首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
2.
《Applied Geochemistry》2003,18(2):283-309
International agreements (e.g. OSPAR) on the release of hazardous substances into the marine environment and environmental assessments of shelf seas require that concentrations and bioavailability of metals from anthropogenic sources can be distinguished from those originating as a result of natural geological processes. The development of a methodology for distinguishing between anthropogenic and natural sources of metals entering the Irish Sea through river inputs is described. The geochemistry of stream, river and estuarine sediments has been used to identify background geochemical signatures, related to geology, and modifications to these signatures by anthropogenic activities. The British Geological Survey (BGS) geochemical database, based on stream sediments from 1 to 2 km2 catchments, was used to derive the background signatures. Where mining activity was present, the impact on the signature was estimated by comparison with the geochemistry of sediments from a geologically similar, but mining free, area. River sediment samples taken upstream and downstream of major towns were used respectively to test the validity of using stream sediments to estimate the chemistry of the major river sediment and to provide an indication of the anthropogenic impact related to urban and industrial development. The geochemistry of estuarine sediments from surface samples and cores was then compared with river and offshore sediment chemistry to assess the importance of riverine inputs to the Irish Sea. Studies were undertaken in the Solway, Ribble, Wyre and Mersey estuaries. The results verify that catchment averages of stream sediments and major river samples have comparable chemistry where anthropogenic influences are small. Major urban and industrial (including mining) development causes easily recognised departures from the natural multi-element geochemical signature in river sediment samples downstream of the development and enhanced metal levels are observed in sediments from estuaries with industrial catchments. Stream sediment chemistry coupled with limited river and estuarine sampling provides a cost-effective means of identifying anthropogenic metal inputs to the marine environment. Investigations of field and laboratory protocols to characterise biological impact (bioaccumulation) of metals in sediments of the Irish Sea and its estuaries show that useful assessments can be made by a combination of surveys with bioindicator species such as clams Scrobicularia plana, selective sediment measurements that mimic the ‘biologically available’ fractions, and laboratory (mesocosm) studies.  相似文献   

3.
The Houjing River flows through Kaohsiung, the most industrialized city in southern Taiwan. In this study, heavy metal concentrations in water and sediments from samples along the river were investigated to illustrate metal contamination levels and call for the awareness of industrial pollution prevention. The heavy metal concentrations in the water samples were low and appear to pose little direct risk to aquatic life and irrigation, but heavy metal concentrations in the sediments are locally very high and present an environmental risk. Cadmium, Cu, and Zn were found in higher concentrations in the river sediments than those recommended in some sediment quality guidelines and findings of river sediments in similar studies worldwide. Hence, the ecological risk of heavy metal contamination in sediments was assessed using the pollution load index (PLI) and potential ecological risk index (RI). Three of the eleven sites sampled were found to have PLI values higher than 1 and 8 of them had ‘considerable’ to ‘very high’ RI values, suggesting a considerable ecological risk. These findings provide an insight into elemental metal contamination of the Houjing River and present a baseline data set, which will be critical for future development and environmental protection plans devised for the region.  相似文献   

4.
《Applied Geochemistry》2005,20(6):1195-1208
The upper intertidal zone, and salt marshes in particular, have been shown by numerous authors to be effective medium to long-term storage areas for a range of contaminants discharged or transported into the estuarine environment. A detailed understanding of the specific controls on the trapping and storage of contaminants, however, is absent for many estuarine systems. This paper examines heavy metal distribution and accumulation in two contrasting Spartina sp.-dominated macrotidal salt marsh systems – a rapidly prograding, relatively young marsh system at the Vasiere Nord, near the mouth of the Seine estuary, France, and a more mature, less extensive marsh system in the Medway estuary, UK. The spatial distribution of the heavy metals Zn, Cu, Pb, Ni and Co is assessed and compared in both systems via detailed surface sampling and analysis, while the longer-term accumulation of these metals and its temporal variability is compared via analysis of dated sediment cores. Of the two sites studied, the more extensive marsh system at the Vasiere Nord in the Seine estuary shows a clear differentiation of heavy metals across the marsh and fronting mudflat, with highest metal concentrations found in surface sediments from the more elevated, interior marsh areas. At Horrid Hill in the Medway estuary, the spatial distribution of heavy metals in surface sediments is more irregular, and there is no clear relationship between heavy metal concentration and site elevation, with average concentrations similar in the marsh and fronting mudflats. Sediment core data indicate that the more recent near-surface sediments at Horrid Hill are clearly more contaminated than those at greater depth, with most heavy metal contamination confined to the upper 20 cm of the sediment column (with peak metal input in the late 1960s/early 1970s). In contrast, due to extremely rapid sediment accretion at the mouth of the Seine, heavy metal distribution with depth at the Vasiere Nord site is relatively erratic, with metal concentrations showing a general increase with depth. These sediments provide little information on temporal trends in heavy metal loading to the Seine estuary. Overall, heavy metal concentrations at both sites are within typical ranges reported for other industrialised estuaries in NW Europe.  相似文献   

5.
Identification of reliable background values of potentially toxic metals in sediments requires detailed integration of geochemical data with accurate sedimentological studies. Through analysis of 60 soil samples from the Pisa coastal plain, this study shows to what extent sediment provenance and facies characteristics may influence the natural distribution of potentially toxic metals (Cr, Ni, Cu, Zn, Pb) within alluvial and coastal sediments. Metals supplied to the alluvial plain are mostly concentrated within the finest sediment fraction (floodplain clays), while coarser crevasse and overbank deposits exhibit invariably lower metal contents. Beach-ridge sands display the lowest metal concentrations. Transport of ophiolitic detritus by the longshore drift may account for locally high Cr concentrations within beach deposits. Geochemical fingerprinting of individual facies associations in terms of natural metal contents results in the construction of a geologically-based geochemical map. This map offers a more reliable depiction of spatial distribution of background levels than interpolation techniques based uniquely upon statistical methods. Matching background values against metal concentrations from topsoil samples leads to the reliable assessment of the pollution status of Pisa coastal plain. Metal contents exceeding the threshold values designated for contaminated areas (Cr) simply reflect catchment geology, and are not the product of artificial contamination. On the other hand, anthropogenic disturbance may be detected even where metal contents (Pb, Cu) lie below the threshold values. The use of sedimentological criteria is presented here as a pragmatic tool to enhance predictability of natural metal contents in sediments, with obvious positive feedbacks for legislative purposes and environmental protection.  相似文献   

6.
Intertidal sediments of the inner and middle zone from the Bahía Blanca estuary were sampled for geochemical and environmental assessment of metals (Cd, Cu, Pb, Zn, Mn, Ni, Cr and Fe). Results indicate that both the organic matter content and the sediment grain size plays an important role in controlling the differential concentrations of the metals found in sediments from both zones. For most of the elements (except Mn), sediment metal concentrations were greater in the middle zone, although the concentrations did not exceed the maximums for quality of marine sediments. In this sense, anthropogenic impact (i.e., sewage drain) appears to be a key factor in the distribution of metals within the estuarine system. Comparing the levels obtained with quality levels (LEL and SEL), except Cu that showed levels slightly above the LEL, the rest of the concentrations of metals were lower to those levels. The low metal concentrations obtained within this highly impacted estuarine system suggest that the great volume of water that flooding the extensive flats in each tidal cycle has much importance. Although the potential risks of metals to the estuarine environment were low, taking into account the toxicity of some of these metals, continuity of monitoring is highly recommended.  相似文献   

7.
Metal concentrations were examined in sediments from 497 sites within the estuaries of the Gulf of Mexico by the United States Environmental Protection Agency's Environmental Monitoring and Assessment Program (EMAP). Data were normalized for extant concentrations of aluminum to isolate natural factors from anthropogenic ones. The normalization was based on the hypothesis that metal concentrations vary consistently with the concentration of aluminum, unless metals are of anthropogenic origin. Strong linear correlations (>75% variation explained) were observed between Al and Cr, Cu, Pb, Ni, and Zn. Moderate correlations (50–75% variation explained) were observed between Al and As or Ag. Weak but significant correlations (30–40% variation explained) were observed between Al and Hg or Cd. Based on these results, the spatial extent of contamination was examined. About 39% of sites with contamination by at least one metal occurred near population centers, industrial discharge sites, or military bases. The remainder of the observed contamination represented a dispersed pattern, including the lower Mississippi River (7%) and numerous agricultural watersheds (54%), suggesting that the contamination might be from nonpoint sources.  相似文献   

8.
Geochemical, mineralogical and textural analyses were carried out in core sediments off Adyar estuary, Bay of Bengal, India to record the contamination trend from urban and industrial activities during the historical past. Quartz, feldspar, kaolinite, chlorite and illite were the main lithogenic and clay minerals; carbonate was the predominant biogenic mineral. Trace metals (Fe, Al, Cu, Cr, Ni, Pb and Zn) indicate more enrichment in the surface sediment layers due to recent anthropogenic activities. The mean anthropogenic factor (AF) values for trace metals in core sediments decreased in the following order: Cr > Ni > Zn > Cu > Pb. The pollution load index (PLI) values in Adyar core sediments ranged from 1 to 1.25 with an average of 1.07. Based on AF, PLI, and sediment quality guidelines values for trace metals, significant metal enrichment and ecological risk were obtained in upper-most sediment layer. Multivariate statistical methods such as correlation matrix, principal component analysis and cluster analysis were carried out to find the relationships among the texture size, metals and minerals. The pollution of Adyar estuarine sediments was started in the 1960s, responding to the rapid economic development in Chennai coastal and Adyar estuarine region in the last five decades. Despite these high concentrations in the upper layer, development and expansion of industries are still continuing. The stricter regulations for the discharge and remediation of sediments are urgent for the conservation of environments and human health.  相似文献   

9.
《Applied Geochemistry》2003,18(2):311-325
Estuaries may be important reservoirs for contaminants as they tend to act as sinks for fine, contaminant-reactive sediments, and, historically, they have acted as centres for industrial and urban development. Analysis of dated sediment cores from these areas may allow historical trends in heavy metal input to be reconstructed, and recent and historical inputs of metal contaminants to be compared. Undisturbed saltmarsh settings have been used widely in the reconstruction of historical trends in metal input as saltmarshes provide a stable, vegetated substrate of dominantly fine sediments, and are less prone to erosion and reworking than adjacent mudflat areas. In comparison, much less research on historical pollution trends has been undertaken at estuarine sites which are prone to severe local disturbance, such as intertidal areas which are routinely dredged or where sedimentary processes have been modified by human activities such as shipping, salt working, port activities, land claim etc. This paper assesses the usefulness of 210Pb and 137Cs dating, combined with geochemical studies, in reconstructing historical trends in heavy metal input and sediment accretion in 3 heavily-modified, industrialised estuarine areas in Europe: the Bilbao estuary (Spain), Southampton Water (UK), and the Mulinello estuary (Sicily). Of these sites, only a salt marsh core from the Mulinello estuary provides a high-resolution record of recent heavy metal inputs. In Southampton Water only a partial record of changing metal inputs over time is retained due to land-claim and possible early-diagenetic remobilisation, while at Bilbao the vertical distribution of heavy metals in intertidal flats is mainly controlled by input on reworked sediment particles and variations in sediment composition. Where 137Cs and 210Pb distributions with depth allow a chronology of sediment deposition to be established, and early-diagenetic remobilisation has been minimal, mudflat and saltmarsh cores from even the most heavily-disturbed estuarine sites can provide useful information on variations in historical contaminant input. When the sediments have been vigorously mixed or reworked, large-scale compositional variations are present, or significant early-diagenetic remobilisation has occurred, however, only general information on the scale of contamination can be obtained.  相似文献   

10.
Disruption of the natural patterns of freshwater flow into estuarine ecosystems occurred in many locations around the world beginning in the twentieth century. To effectively restore these systems, establishing a pre-alteration perspective allows managers to develop science-based restoration targets for salinity and hydrology. This paper describes a process to develop targets based on natural hydrologic functions by coupling paleoecology and regression models using the subtropical Greater Everglades Ecosystem as an example. Paleoecological investigations characterize the circa 1900 CE (pre-alteration) salinity regime in Florida Bay based on molluscan remains in sediment cores. These paleosalinity estimates are converted into time series estimates of paleo-based salinity, stage, and flow using numeric and statistical models. Model outputs are weighted using the mean square error statistic and then combined. Results indicate that, in the absence of water management, salinity in Florida Bay would be about 3 to 9 salinity units lower than current conditions. To achieve this target, upstream freshwater levels must be about 0.25 m higher than indicated by recent observed data, with increased flow inputs to Florida Bay between 2.1 and 3.7 times existing flows. This flow deficit is comparable to the average volume of water currently being diverted from the Everglades ecosystem by water management. The products (paleo-based Florida Bay salinity and upstream hydrology) provide estimates of pre-alteration hydrology and salinity that represent target restoration conditions. This method can be applied to any estuarine ecosystem with available paleoecologic data and empirical and/or model-based hydrologic data.  相似文献   

11.
Historical profiles of metal accumulation have been generated for the lower St. Johns River and Hillsborough Bay, Florida, in cores representing approximately 50 yr of sediment and metal accumulation. These profiles demonstrate that Cd, Pb, and Zn are enriched in these Florida estuarine sediments. Pb enrichment has decreased since the mid 1970s because of reduced use of leaded gasoline. In the St. Johns River, most metals exhibit a trend of increasing enrichment with time. Cd enrichment significantly decreased between 1970 and 1975 as a result of reduced discharges into the river and control of aquatic vegetation. In Hillsborough Bay, enrichment factors for most metals are relatively high and show little change downcore. Cr, Cu, and Ni border on enrichment and Pb, Cd, and Zn are enriched. The results of this study are consistent with other studies of surficial-sediment metal concentration in other Florida estuaries.  相似文献   

12.
Heavy metal contamination is of great concern in rapidly urbanizing areas. A basin-basis study on the impacts of urbanization on the heavy metal contamination in surface sediments from the Qinhuai River, Eastern China, was conducted, focusing on the spatial variation and source appointments. All of the sampling sites can be divided into three groups based on the hierarchical cluster analysis (HCA) results, which correspond well to the pollution levels of the studied heavy metals in the sediments of the rural, suburban, and urban sections of the Qinhuai River. The relationship between the heavy metal and the Al/Si ratio of sediments varied distinctly with the metal species and urbanization degree of the river sections. Correlation analysis and HCA highlighted that zinc appeared to be a fairly efficient geochemical signature of urban-related heavy metal contamination. The contributions derived from urban activities ranged from 35.9% for Ni to 96.1% for Cu, as estimated by a multilinear regression of the absolute principal component score method (MLR-ACPS). Agricultural activities had a clear impact on As, Pb, and Cu contamination of the sediment. Lithologic sources contributed a significant portion of Ni, Cr, and As to the sediment.  相似文献   

13.
In sediments with oxidized surface layers, the percentage of mineralized nitrogen that is nitrified/denitrified, compared with that released directly as ammonium, appears to be affected by the presence of sea salts. In estuarine systems, a significant portion of the nitrogen is released as ammonium, whereas in freshwater systems, most of the mineralized nitrogen is often released from the sediments as nitrogen gas. We hypothesized that this discrepancy is caused by differential competition between physical diffusion and nitrification/denitrification in the two systems. The vertical migration (by Fickian diffusion) of ammonium out of the oxic layer may be hindered by cation exchange (or sorption) interactions with sediment particles to a greater extent in fresh water than in estuarine systems. The resulting relatively long residence time, and potentially high levels of particle-bound ammonium in the freshwater sediments, would favor nitrification as the major ammonium removal process. By contrast, ion pair formation of ammonium with seawater anions and blockage of sediment cation exchange sites with seawater cations may allow a sizable fraction of the ammonium to diffuse out of estuarine sediments before it is nitrified. A salt effect, consistent with this hypothesis, has been demonstrated in experimental systems by changing the ionic composition of water flowing above intact cores of freshwater and estuarine sediments. Steady-state ammonium release from Lake Michigan sediments was substantially enhanced in the presence of 30% seawater over that in the presence of lake water alone. Likewise, steady-state ammonium release, from Ochlockonee River and Bay sediments (Florida) and from Toms River and Barnegat Bay sediments (New Jersey), was usually higher in the presence of diluted synthetic seawater than it was in the presence of fresh water.  相似文献   

14.
Macquarie Harbour in southwest Tasmania, Australia, has been affected severely by the establishment of mines in nearby Queenstown in the 1890s. As well as heavy metal-laden acid rock drainage from the Mount Lyell mine area, over 100 Mt of mine tailings and slag were discharged into the Queen and Ring Rivers, with an estimated 10 Mt of mine tailings building a delta of ca. 2.5 km2 and ca. 10 Mt of fine tailings in the harbour beyond the delta. Coring of sediments throughout Macquarie Harbour indicated that mine tailings accreted most rapidly close to the King River delta source with a significant reduction in thickness of tailings and heavy metal contamination with increasing distance from the King River source. Close to the King River delta the mine tailings are readily discriminated from the background estuarine sediments on the basis of visual logging of the core (laminations, colour), sediment grain size, sediment magnetic susceptibility and elemental geochemistry, especially concentrations of the heavy metals Cu, Zn and Pb. The high heavy metal concentrations are demonstrated by the very high contamination factors (CF > 6) for Cu and Zn, with CF values mostly >50 for Cu for the mine-impacted sediments. Although the addition of mine waste into the King River catchment has ceased, the catchment continues to be a source of these heavy metals due to acid rock drainage and remobilisation of mine waste in storage in the river banks, river bed and delta. The addition of heavy metals to the harbour sourced from the Mount Lyell mines preceded the advent of direct tailings disposal into the Queen River in 1915 with the metals probably provided by acid rock drainage from the Mount Lyell mining area.  相似文献   

15.
Four sediment cores and one hundred surface sediments were collected from the intertidal zone of the northern Beibu Gulf (SW China). In order to detect the intensity of metal contamination recently, the background levels were successfully established for Pb, Zn, Cd and Cr, based on the linear regression of deeper sediments (pre-industrial). Aluminum is a better geochemical normalizer than Fe and it is commonly used to describe the natural metal variability of the coastal sediments. The evident enrichment of Zn and Cd is recorded in the surface sediments of the eastern side of the Guangxi coast and the central part of the Qinzhou Bay, but it does not exceed the effects range-low values, due to a low percentage of fine-grained sediments in the region. Although the Pb and Cr concentrations are mainly of natural origin, 3 and 6% sites exceed the effects range-low values, respectively; indicating the potential for adverse ecological effects of metals on the benthic communities.  相似文献   

16.
This article evaluates whether a sediment budget for the South River, Maryland, can be coupled with metals data from sediment cores to identify and quantify sources of historic metal inputs to marsh and subtidal sediments along the estuary. Metal inputs to estuarine marsh sediments come from fluvial runoff and atmospheric deposition. Metal inputs to subtidal sediments come from atmospheric deposition, fluvial runoff, coastal erosion, and estuarine waters. The metals budget for the estuary indicates that metal inputs from coastal erosion have remained relatively constant since 1840. Historical variations in metal contents of marsh sediments have probably resulted primarily from increasing atmospheric deposition in this century, but prior to 1900 may reflect changing fluvial sources, atmospheric inputs, or factors not quantified by the budget. Residual Pb, Cu, and Zn in the marsh sediments not accounted for by fluvial inputs was low to moderate in 1840, decreased to near zero circa 1910, and by 1987 had increased to levels that were one to ten times greater than those of 1840. Sources of variability in subtidal cores could not be clearly discerned because of geochemical fluxes, turbulent mixing, and bioturbation within the cores. The sediment-metal budgeting approach appears to be a viable method for delineating metal sources in small, relatively simple estuarine systems like the South River and in systems where recent deposition (for example, prograding marshes) prevents use of deep core analysis to identify background levels of metal. In larger systems or systems with more variable sources of sediment and metal input, however, assumptions and measurement errors in the metal budgeting approach suggest that deep core analysis and normalization techniques are probably preferable for identifying anthropogenic impacts.Field and laboratory research conducted at the Department of Geography, University of Maryland, College Park, Maryland, 20742, USAField and laboratory research conducted at the Marine and Estuarine Environmental Science Program, University of Maryland, College Park, Maryland, 20742, USA  相似文献   

17.
《Applied Geochemistry》2002,17(4):475-492
Trace metal concentrations in soils and in stream and estuarine sediments from a subtropical urban watershed in Hawaii are presented. The results are placed in the context of historical studies of environmental quality (water, soils, and sediment) in Hawaii to elucidate sources of trace elements and the processes responsible for their distribution. This work builds on earlier studies on sediments of Ala Wai Canal of urban Honolulu by examining spatial and temporal variations in the trace elements throughout the watershed. Natural processes and anthropogenic activity in urban Honolulu contribute to spatial and temporal variations of trace element concentrations throughout the watershed. Enrichment of trace elements in watershed soils result, in some cases, from contributions attributed to the weathering of volcanic rocks, as well as to a more variable anthropogenic input that reflects changes in land use in Honolulu. Varying concentrations of As, Cd, Cu, Pb and Zn in sediments reflect about 60 a of anthropogenic activity in Honolulu. Land use has a strong impact on the spatial distribution and abundance of selected trace elements in soils and stream sediments. As noted in continental US settings, the phasing out of Pb-alkyl fuel additives has decreased Pb inputs to recently deposited estuarine sediments. Yet, a substantial historical anthropogenic Pb inventory remains in soils of the watershed and erosion of surface soils continues to contribute to its enrichment in estuarine sediments. Concentrations of other elements (e.g., Cu, Zn, Cd), however, have not decreased with time, suggesting continued active inputs. Concentrations of Ba, Co, Cr, Ni, V and U, although elevated in some cases, typically reflect greater proportions attributed to natural sources rather than anthropogenic input.  相似文献   

18.
Urbanisation and industrial development lead to contamination of estuaries and streams with dispersed loadings of heavy metals and metalloids. Contributions of these elements also occur from natural sources. This study provides baseline geochemical data on the respective natural and anthropogenic inputs of Cu, Pb, Zn, Cd, As, Sb, Cr, Ni, Mn and S to estuarine, fluvial and wetland sediments, and adjacent soils, in the Kooloonbung Creek catchment that drains the Port Macquarie urban area in north coastal New South Wales. There have been anthropogenic additions of Cu, Pb, Zn and As from dispersed urban sources at Port Macquarie, but they are restricted to the local catchment and do not impact on the adjacent Hastings River estuary. The most contaminated sediments display enrichment factors up to 20 × for Cu and Pb, 9 × for Zn and 5 × for As relative to local background values. However, only one value (for Pb) exceeds National Water Quality Management Strategy interim sediment quality guideline (high) values. On the other hand, sediments and local soils are commonly strongly enriched in Cr, Ni and Mn, reflecting adjacent ultramafic and mafic rock substrate and lateritic regolith. Concentrations of Cr and Ni are commonly well above interim sediment quality guideline (high) values for sediments, but are in mineralogical forms that are not readily bioavailable. Sediment and soil quality guideline values consequently need to recognise natural enrichments and the mineralogical siting of heavy metals. Although dissolved concentrations of heavy metals in stream waters are commonly low, there is evidence for mobility of Cu, Zn, Fe and Al. Parts of the Kooloonbung Creek wetland area lie on sulfidic estuarine sediments (potential acid sulfate soils). Experimental oxidation of uncontaminated and contaminated sulfidic sediments leads to substantial dissolution of heavy metals under acid conditions, with subsequent aquatic mobility. The results warn about disturbance and oxidation of potential acid sulfate soils that have been contaminated by urban and natural heavy-metal sources.  相似文献   

19.
《Applied Geochemistry》2000,15(5):567-581
The Pearl River estuary is created by the inflow of freshwater from the largest river system that drains into the South China Sea. In recent years, massive economic growth and development in the region has led to excessive release of waste into the environment. The accumulation of contaminants in sediments is likely to pose serious environmental problems in surrounding areas. The study of sediment profiles can provide much information on the metal contamination history and long term potential environmental impacts. In this project, 21 core samples (up to 3.65 m deep) were collected in the Pearl River estuary. About 15 subsamples from each core were analysed for moisture content, total organic matter (L.O.I.), particle size and heavy metal and major element concentrations. The results show that Pb and Zn contents are elevated in the sediments at most of the sampling sites. Compared with historical monitoring results, the sediment metal contents have increased over the last 20 a, particularly for Pb. The west side of the Pearl River estuary tends to be more contaminated than the east side due to the contaminants inputs from the major tributaries and different sedimentation conditions. There are close associations between Fe, Co, Ni and Cu concentrations in the sediments. Zinc and Pb contents in the sediment profiles reflect a combination of the natural geochemical background, anthropogenic influences and the mixing effects within the estuary. The distribution of Pb in the sediments shows strong influences of atmospheric inputs, probably from the coal burning activities in the region.  相似文献   

20.
湘江入湖河段沉积物重金属污染及其Pb同位素地球化学示踪   总被引:12,自引:0,他引:12  
湘江是我国重金属污染最严重的河流之一.本次工作利用等离子质谱(ICP-MS)和多接收同位素质谱(MC-ICP-MS)等技术,对湘江入湖河段沉积物进行了系统的重金属微量元素和Pb同位素分析.结果表明,湘江河床沉积物明显富集Bi、Sc、V、Mn、Ni、Cu、Zn、Pb、Cd、Sn、Sb等多种重金属微量元素,而湖盆沉积物重金...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号