related to geomagnetic activity, but has a lower maximum during the years 1971 and 1980 of solar polar magnetic reversals than in the years 1976 and 1986/87 of minimum solar activity. (5) A significant correlation has been found between the arrival of single-hop whistlers and 30 MHz riometer absorption events, using point statistics. The maximum absorption at 30 MHz was 0.04 dB with a delay of 3 ± 2 s relative to the whistler.  相似文献   

15.
This paper investigates a series of daily solar indices: the sunspot number W (1900–2008), solar flux at 2800 MHz F 10.7 (1947–2008), and a number of X-ray flares N x (1981–2008). The methods of Fourier and wavelet analysis are used to reveal the so-called 156-day Rieger-type periodicity (RTP). The W index is observed to have a statistically significant RTP amplitude in the neighborhood of the solar maxima in most of the solar cycles under study, except for cycles 14, 15, and 23. The 156-day peak is observed to have its largest power during the declining phase of cycle 16, at the maximum of cycle 21, and during the increasing phase of cycles 20 and 23. Statistically significant RTPs are also observed at the minima of cycles 17, 18 and 19. We conclude that there is no stable dependence between RTP and the solar cycle. The wavelet analysis shows that the pattern of the RTP time dependence for the F 10.7 index is almost identical to that of the W index. The correlation coefficient between the RTP curves is 0.95. The correlation coefficients for the pairs of indices W-N x and F 10.7-N x are 0.36 and 0.32, respectively. No time lags are found between the RTP starting points for different indices. Thus, the 156-day quasi-periodicity involves, almost simultaneously, events that occur in active regions of the solar atmosphere at different heights. This paper discusses the possible nature of RTP.  相似文献   

16.
Kane  R.P. 《Solar physics》2002,207(1):17-40
The paper presents a more extensive comparison of Extreme Ultraviolet (EUV) irradiances during AE-E (1977–1980), Pioneer Venus (1979–1992) and SEM/SOHO (1996 onwards) with other solar indices than has been discussed previously. For long-term changes (solar cycle), all indices had similar trends and inter-correlations were high, so that any one could serve as a proxy for the other. For intermediate time-scales (monthly means), only L, F10 (2800 MHz) and Mgii had reasonably high correlations with EUV. The 2695 MHz radio emission also had a high correlation. For daily values, data for many indices are intermittant and these cannot serve as proxies. Again, only L, F10 (and 2695 MHz), Mgii stand out as possible proxies for EUV, particularly during intervals of strong 27-day sequences.  相似文献   

17.
The results of flux pulsar radioemission measurements at meter wavelengths, made at Pushchino Radio Astronomical Observatory of the Lebedev Physical Institute, are presented. Flux densities at 102, 85, 61 and 39 MHz have been measured for 85, 29, 37 and 23 pulsars correspondingly. Some of them were performed at all frequencies simultaneously. On the basis of these data and high frequencies data obtained by other authors, spectra of 52 pulsars were plotted. In practically all investigated pulsars we have detected a turn-over frequency at which the flux density of pulsar radioemission attained its maximum. Its mean value isv m =130±80 MHz. Averaged on many pulsars, the spectral index is negative in the 39–61 MHz frequency range and passes through zero at frequencies of about 100 MHz, becoming positive in the 100–400 MHz frequency range. It was noticed that the spectral index in the 100–400 MHz interval depends upon such pulsar periods as α100−=0.7logp+0.9. Using the spectra, more precise radio luminosities of pulsars have been computed.  相似文献   

18.
Using the smoothed time series of maximum CME speed index for solar cycle 23, it is found that this index, analyzed jointly with six other solar activity indicators, shows a hysteresis phenomenon. The total solar irradiance, coronal index, solar radio flux (10.7?cm), Mg?ii core-to-wing ratio, sunspot area, and H?? flare index follow different paths for the ascending and the descending phases of solar cycle?23, while a saturation effect exists at the maximum phase of the cycle. However, the separations between the paths are not the same for the different solar activity indicators used: the H?? flare index and total solar irradiance depict broad loops, while the Mg?ii core-to-wing ratio and sunspot area depict narrow hysteresis loops. The lag times of these indices with respect to the maximum CME speed index are discussed, confirming that the hysteresis represents a clue in the search for physical processes responsible for changing solar emission.  相似文献   

19.
Periodicities of solar irradiance and solar activity indices,I   总被引:1,自引:0,他引:1  
Using a standard FFT time series analysis, our results show an 8–11 months periodicity in the solar total and UV irradiances, 10.7 cm radio flux, Ca-K plage index, and sunspot blocking function. The physical origin of this period is not known, but the evidence in the results exclude the possibility that the observed period is a harmonic due to the FFT transform or detrending. Periods at 150–157 and 51 days are found in those solar data which are related to strong magnetic fields. The 51-day period is the dominant period in the projected areas of developing complex sunspot groups, but it is missing from the old decaying sunspot areas. This evidence suggests that the 51-day period is related to the emergence of new magnetic fields. A strong 13.5-day period is found in the total irradiance and projected areas of developing complex groups. This confirms those results (e.g., Donnelly et al., 1983, 1984; Bai, 1987, 1989) which show that active centers are located 180 deg apart from each other.Our study also shows that the modulation of various solar data due to the 27-day solar rotation is more pronounced during the declining portion of solar cycle than during the rising portion. This arises from that the active regions and their magnetic fields are better organized and more long-lived during the maximum and declining portion of solar cycle than during its rising portion.  相似文献   

20.
A major radio burst at decametric frequencies at 1638 UT on June 9, 1959 is apparently a Type-IV continuum burst of the kind that drifts from high to low frequencies. We present observations of flux variations and East-West positions of the emission at both 18 and 38 MHz. The burst moves outward at a speed of about 4700 km·sec?1 at each frequency to a height of about 3 R from the sun's center and then returns to the sun. This behavior is not simultaneous at 18 MHz and 38 MHz; the outward moving phase of 18 MHz emission occurs during the return phase of 38 MHz. We suspect that a solitary Alfvén wave or shock traverses the outer corona at the time of this burst. Relativistic electrons created low in the solar atmosphere travel freely along radial lines of force up to the coronal-streamer heights of the Type-IV burst. Upon encountering the shock, the electrons emit locally intense synchrotron emission, and pass through the shock on out into interplanetary space. This model appears to be consistent with other shock front phenomena in interplanetary space and the corona. Finally, the Razin effect (Boischot and Clavelier, 1967) suggests that low-frequency cut-offs in Type-IV bursts ought to be quite constant in frequency, and not higher than between 0.4 to 4 MHz.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号