首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lignin oxidation products and 13C/12C ratios were compared as indicators of land-derived organic matter in surface sediments from the western Gulf of Mexico. Whole sediments were reacted with cupric oxide to yield phenolic oxidation products that indicated the types and relative amounts of the lignins that were present.Measurements of lignin concentration and carbon isotope abundances both indicated a sharp offshore decrease of land-derived organic matter in most areas of the western Gulf. This decrease results primarily from mixing of terrestrial and marine organic matter. The terrestrially derived material in these sediments has a lignin content similar to that of grasses and tree leaves. Flowering plants contribute most of the sedimented lignin compounds. These lignins apparently occur in the form of well-mixed plant fragments that are transported to sea by rivers and deposited primarily on the inner continental shelf.  相似文献   

2.
Metal concentrations were examined in sediments from 497 sites within the estuaries of the Gulf of Mexico by the United States Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP). Data were normalized for extant concentrations of aluminum to isolate natural factors from anthropogenic ones. The normalization was based on the hypothesis that metal concentrations vary consistently with the concentration of aluminum, unless metals are of anthropogenic origin. Strong linear correlations (>75% variation explained) were observed between Al and Cr, Cu, Pb, Ni, and Zn. Moderate correlations (50–75% variation explained) were observed between Al and As or Ag. Weak but significant correlations (30–40% variation explained) were observed between Al and Hg or Cd. Based on these results, the spatial extent of contamination was examined. About 39% of sites with contamination by at least one metal occurred near population centers, industrial discharge sites, or military bases. The remainder of the observed contamination represented a dispersed pattern, including the lower Mississippi River (7%) and numerous agricultural watersheds (54%), suggesting that the contamination might be from nonpoint sources.  相似文献   

3.
《Applied Geochemistry》1987,2(3):297-304
Sediment extracts from 81 piston cores taken in water depths between 70 and 1200 m on the Gulf of Mexico continental shelf and slope were analyzed for dibenzothiophenes by capillary gas chromatography with flame photometric detection (FPD). The major aromatic sulfur compounds detected were dibenzothiophene; methyl, ethyl and propyl dibenzothiophenes; two unidentified sulfur compounds; and a series of benzothiophenes. In general, benzothiophenes (BTs) were detected at only trace levels though this may be due to loss during the analysis. Dibenzothiophenes (DBTs) concentrations ranged from <1 to 1725 ng/g, with an average of 139 ng/g. Vertical distributions generally showed significant increases in DBTs concentrations with depth. DBTs distributions in sediment extracts were similar to oils produced in the northern Gulf of Mexico. Variations from this composition may be due to microbial degradation in the near subsurface. The vertical and molecular distribution of DBTs suggests that the source of DBTs in the Gulf of Mexico sediments studied is upward migrating petroleum. Two unidentified compounds are speculated to be derivatives of DBTs, caused by indigenous microbial activity. This study suggests that DBTs may be useful for detecting seepage from deeper, more mature, source rocks and/or reservoired petroleum.  相似文献   

4.
Sediments from San Antonio Bay, the northwest Gulf of Mexico, and the Mississippi River Delta were acid leached and analyzed for Fe, Mn, Pb, Zn, Cd, Cu and Ni by atomic absorption spectrophotometry. In order to account for differences in sediment clay, carbonate, and organic matter content, metal concentrations were normalized to Fe. Significant linear correlations of metals to Fe were obtained for unpolluted sediments and deviations from these “natural” statistical populations were found for areas thought to have metal input caused by man. San Antonio Bay sediments show little evidence of metal pollution despite 70 years of shell dredging in the bay. However, the San Antonio-Guadalupe River system, the bay's prime sediment source, has 10% to 50% higher than natural levels of Pb, Cd and Cu. Sediments from a 1500 km2 area of the Mississippi River Delta have Pb and Cd concentrations 10% to 100% higher than expected levels. The vertical distribution of Pb and Cd in these sediments suggests that inputs have occurred during the past 30 to 40 years. We find no indication of metal pollution in other areas of the Delta or along the continental shelf of the northwest Gulf of Mexico.  相似文献   

5.
The stable carbon isotope composition sedimentary organic carbon was determined in the sediments of seven coastal lagoons of the Gulf of Mexico, Mexico. For most of the lagoons the δ13C values for sediments ranged from ?20.1 to ?23.9%. Anomalously low values, ?26.8 to 29.3%. were determined in sediments of two of the studied lagoons, probably due to the presence of organic carbon from anthropogenic sources, naturally absent in these environments. The δ13C values determined in the tissues of oysters collected at the same time in the different lagoons were very similar to those recorded in the sediments.  相似文献   

6.
The mineralogy, geochemistry, and radiocarbon ages of two sediment cores (GMX1 and GMX2) collected from the deep sea area of the Southwestern Gulf of Mexico (∼876–1752 m water depth) were studied to infer the sedimentation rate, provenance, heavy metal contamination, and depositional environment. The sediments are dominated by silt and clay fractions. The mineralogy determined by X-Ray diffractometry for the sediment cores reveals that montmorillonite and muscovite are the dominant clay minerals. The sections between 100 and 210 cm of the sediment cores GMX1 and GMX2, respectively, are characterized by the G. menardii group and G. Inflata planktonic foraminiferal species, which represent the Holocene and Pleistocene, respectively. The radiocarbon-age measurements of mixed planktonic foraminifera varied from ∼268 to 45,738 cal. years B.P and ∼104 to 25,705 cal. years B.P, for the sediment cores GMX1 and GMX2, respectively. The variation in age between the two sediment cores is due to a change in sediment accumulation rate, which was lowest at the location GMX1 (0.006 cm/yr) and highest at the location GMX2 (0.017 cm/yr).The chemical index of alteration (CIA), chemical index of weathering (CIW), and index of chemical maturity (ICV) values indicated a moderate intensity of weathering in the source area. The total rare earth element concentrations (∑REE) in the cores GMX1 and GMX2 vary from ∼94 to 171 and ∼78 to 151, respectively. The North American Shale Composite (NASC) normalized REE patterns showed flat low REE (LREE), heavy REE (HREE) depletion with low negative to positive Eu anomalies, which suggested that the sediments were likely derived from intermediate source rocks.The enrichment factor of heavy metals indicated that the Cd and Zn concentrations in the sediment cores were impacted by an anthropogenic source. The redox-proxy trace element ratios such as V/Cr, Ni/Co, Cu/Zn, (Cu + Mo)/Zn, and Ce/Ce* indicated that the sediments were deposited under an oxic depositional environment. The similarity in major element concentrations, REE content, and the NASC normalised REE patterns between the cores GMX1 and GMX2 revealed that the provenance of sediments remained relatively uniform or constant during deposition for ∼4.5 Ma. The major and trace element based multidimensional discrimination diagrams showed a rift setting for the core sediments, which is consistent with the geology of the Gulf of Mexico.  相似文献   

7.
. This paper deals with the extent of contamination in sediments of the southeast Gulf of Mexico. The concentration of elements (SiO2, Al2O3, Fe2O3, Na2O, MgO, CaO, and K2O) and heavy metals (Cu, Cd, Zn, Co, Pb, Ag, Cr, Ni, V, and Ba) were determined. The elemental composition of sediments is influenced by the Grijalva–Usumacinta–Terminos System at the east and the Tabasco lagoon system (El Carmen–La Machona) at the west coast of the study area. Concentrations of Ni, V, and Ba were anomalously high at some sites. Oil production activities in the vicinity of the sites may be responsible for the high values. Correlations of metal concentrations to elemental composition were performed. No significant relationships between metals and elements were found for most metals (p>0.05), suggesting that metals are not significantly associated with naturally occurring aluminosilicates, iron hydroxide, and calcium carbonate minerals of sediments. Other sources such as organic matter may be contributing to the total concentration of metals. The comparison of metal content in sediments of the southeast Gulf of Mexico with metals of the other areas of the Gulf of Mexico suggests that it is relatively contaminated with Cd, Pb, and Ni. The probable causes of contamination are briefly discussed.  相似文献   

8.
Sediment samples from 281 estuarine sites in the Gulf of Mexico were collected in 1993–1994 and analyzed for several classes of organic and organometallic compounds as part of the Environmental Monitoring and Assessment Program of the United States Environmental Protection Agency. Polynuclear aromatic hydrocarbons (PAHs) were the contaminant class found most frequently and in the highest concentrations; the sum of 24 congeners (ΣPAHs) ranged from <5 ng g?1 to 15.500 ng g?1 (dry wt basis). A low percentage of samples (3.9%) exceeded 2000 ng g?1 ΣPAHs, and only six samples (2.1%) exceeded 4000 ng g?1, a level above which adverse biological effects may be expected to occur. Less than 4% of sediments exceeded 20 ng g?1 for the sum of 20 polychlorinated biphenyls (ΣPCBs) and only four samples (1.4%) exceeded 20 ng g?1 for the sum of several organochlorine pesticides (ΣOCPs). A sample from Freeport Harbor, Texas, contained 4230 ng g?1 ΣPAHs, 322 ng g?1 ΣPCBs, and 49.6 ng g?1 ΣOCPs. Tributyltin exceeded 100 ng g?1 in only four samples, all of which were from stations in Corpus Christi Bay or Galveston Bay in Texas. The detection of a suite of organophosphate pesticides was very rare and did not exceed 15 ng g?1. Sediments from the tidally influenced section of the Mississippi River in Louisiana contained low to moderate levels of all classes of organic compounds. The most contaminated sites were in urban estuaries (e.g., Corpus Christi, Galveston, and Pensacola (Florida bays), underscoring the need to concentrate future monitoring and assessment efforts at the regional and local level.  相似文献   

9.
An increase in the cosmogenic beryllium-10 content of the Orca basin sediments due to the flooding of the Gulf of Mexico (GM) by meltwaters during the late Wisconsin interglacial is reported. A strong negative correlation (γ =-0.99) betweenδ 18 O (in the range o f-1.5‰ to +0.5‰) and10Be/Al ratio is seen. During intense flooding reflected by a decrease in δ18O by ∼ 2‰, this correlation may not hold as some of the sediments with low10Be/Al ratio and deposited on the shelf and slope regions of the GM during the earlier glacial period would also be washed into the basin. The deposited sediment would then be a mixture with a10Be/Al ratio lower than expected from the correlation  相似文献   

10.
Concentrations of total Hg in sediments near six drilling sites in the Gulf of Mexico were elevated well above average background values of 40–80 ng/g. The excess Hg was associated with barite from discharged drilling mud. In contrast with total Hg, concentrations of methylmercury (MeHg) in these sediments did not vary significantly at nearfield (<100 m) versus farfield (>3 km) distances from the drilling sites. Observed variability in concentrations of MeHg were related to local differences in redox state in the top 10 cm of sediment. Low to non-detectable concentrations of MeHg were found in nearfield sediments that were anoxic, highly reducing and contained abundant H2S. At most drilling sites, nearfield samples with high concentrations of total Hg (>200 ng/g) had similar or lower amounts of MeHg than found at background (farfield) stations. Higher values of MeHg were found in a few nearfield sediments at one site where concentrations of TOC were higher and where sediments were anoxic and moderately reducing. Overall, results from this study support the conclusion that elevated concentrations of MeHg in sediments around drilling sites are not a common phenomenon in the Gulf of Mexico.  相似文献   

11.
Hydrocarbon results from gas chromatography of 60 recent sediment and 10 benthic algae samples delineate two distinct shelf environments in the northeastern Gulf of Mexico.Sediments off Florida (shell hashes and sands) have moderate amounts of lipids/total sediment (average 113ppm ± 80%) but low hydrocarbon levels (average 3.06 ppm ± 41%). Aliphatic hydrocarbons are dominated by a series of branched or cyclic, unsaturated C25 isomers. The major n-alkane is n-C17. The n-alkane and isoprenoid patterns are consistent with a marine hydrocarbon source.Sediments closer to the Mississippi River (silts and clays) contain large amounts of lipids (average 232 ppm ± 53%) and hydrocarbons (average 11.7 ppm ± 55%) to total sediment. Aliphatic hydrocarbons are mainly odd carbon number high molecular weight n-alkanes, indicating a terrigenous hydrocarbon source. Isoprenoids are present in greater abundance than in sediments off Florida (n-C17/ pristane and n-C18/phytane ratios ~2to 3). Relatively large amounts of n-C16, together with an even distribution of n-alkanes in the range C14–C20 and a substantial unresolved envelope all point to a fossil fuel input to the Mississippi samples.Samples off the Alabama coast show intermediate characteristics.  相似文献   

12.
Calcium carbonate dissolution has been studied in eight piston cores from the western Gulf of Mexico ranging in depth from 965 to 3630. The degree of dissolution throughout the cores was determined by studies of foraminiferal test fragmentation, benthonic foraminiferal abudance, calcium carbonate concentration, and various relationships between solution-resistant and solution-susceptible species. The paleoclimatic history recorded in these cores is similar to those defined previously in the Gulf of Mexico and equatorial Atlantic. Two mesgascopically distinct ash layers and well-defined planktonic foraminiferal subzones permit precise intercore correlation of dissolution horizons. All cores demonstrate intense dissolution during several subzones, especially during the early-middle Y, X1, and W1. Other less consistent dissolution horizons occur in various cores. Sedimentation rates increase while calcite concentrations decrease during glacial episodes suggesting increased dilution by terrigenous materials. Despite this, glacial episodes show greater dissolution and worse preservation of foraminiferal tests. Therefore, increased dissolution of calcium carbonate during glacial episodes must be a function of some mechanism that more than compensates for the increased rate of burial by terrigenous sediments. Dissolution is dissolution processes are not responsible for the observed effects. The oxidation of organic material may be the primary mechanism controlling the dissolution of calcium carbonate in the western Gulf of Mexico.  相似文献   

13.
To assess heavy metals in mangrove swamps of Sehat and Tarut coastal areas along the Arabian Gulf, 18 sediment samples were collected for Al, V, Cr, Mn, Cu, Zn, Cd, Pb, Hg, Sr, As, Fe, Co, and Ni analysis. The results indicated that the distribution of some metals was largely controlled by anthropogenic inputs, while others were of terrigenous origin and most strongly associated with distribution of aluminum and total organic carbon in sediments. Mangrove sediments were extremely severe enriched with Sr (EF?=?67.59) and very severe enriched with V, Hg, Cd, Cu, As (EF?=?44.28, 37.45, 35.77, 25.97, and 11.53, respectively). Average values of Sr, V, Hg, Cd, Cu, Ni, As, and Cr were mostly higher than the ones recorded from the Mediterranean Sea, the Red Sea, the Gulf of Aqaba, the Caspian Sea, the Arabian and Oman gulfs, coast of Tanzania, sediment quality guidelines, and the background shale and the earth crust. Landfilling due to coastal infrastructure development around mangrove forests, oil spills and petrochemical and desalination effluents from Al-Jubail industrial city to the north were the anthropogenic activities that further enhanced heavy metals in the studied mangrove sediments.  相似文献   

14.
15.
Coastal margins, especially the river-influenced coastal areas, are considered as active interfaces between the continental and oceanic environments, which have huge dispersal of detrital materials and heavy metal input. It is well determined that the fine-grained sediments are important reservoir for the accumulation of heavy metals. In this study, we analyzed the radiocarbon age, texture, organic matter, carbonate content, and geochemical compositions of two sediment cores (GM42 and GM44) retrieved in front of the Coatzacoalcos River mouth basin, southwestern Gulf of Mexico (~864 and 845 m water depth, respectively). Our objective was to infer the sedimentation rate, intensity of weathering, provenance, and influence of anthropogenic activities on heavy metal contamination in sediments. The radiocarbon-age measurements of mixed planktonic foraminifera for core GM44 reveals an age of 21,289 ± 136 cal. years B.P., which fall within the Late Glacial Maximum (LGM; 21000 ± 2000 years B.P). The calculated sedimentation rate for core GM42 (~0.013 cm/year) is lower than in core GM44 (0.022 cm/year), which is probably due to the variations in detrital sediment input and/or seafloor topography. The weathering indices such as chemical index of alteration (CIA), chemical index of weathering (CIW), and plagioclase index of alteration (PIA) suggested that the source area experienced low to moderate intensity of chemical weathering under warm to humid climatic conditions. The SiO2/Al2O3, Al2O3/Na2O, and K2O/Al2O3 ratio values indicated moderate to high compositional maturity. The major and trace element concentrations suggested that the sediments were likely derived from intermediate source rocks. The heavy metal contents indicated that the sediments were not contaminated by the industrial waste disposals supplied by the Coatzacoalcos River. The redox proxy sensitive elements such as V, Cr, Cu, and Zn indicated an oxic depositional environment for the deep-sea sediment cores. The application of discrimination diagrams for the geochemistry data revealed a passive margin setting for the sediment cores. The compositional variations observed at the upper sections (<30 cm) between the two sediment cores revealed that the type of detrital sediments supplied by the Coatzacoalcos River to the deep sea area is not uniform, which is also revealed by the variation in sedimentation rate.  相似文献   

16.
The direct impacts of outer continental shelf (OCS) development on recent wetland loss in the northern Gulf of Mexico were quantified using aerial imagery, field surveys, and literature review. The total direct impacts accounted for an estimated 25.6 percent of total net wetland loss within the Louisiana portion of the study area from 1955/56 to 1978. Of the total direct impacts of 73,905 ha, OCS-related activities accounted for 11,589-13,631 ha of the wetland loss during the same time interval. Although this is a substantial areal loss, it represents only 4.0-4.7 percent of the total Louisiana wetland loss from 1955/56 to 1978, and 15.7–18.4 percent of direct impacts.Direct impacts from OCS pipelines averaged 2.49 ha/km, lower than published guidelines, and totalled 12,012 ha. Lowest impacts are for backfilled pipelines in the Chenier Plain of western Louisiana and for small young pipelines built in clustered rights-of-way. Widening of OCS pipeline canals does not appear to be an important factor for total net wetland loss in the coastal zone because few pipelines are open to navigation and, for the examples found, the impact width was not significantly different than for open pipelines closed to navigation. Navigation channels account for a minimum of 16,902 ha of habitat change. Direct impacts per unit length of navigation channel average 20 times greater than pipelines.  相似文献   

17.
Major and trace elements, organic matter, carbonates, loss of ignition, grain size, gravel, sand, silt, clay, and qualitative mineralogical composition were determined on surficial marine sediments sampled during the stormy (February), dry (May), and rainy (September) seasons in the coastal area adjacent to Panuco River discharges into the Gulf of Mexico. The sediments supplied by the river move in a north-east direction, and are deposited in the north-east extreme of the studied area. Terrigenous sediments show a strong association of Al2O3 with Fe2O3, Na2O, K2O, P2O5, Rb, Cu, Zn, organic matter, clay, and grain size (Mz). Mineralogical analysis shows that they are formed by quartz, kaolinite, montmorillonite, illite-montmorillonite and biotite. The highest metal concentration of Cu (25 mg/kg), Zn (155 mg/kg), Pb (50 mg/kg) and organic matter (1.26%) was observed in the sampling points located very close to the river mouth. A statistical analysis was done with the information contained in the variables. Five significant factors explain 77% of the total variance: factor 1 is due to sediments from a terrigenous source, factor 2 corresponds to sediments from a biogenous source, factor 3 is associated to sediments with heavy minerals, factor 4 is due to Co concentration, and factor 5 is due to Ni concentration. The sediments supplied from the river had a short-term local impact on the sediment distribution, as observed by the carbonate and heavy mineral concentration of the sediments.  相似文献   

18.
Lake Chalco (99.0°W, 19.5°N) in the Basin of Mexico, was formed during the Pleistocene after the emplacement of the Chichinautzin volcanic field that closed the former drainage system. The lake sediment record has been influenced by a number of factors, including glacial–interglacial cycles, local volcanism, erosion of soils and anthropogenic disturbances. The magnetic properties of the lake sediments and the associated tephra layers of the last 16500 yr have been studied. It is found that the magnetic properties of the Lake Chalco sediments are very distinctive. Magnetic concentration varies by a factor of 1000 and magnetic stability also varies over an extremely wide range. The predominant magnetic mineral is titanomagnetite in addition to an imperfect antiferromagnetic phase, possibly goethite. An unusually large range of coercivities is found in certain of the tephras. Down‐core variations in magnetic properties closely follow climatic/environmental changes previously established by other proxy methods. The late Pleistocene and late Holocene lake sediments display a higher concentration of magnetic minerals than the early–middle Holocene sediments. In the non‐volcanic sediments, fluctuations in the magnetic concentration reflect changes in both the intensity of erosion, as represented by ferrimagnetic and paramagnetic minerals, and by the maturing of soils, as represented by geothite. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

19.
Summer hypoxia in the bottom waters of the northern Gulf of Mexico has received considerable scientific and policy attention because of potential ecological and economic impacts from this very large zone of low oxygen and because of the implications for management within the massive Mississippi River watershed. An assessment of its causes and consequences concluded that the almost 3-fold increase in nitrogen load to the Gulf is the primary external driver stimulating the increase in hypoxia since the middle of the last century. Results from three very different models are compared to reach the consensus that large-sclae hypoxia likely did not start in the Gulf of Mexico until the mid-1970s and that the 30% nitrogen load reduction called for in an Action Plant to reduce hypoxia, agreed to by a federal, state, and tribal task force, may not be sufficient to reach the plan’s goal. Caution is also raised for setting resource management goals without considering the long-term consequences of climate variability and change.  相似文献   

20.
All of the major deep-water sedimentary provinces of the Gulf of Mexico were sampled with 48 piston cores, representative of the late Quaternary. The amount (per cent) and δ5C13 of the organic carbon in the sediment was measured at intervals within each core.Graphs of δC13 versus depth for each core give an indication of the sedimentological history of the Gulf. They show the extent of terrestrial influence on the Gulf during the late Pleistocene.Changes in δC13 of up to 6.0%.(from ~ ?19%.to ?25%. vs NBS-20) were measured across the Pleistocene-Holocene boundary in cores from the abyssal plain. These changes are consistent with a model wherein varying amounts of land-derived organic carbon were transported to the Gulf basin during glacial periods.By comparing graphs for cores from different areas, it was concluded that the major parameter affecting the δC13 values of organic carbon from marine sediments is the relative amount of terrestrial material present in the sediment. The maximum possible effect of the Pleistocene-Holocene temperature change in the Gulf was determined to be ~1.0%, if such an effect occurs at all.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号