首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
http://www.sciencedirect.com/science/article/pii/S1674987113000030   总被引:1,自引:0,他引:1  
The Dabashan orocline is situated in the northwestern margin of the central Yangtze block,central China.Previous studies have defined the orthogonal superposed folds growing in its central-western segment thereby confirming its two-stage tectonic evolution history.Geological mapping has revealed that more types of superposed folds have developed in the eastern segment of the orocline,which probably provides more clues for probing the structure and tectonic history of the Dabashan orocline.In this paper,based on geological mapping,structural measurements and analyses of deformation,we have identified three groups of folds with different trends (e.g.NW-,NE-and nearly E-trending folds) and three types of structural patterns of superposed folds in the eastern Dabashan foreland (e.g.syn-axial,oblique,and conjunctional superposed folds).In combination with geochronological data,we propose that the synaxial superposed folds are due to two stages of ~N-S shortening in the west and north of the Shennongjia massif,and that oblique superposed folds have been resulted from the superposition of the NW-and NE-trending folds onto the early ~ E-W folds in the east of the Shennongjia massif in the late Jurassic to early Cretaceous.The conjunctional folds are composed of the NW-and NE-trending folds,corresponding to the regional-scale dual-orocline in the eastern Sichuan as a result of the southwestward expansion of the Dabashan foreland during late Jurassic to early Cretaceous,coeval with the northwestward propagation of the Xuefengshan foreland.Integration of the structure and geochronology of the belt shows that the Dabashan orocline is a combined deformation belt primarily experiencing a twostage tectonic evolution history in Mesozoic,initiation of the Dabashan orocline as a foreland basin along the front of the Qinling orogen in late Triassic to early Jurassic due to collisional orogeny,and the final formation of the Dabashan orocline owing to the southwestward propagation of the Qinling orogen during late Jurassic to early Cretaceous intra-continental orogeny.Our studies provide some evidences for understanding the structure and deformation of the Dabashan orocline.  相似文献   

2.
《International Geology Review》2012,54(10):1276-1294
The North Dabashan thrust belt, which is located in South Qinling, is bounded by the Ankang fault on the north and the Chengkou–Fangxian fault on the south. The North Dabashan thrust belt experienced multiple stages of structural deformation that were controlled by three palaeostress fields. The first structural event (Middle Triassic) involved NNW–SSE shortening and resulted in the formation of numerous dextral strike-slip structures along the entire Chengkou–Fangxian fault zone and within the North Dabashan thrust belt, which suggests that the South China Block moved to the NW and was obliquely subducted under the North China Block. The second structural event (Late Triassic–Early Jurassic) involved NE–SW shortening that formed NW–SE-trending structures in the North Dabashan thrust belt. The third structural event (Late Jurassic–Early Cretaceous) involved ENE–WSW or nearly E–W shortening and resulted in additional thrusting of the North Dabashan thrust belt to the WSW and formation of the WSW-convex Chengkou–Fangxian fault zone, which has an oroclinal shape. Owing to the pinning of the Hannan massif and Shennongjia massif culminations, numerous sinistral strike-slip structures developed along the eastern Chengkou–Fangxian fault zone and were superimposed over the early dextral strike-slip structures.  相似文献   

3.
The Blue Nile Basin, situated in the Northwestern Ethiopian Plateau, contains ∼1400 m thick Mesozoic sedimentary section underlain by Neoproterozoic basement rocks and overlain by Early–Late Oligocene and Quaternary volcanic rocks. This study outlines the stratigraphic and structural evolution of the Blue Nile Basin based on field and remote sensing studies along the Gorge of the Nile. The Blue Nile Basin has evolved in three main phases: (1) pre‐sedimentation phase, include pre‐rift peneplanation of the Neoproterozoic basement rocks, possibly during Palaeozoic time; (2) sedimentation phase from Triassic to Early Cretaceous, including: (a) Triassic–Early Jurassic fluvial sedimentation (Lower Sandstone, ∼300 m thick); (b) Early Jurassic marine transgression (glauconitic sandy mudstone, ∼30 m thick); (c) Early–Middle Jurassic deepening of the basin (Lower Limestone, ∼450 m thick); (d) desiccation of the basin and deposition of Early–Middle Jurassic gypsum; (e) Middle–Late Jurassic marine transgression (Upper Limestone, ∼400 m thick); (f) Late Jurassic–Early Cretaceous basin‐uplift and marine regression (alluvial/fluvial Upper Sandstone, ∼280 m thick); (3) the post‐sedimentation phase, including Early–Late Oligocene eruption of 500–2000 m thick Lower volcanic rocks, related to the Afar Mantle Plume and emplacement of ∼300 m thick Quaternary Upper volcanic rocks. The Mesozoic to Cenozoic units were deposited during extension attributed to Triassic–Cretaceous NE–SW‐directed extension related to the Mesozoic rifting of Gondwana. The Blue Nile Basin was formed as a NW‐trending rift, within which much of the Mesozoic clastic and marine sediments were deposited. This was followed by Late Miocene NW–SE‐directed extension related to the Main Ethiopian Rift that formed NE‐trending faults, affecting Lower volcanic rocks and the upper part of the Mesozoic section. The region was subsequently affected by Quaternary E–W and NNE–SSW‐directed extensions related to oblique opening of the Main Ethiopian Rift and development of E‐trending transverse faults, as well as NE–SW‐directed extension in southern Afar (related to northeastward separation of the Arabian Plate from the African Plate) and E–W‐directed extensions in western Afar (related to the stepping of the Red Sea axis into Afar). These Quaternary stress regimes resulted in the development of N‐, ESE‐ and NW‐trending extensional structures within the Blue Nile Basin. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

4.
《International Geology Review》2012,54(15):1842-1863
ABSTRACT

The late Mesozoic magmatic record within the Erguna Block is critical to evaluate the tectonic history and geodynamic evolution of the Great Xing’an Range, NE China. Here, we provide geochronological and geochemical data on Late Jurassic–Early Cretaceous plutonic-volcanic rocks in the northern Erguna Block and discuss their origin within a regional tectonic framework. Late Mesozoic magmatism in the Erguna Block can be divided into two major periods: Late Jurassic (162–150 Ma) and Early Cretaceous (140–125 Ma). Late Jurassic quartz monzonite and dacite show adakite characteristics such as high Al2O3, high Sr, and steeply fractionated REE patterns. Contemporary granitoids and rhyolites are also characterized by strong enrichment of light rare earth elements (LREE) and significant depletion in heavy rare earth elements (HREE), but with more pronounced negative Eu anomalies. Early Cretaceous trachytes and monzoporphyries exhibit moderate LREE enrichment and relatively flat HREE distributions. Coeval granites and rhyolites have transitional signatures between A-type and fractionated I-type felsic rocks. Both Late Jurassic and Early Cretaceous rocks have distinctive negative Nb, Ta, and Ti anomalies, and positive zircon εHf(t) values, suggesting that these magmas were derived from partial melting of Meso-Neoproterozoic accreted lower crust, although melting occurred at a variety of crustal levels. The transition from adakite to non-adakite magmatism reflects continued crustal thinning from Late Jurassic to Early Cretaceous. Our data, together with recently reported isotopic data for plutonic and volcanic rocks, as well as geochemical data, in NE China, suggest that Late Jurassic–Early Cretaceous magmatism in the Erguna Block was possibly induced by post-collisional extension after closure of the Mongol-Okhotsk Ocean.  相似文献   

5.
鄂西利川地区位于湘鄂西构造带与川东构造带的过渡部位,叠加褶皱发育,地处两大构造带分界处的齐岳山高陡背斜带断裂发育。本文以利川地区褶皱和断裂为研究对象,在野外观测和分析的基础上,采用断层滑动数据反演方法,对构造应力场进行了恢复;结合区域构造演化历史,提出该区侏罗纪以来经历了五期构造应力作用,从早到晚分别为:北西-南东向挤压(J3-K1)、近东西向挤压(K1)、近南北向挤压(K1-K2)、北西-南东向引张(K2)和北东-南西向挤压(E3)。该区侏罗纪以来构造变形序列的建立,为深入认识齐岳山高陡背斜带地质灾害形成的地质背景提供了构造地质学证据。  相似文献   

6.
皖浙赣相邻区晚中生代多期构造变形特征及其动力学背景   总被引:6,自引:0,他引:6  
通过详细系统的野外地质调查和构造解析,文中在皖浙赣相邻区识别出晚中生代的五期构造变形。第一期为中侏罗世末到早白垩世初的北东东向逆冲推覆构造,形成时间大约为160~150 Ma;第二期为早白垩世初的高角度正断层和北东东向左行平移断层,形成于150~135 Ma;第三期为早白垩世晚期的北北东向左行平移断层,形成于125~120 Ma;第四期为北东-北东东向右行平移断层,形成于早白垩世末期的100 Ma左右;最后一期为形成于晚白垩世早期(约75 Ma)的北北东向逆冲断层构造。区内晚中生代的多期构造变形与华南和华北板块的最后阶段的碰撞,晚中生代以来太平洋板块在不同阶段向欧亚大陆不同方向的俯冲,甚至与印度板块向北碰撞产生的向东远程挤压效应等诸多作用有关。  相似文献   

7.
The contractional structures in the southern Ordos Basin recorded critical evidence for the interaction between Ordos Basin and Qinling Orogenic Collage. In this study, we performed apatite fission track(AFT) thermochronology to unravel the timing of thrusting and exhumation for the Laolongshan-Shengrenqiao Fault(LSF) in the southern Ordos Basin. The AFT ages from opposite sides of the LSF reveal a significant latest Triassic to Early Jurassic time-temperature discontinuity across this structure. Thermal modeling reveals at the latest Triassic to Early Jurassic, a ~50°C difference in temperature between opposite sides of the LSF currently exposed at the surface. This discontinuity is best interpreted by an episode of thrusting and exhumation of the LSF with ~1.7 km of net vertical displacement during the latest Triassic to Early Jurassic. These results, when combined with earlier thermochronological studies, stratigraphic contact relationship and tectono-sedimentary evolution, suggest that the southern Ordos Basin experienced coeval intense tectonic contraction and developed a north-vergent fold-and-thrust belt. Moreover, the southern Ordos Basin experienced a multi-stage differential exhumation during Mesozoic, including the latest Triassic to Early Jurassic and Late Jurassic to earliest Cretaceous thrust-driven exhumation as well as the Late Cretaceous overall exhumation. Specifically, the two thrust-driven exhumation events were related to tectonic stress propagation derived from the latest Triassic to Early Jurassic continued compression from Qinling Orogenic Collage and the Late Jurassic to earliest Cretaceous intracontinental orogeny of Qinling Orogenic Collage, respectively. By contrast, the Late Cretaceous overall exhumation event was related to the collision of an exotic terrain with the eastern margin of continental China at ~100 Ma.  相似文献   

8.
A synthesis is given in this paper on late Mesozoic deformation pattern in the zones around the Ordos Basin based on lithostratigraphic and structural analyses. A relative chronology of the late Mesozoic tectonic stress evolution was established from the field analyses of fault kinematics and constrained by stratigraphic contact relationships. The results show alternation of tectonic compressional and extensional regimes. The Ordos Basin and its surroundings were in weak N-S to NNE-SSW extension during the Early to Middle Jurassic, which reactivated E-W-trending basement fractures. The tectonic regime changed to a multi-directional compressional one during the Late Jurassic, which resulted in crustal shortening deformation along the marginal zones of the Ordos Basin. Then it changed to an extensional one during the Early Cretaceous, which rifted the western, northwestern and southeastern margins of the Ordos Basin. A NW-SE compression occurred during the Late Cretaceous and caused the termination of sedimentation and uplift of the Ordos Basin. This phased evolution of the late Mesozoic tectonic stress regimes and associated deformation pattern around the Ordos Basin best records the changes in regional geodynamic settings in East Asia, from the Early to Middle Jurassic post-orogenic extension following the Triassic collision between the North and South China Blocks, to the Late Jurassic multi-directional compressions produced by synchronous convergence of the three plates (the Siberian Plate to the north, Paleo-Pacific Plate to the east and Lhasa Block to the west) towards the East Asian continent. Early Cretaceous extension might be the response to collapse and lithospheric thinning of the North China Craton.  相似文献   

9.
Based on detailed structural data and available tectonic chronological data from the Dangyang Basin, the authors propose that the north-central Yangtze craton experienced three stages of tectonic evolution since Late Triassic time. In the Late Triassic to Early Jurassic (T3–J1), due to the Indosinian orogeny, nearly N–S compression and shortening occurred, which initiated the Dangyang Basin as a foreland basin of the Qinling–Dabie orogen. During the Late Jurassic–Early Cretaceous (J3–K1) period, the Yanshanian intracontinental orogeny caused contemporaneous NE–SW and NW–SE shortening, which resulted in intense folding of the foreland basin; contraction formed a brush structure diverging in a SE direction and strongly converging in a NW direction around the Huangling anticline. In the Late Cretaceous to Palaeogene, the Yuan'an and Hanshui grabens were separated from other parts of the Dangyang Basin due to post-orogenic ENE–WSW extension. Finally, at the end of the Palaeogene, ENE–WSW shortening led to inversion and deformation of the grabens.  相似文献   

10.
本文论述了江汉平原地区东部区域构造格架与局部构造样式及其构造演化,指出该地区中古生界以发育挤压性构造为主,具有对冲干涉、南北分带、纵向叠置的结构特征。全区分为南部江南-雪峰滑脱推覆构造带、中部对冲(背冲)构造带、北部秦岭大别推覆构造带三个主体构造带。多期次构造变形变位及岩浆活动作用,发育了挤压构造、压扭走滑构造、刺穿和隐刺穿构造、张性构造四类基本构造样式。一般认为震旦纪至早、中三叠世本区及中扬子区经历了两期板块汇聚、增生、裂解、俯冲、陆内碰撞造山的构造旋回;之后经历了晚三叠世前陆斜坡演化阶段;侏罗纪末期陆内造山、挤压褶皱演化阶段;侏罗纪后-早白垩世剥蚀夷平、岩浆岩活动改造演化阶段;中晚白垩世-古近纪构造负反转、断陷演化阶段;新近纪构造体制再次正反转、区域挤压抬升演化阶段。多期构造运动导致多种原型盆地改造叠加使江汉平原东部地区的构造格局复杂多变。  相似文献   

11.
The hydrocarbon potential of the Hangjinqi area in the northern Ordos Basin is not well known, compared to the other areas of the basin, despite its substantial petroleum system.Restoration of a depth-converted seismic profile across the Hangjinqi Fault Zone(HFZ) in the eastern Hangjinqi area shows one compression that created anticlinal structures in the Late Triassic, and two extensions in ~Middle Jurassic and Late Early Cretaceous, which were interrupted by inversions in the Late Jurassic–Early Early Cretaceous and Late Cretaceous, respectively.Hydrocarbon generation at the well locations in the Central Ordos Basin(COB) began in the Late Triassic.Basin modeling of Well Zhao-4 suggests that hydrocarbon generation from the Late Carboniferous–Early Permian coal measures of the northern Shanbei Slope peaked in the Early Cretaceous, predating the inversion in the Late Cretaceous.Most source rocks in the Shanbei Slope passed the main gas-migration phase except for the Hangjinqi area source rocks(Well Jin-48).Hydrocarbons generated from the COB are likely to have migrated northward toward the anticlinal structures and traps along the HFZ because the basin-fill strata are dipping south.Faulting that continued during the extensional phase(Late Early Cretaceous) of the Hangjinqi area probably acted as conduits for the migration of hydrocarbons.Thus, the anticlinal structures and associated traps to the north of the HFZ might have trapped hydrocarbons that were charged from the Late Carboniferous–Early Permian coal measures in the COB since the Middle Jurassic.  相似文献   

12.
华南中生代大地构造研究新进展   总被引:33,自引:0,他引:33  
华南地区中生代构造动力体制经历了从特提斯构造域向滨太平洋构造域的转换,由此产生了强烈的陆内造山作用和岩浆活动,形成了复杂构造组合的晚中生代陆内造山带和火成岩省。本项研究在下列几个方面取得了新的进展:(1)通过对雪峰山地区沅麻盆地的野外调查和构造测量,确定了该盆地晚中生代-早新生代5期构造应力场及其演替序列:中晚侏罗世近W—E向挤压、早白垩世NW—SE向伸展、早白垩世中晚期NW—SE向挤压、晚白垩世近N—S向伸展、古近纪晚期NE—SW向挤压。构造应力场方向的变化记录了不同板缘的动力作用对该区的影响。(2)识别了湖南地区晚古生代-早中生代海相地层中发育的横跨叠加褶皱构造,并基于地层接触关系和已有火成岩同位素年代学数据分析,认为该地区横跨叠加褶皱构造记录了中生代两期构造挤压和地壳增厚事件:早期近东西向褶皱构造是对三叠纪华南地块南北边缘大陆碰撞和增生作用的远程响应,晚期NE—NNE向褶皱构造则是对中晚侏罗世古太平洋板块向华南大陆之下低角度俯冲作用的变形响应。(3)对湖南衡山西缘拆离断裂带的变形结构和运动学特征进行了详细的调查和构造测量,确定了衡山变质核杂岩构造,并对拆离带中韧性剪切变形的钠长岩脉的锆石进行了SHRIMP U-Pb测年,从而确定了华南地区伸展构造的起始时代约137 Ma,即早白垩世早中期。(4)通过锆石U-Pb年代学测试分析,揭示了东南沿海长乐—南澳构造带早白垩世2期构造-岩浆事件:早期(147~135 Ma)表现为强烈的混合岩化作用和深熔作用形成的片麻状花岗岩、花岗片麻岩等;晚期(135~117 Ma)岩浆岩以含石榴子石花岗岩为主。这个结果表明东南沿海构造带是晚中生代陆缘造山带,造山作用可能起始于晚侏罗世,于早白垩世早中期(135 Ma)以来发生伸展垮塌。在上述研究结果的基础上,探讨了华南地区三叠纪"印支运动"和中、晚侏罗世"燕山运动"的表现及其产生的板块构造动力体制及其转换时代、早白垩世从挤压构造应力体制向伸展构造应力体制转变的时间节点。  相似文献   

13.
《International Geology Review》2012,54(11):1417-1442
ABSTRACT

The Ordos Basin, situated in the western part of the North China Craton, preserves the 150-million-year history of North China Craton disruption. Those sedimentary sources from Late Triassic to early Middle Jurassic are controlled by the southern Qinling orogenic belt and northern Yinshan orogenic belt. The Middle and Late Jurassic deposits are received from south, north, east, and west of the Ordos Basin. The Cretaceous deposits are composed of aeolian deposits, probably derived from the plateau to the east. The Ordos Basin records four stages of volcanism in the Mesozoic–Late Triassic (230–220 Ma), Early Jurassic (176 Ma), Middle Jurassic (161 Ma), and Early Cretaceous (132 Ma). Late Triassic and Early Jurassic tuff develop in the southern part of the Ordos Basin, Middle Jurassic in the northeastern part, while Early Cretaceous volcanic rocks have a banding distribution along the eastern part. Mesozoic tectonic evolution can be divided into five stages according to sedimentary and volcanic records: Late Triassic extension in a N–S direction (230–220 Ma), Late Triassic compression in a N–S direction (220–210 Ma), Late Triassic–Early Jurassic–Middle Jurassic extension in a N–S direction (210–168 Ma), Late Jurassic–Early Cretaceous compression in both N–S and E–W directions (168–136 Ma), and Early Cretaceous extension in a NE–SW direction (136–132 Ma).  相似文献   

14.
New and published paleomagnetic measurements from Trans Altai and South Gobi zones in south Mongolia document large tectonic motions in between Late Carboniferous and Triassic. Magnetic inclinations confirm equatorial position of south Mongolian terranes in Late Carboniferous–Permian times. The evolution of magnetic declinations indicates 90° anticlockwise rotation in between latest Carboniferous and Early Triassic of all studied tectonic units around the Eulerian pole located close to axis of Mongolian orocline. The anticlockwise rotation continues in Triassic being accompanied by a major drift to the north. The structural and published geochronological data suggest Carboniferous E–W shortening of the whole region resulting in N–S trend of all continental and oceanic geological units followed by orthogonal N–S shortening during Late Permian to Early Jurassic. Both paleomagnetic and geological data converge in a tectonic model of oroclinal bending of Mongolian ribbon continent, westerly back arc oceanic domain and Mongol–Okhotsk subduction zone to the east. The oroclinal bending model is consistent with the coincidence of the Eulerian pole of rotation with the structural axis of Mongolian orocline. In addition, the Mesozoic collisional tectonics is reflected by late remagnetizations due to formation of wide deformation fronts and hydrothermal activity.  相似文献   

15.
中生代发生在东北亚地区的蒙古-鄂霍次克造山作用一直是国内外地学界十分关注的大地构造事件.综合利用油气勘探新获取的地震反射、钻井、测井等资料,在海拉尔盆地贝尔凹陷早白垩世断陷层序之下识别出一套卷入强烈挤压变形的构造层.构造解析表明它主要由一条北东东向的逆掩断层及其相关的冲断-褶皱变形系统构成.地层岩性特征和碎屑锆石U-Pb测年结果显示,这是一套沉积于晚侏罗世末期的陆相湖盆碎屑岩建造,区域上应归属上侏罗统塔木兰沟组;结合上覆早白垩世断陷盆地的发育和邻区同期变质核杂岩体隆升剥露时代,提出海拉尔盆地这期冲断-褶皱变形事件发生在早白垩世早期(ca. 145~133 Ma),是晚中生代蒙古-鄂霍次克洋闭合后进入强烈陆内造山作用的构造变形记录.   相似文献   

16.
湘桂地区中新生代走滑断裂系统对铀成矿的控制作用   总被引:1,自引:0,他引:1  
湘桂地区是我国的重要铀成矿区之一。该区自中生代末期以来进入了全新的陆内走滑作用阶段,并经历了两次重大的构造转换,即晚三叠纪末至侏罗纪末的会聚走滑和白垩纪至第三纪早期的离散走滑。三条NNE向的主走滑断裂(PDZ)和一系列NE向的同向右侧列走滑断层(P)以及NW向的反向走滑断层(R')组成了复杂的走滑断裂网络系统,并直接控制了湘桂地区铀矿床(田)在时间和空间上的分布。  相似文献   

17.
The Qinling Orogenic belt has been well documented that it was formed by multiple steps of convergence and subsequent collision between the North China and South China Blocks during Paleozoic and Late Triassic times. Following the collision in Late Triassic times, the whole range evolved into an intracontinental tectonic process. The geological, geophysical and geochronological data suggest that the intracontinental tectonic evolutionary history of the Qinling Orogenic Belt allow deduce three stages including strike-slip faulting during Early Jurrassic, N-S compressional deformation during Late Jurassic to Early Cretaceous and orogenic collapse during Late Cretaceous to Paleogene. The strike-slip faulting and the infills in Early Jurassic along some major boundary faults show flower structures and pull-apart basins, related to the continued compression after Late Triassic collision between the South Qinling Belt and the South China Block along the Mianlue suture. Late Jurassic to Early Cretaceous large scale of N-S compression and overthrusting progressed outwards from inner of Qinling Orogen to the North China Block and South China Block, due to the renewed southward intracontinental subduction of the North China Block beneath the Qinling Orogenic Belt and continuously northward subduction of the South China Block, respectively. After the Late Jurassic-Early Cretaceous compression and denudation, the Qinling Orogenic Belt evolved into Late Cretaceous to Paleogene orogen collapse and depression, and formed many large fault basins along the major faults.  相似文献   

18.
北山—阿拉善地区白垩纪、侏罗纪盆地叠合特征   总被引:3,自引:0,他引:3  
研究区发育侏罗纪盆地和白垩纪盆地,侏罗纪盆地受近东西向断裂的控制,为东西向展布的断陷湖盆。白垩纪盆地受北东向断裂的控制,为北东向展布的断陷湖盆,经历早白垩世的伸展断陷及其以后的后期改造阶段。两大世代的盆地在空间上存在翘倾叠合、叠合保存、部分叠合改造等三种方式。盆地的叠合保存对侏罗系烃源岩的油气形成最为有利。  相似文献   

19.
越南东北部早中生代构造事件的年代学约束   总被引:6,自引:3,他引:3  
越南东北部-海南岛-粤西南构造带整体上呈NW-SE走向展布于华南板块的南缘,是理解华南构造演化的关键地区.作为印支运动代表性地区的越南东北部地区Song Chay构造带上,下古生界浅变质沉积岩、上古生界至早-中三叠世未变质的沉积盖层中都发育向北东逆冲推覆,韧性变形域表现为NE-SW向的矿物拉伸线理和上部指NE的剪切变形,而脆性变形域则记录了大量NE极性的褶皱和冲断构造.两广交界的云开地体和海南岛地区存在着相同样式的构造变形.关于这期变形的时间,本文通过对野外地层以及所出露不同时期岩体变形特征的综合研究,并结合高质量的锆石U-Pb年代学数据,在越南的东北部厘定为237 ~ 228Ma.这期广泛分布于华南板块南缘构造事件的动力学机制同Day Nui Con Voi(大象山)微陆块与华南板块在早中生代的构造拼合事件相关.本文认为华南板块在早三叠世开始沿着越南东北部的Song Chay缝合带俯冲拼合于Day Nui Con Voi微陆块之下,因此在早-中三叠世时期,在作为俯冲盘的华南板块南缘发育一系列的褶皱和逆冲推覆构造,晚三叠世印支造山作用结束.因此,华南板块南缘的越南东北部-海南岛-粤西南构造带被一同卷入早-中三叠世同印支板块的碰撞造山体系之中.  相似文献   

20.
A mosaic of terranes or blocks and associated Late Paleozoic to Mesozoic sutures are characteristics of the north Sanjiang orogenic belt (NSOB). A detailed field study and sampling across the three magmatic belts in north Sanjiang orogenic belt, which are the Jomda–Weixi magmatic belt, the Yidun magmatic belt and the Northeast Lhasa magmatic belt, yield abundant data that demonstrate multiphase magmatism took place during the late Paleozoic to early Mesozoic. 9 new zircon LA–ICP–MS U–Pb ages and 160 published geochronological data have identified five continuous episodes of magma activities in the NSOB from the Late Paleozoic to Mesozoic: the Late Permian to Early Triassic (c. 261–230 Ma); the Middle to Late Triassic (c. 229–210 Ma); the Early to Middle Jurassic (c. 206–165 Ma); the Early Cretaceous (c. 138–110 Ma) and the Late Cretaceous (c. 103–75 Ma). 105 new and 830 published geochemical data reveal that the intrusive rocks in different episodes have distinct geochemical compositions. The Late Permian to Early Triassic intrusive rocks are all distributed in the Jomda–Weixi magmatic belt, showing arc–like characteristics; the Middle to Late Triassic intrusive rocks widely distributed in both Jomda–Weixi and Yidun magmatic belts, also demonstrating volcanic–arc granite features; the Early to Middle Jurassic intrusive rocks are mostly exposed in the easternmost Yidun magmatic belt and scattered in the westernmost Yangtza Block along the Garzê–Litang suture, showing the properties of syn–collisional granite; nearly all the Early Cretaceous intrusive rocks distributed in the NE Lhasa magmatic belt along Bangong suture, exhibiting both arc–like and syn–collision–like characteristics; and the Late Cretaceous intrusive rocks mainly exposed in the westernmost Yidun magmatic belt, with A–type granite features. These suggest that the co–collision related magmatism in Indosinian period developed in the central and eastern parts of NSOB while the Yanshan period co–collision related magmatism mainly occurred in the west area. In detail, the earliest magmatism developed in late Permian to Triassic and formed the Jomda–Wei magmatic belt, then magmatic activity migrated eastwards and westwards, forming the Yidun magmatic bellt, the magmatism weakend at the end of late Triassic, until the explosure of the magmatic activity occurred in early Cretaceous in the west NSOB, forming the NE Lhasa magmatic belt. Then the magmatism migrated eastwards and made an impact on the within–plate magmatism in Yidun magmatic belt in late Cretaceous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号