首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 389 毫秒
1.
The status of Reservoir Induced Seismicity (RIS) has been reviewed periodically (Rothé, 1968, 1973; Gupta and Rastogi, 1976; Simpson, 1976; Packer et al., 1979). In the present paper, the significant work carried out during the last three years on RIS is reviewed.An earthquake of magnitude occurred on November 14, 1981 in the vicinity of Aswan Lake, Egypt, 17 years after the filling started in 1964. This event occurred 4 days after the seasonal maximum in the reservoir water level and was followed by a long sequence of aftershocks. Another event of magnitude occurred in the vicinity of Aswan Lake on August 20, 1982. Results of preliminary investigations indicate that this seismic activity is reservoir induced. Recent analyses of induced seismic events at Nurek Reservoir U.S.S.R., show that the second stage of filling during August to December 1976, increasing the maximum depth from 120 m to 200 m, was accompanied by an intense burst of shallow seismic activity. An outward migration from the centre of the reservoir, possibly associated with diffusion of pore pressure, is revealed by the temporal distribution of earthquake foci. A variety of investigations including the in situ measurement of tectonic stress, pore pressure, permeability, distribution of faults, etc., in addition to monitoring seismicity, have been undertaken in the vicinity of the Monticello Reservoir, South Carolina. The largest reservoir induced earthquake is predicted not to exceed magnitude 5.The Koyna Reservoir, India, continues to be the most outstanding example of RIS. Three earthquakes of magnitude 5 occurred in September 1980. Earthquakes of magnitude 4 occur frequently in the vicinity of Koyna, the latest being on February 5, 1983. Events that occurred during the period 1967–1973 have been relocated using better procedures and are found to be much shallower and the epicentres less diffused. Location of 12 earthquakes of Ms 4.0, their foreshocks and aftershocks, that occurred during 1973–1976, composite focal mechanism solutions and related studies are consistent with the delineation of a N-S trending fault through the reservoir area. In a couple of interesting studies it has been demonstrated that earthquakes of magnitude 5.0 in the Koyna region are usually preceded by several magnitude 4 earthquakes in the preceding fortnight. Also, a rate of loading of Koyna reservoir of at least 40 ft/week appears to be a necessary, although not sufficient, condition for the occurrence of magnitude 5 earthquakes. Smooth filling/emptying appears to be the key to reduce the hazard of RIS.A map and a table of the reported cases of reservoir induced changes in seismicity through 1982 have been compiled.  相似文献   

2.
长江三峡水库诱发地震地下水动态监测井网建设   总被引:3,自引:1,他引:3  
着重对长江三峡工程诱发地震地下水动态监测井网的建设过程、成果以及井网试运行与考核运行的情况进行了介绍 ,并对井网的观测数据进行了内在质量分析与评价。结果表明 ,井网数据具有较高的内在质量 ,不仅可为一定震级以上的水库诱发地震趋势预测提供地下水前兆依据 ,而且还可为水库诱发地震研究提供有价值的研究和参考资料.  相似文献   

3.
The Koyna earthquake of M 6.3 on December 10, 1967 is the largest artificial water reservoir triggered earthquake globally. It claimed ~ 200 human lives and devastated the Koyna township. Before the impoundment of the Shivaji Sagar Lake created by the Koyna Dam, there were no earthquakes reported from the region. Initially a few stations were operated in the region by the CentralWater and Power Research Station (CWPRS). The seismic station network grew with time and currently the National Geophysical Research Institute (NGRI), Hyderabad is operating 23 broadband seismographs and 6 bore hole seismic stations. Another reservoir, Warna, was created in 1985, which provided a further impetus to Reservoir Triggered Seismicity (RTS). Every year following the monsoon, water levels rise in the two reservoirs and there is an immediate increase in triggered earthquakes in the vicinity of Koyna-Warna reservoirs in the months of August–September. Peak RTS is observed in September and later during December.Another spurt in triggered earthquakes is observed during the draining of the reservoirs in the months of April- May. A comparative study of RTS earthquake sequences and the ones occurring in nearby regions made it possible to identify four common characteristics of RTS sequences that discriminate them from normal earthquake sequences. As the RTS events continue to occur at Koyna in a large number in a limited area of 20 km x 30 km, at shallow depths (mostly 2 to 9 km), the region being accessible for all possible observations and there being no other source of earthquakes within 100 km of Koyna Dam, it was suggested to be an ideal site for near field observations of earthquakes. This suggestion was discussed by the global community at an ICDP sponsored workshop held at Hyderabad and Koyna in 2011. There was an unanimous agreement about the suitability of the site for deep scientific drilling; however, a few additional observations/experiments were suggested. These were carried out in the following three years and another ICDP workshop was held in 2014, which totally supported setting up a borehole laboratory for near field investigations at Koyna. Location of a Pilot Bore-hole was decided on the basis of seismic activity and other logistics. The 3 km deep Pilot Borehole was spudded on December 20, 2016 and completed on June 11, 2017.  相似文献   

4.
The continued reservoir-triggered seismicity for five decades in Koyna area has been attributed to southward migration of seismicity (during 1967–1992 near and south of Koyna dam and from 1993 onwards mostly near the new Warna reservoir). Spread of seismicity in the vicinity of reservoirs is attributed to pore-pressure diffusion. Moderate size Koyna–Warna earthquakes are found to nucleate at shallow depth (≤ 3 km) due to pore pressure caused by water level fluctuation of reservoir(s). The nucleation zone deepens along the critically stressed permeable fault zone to cause the occurrence of mainshock at the base of seismogenic layer (i.e. 5–10 km). The clustering of foreshocks up to 500 hr prior to several moderate size Koyna earthquakes of magnitude Mw 4–5 has been detected and used for quantifying the nucleation process. A static stress transfer by means of cascade model from one foreshock to next for the generation of foreshocks has been proposed for nucleation model. The nucleation process can be considered as an immediate earthquake precursor for the Koyna-Warna region.  相似文献   

5.
There have been instances of premonitory variations in tilts, displacements, strains, telluric current, seismomagnetic effects, seismic velocities ( Vp, Vs) and their ratio (Vp/Vs), b-values, radon emission, etc. preceding large and moderate earthquakes, especially in areas near epicentres and along faults and other weak zones. Intensity and duration (T) of these premonitory quantities are very much dependent on magnitude (M) of the seismic event. Hence, these quantities may be utilised for prediction of an incoming seismic event well in advance of the actual earthquake. In the recent past, tilts, strain in deep underground rock and crustal displacements have been observed in the Koyna earthquake region over a decade covering pre- and postearthquake periods; and these observations confirm their reliability for qualitative as well as quantitative premonitory indices. Tilt began to change significantly one to two years before the Koyna earthquake of December 10, 1967, of magnitude 7.0. Sudden changes in ground tilt measured in a watertube tiltmeter accompanied an earthquake of magnitude 5.2 on October 17, 1973 and in other smaller earthquakes in the Koyna region, though premonitory changes in tilt preceding smaller earthquakes were not so much in evidence. However, changes in strains in deep underground rock were observed in smaller earthquakes of magnitude 4.0 and above. Furthermore, as a very large number of earthquakes (M = 1–7.0) were recorded in the extensive seismic net in the Koyna earthquake region during 1963–1975, precise b-value variations as computed from the above data, could reveal indirectly the state of crustal (tectonic) strain variations in the earthquake focal region and consequently act as a powerful premonitory index, especially for the significant Koyna earthquakes of December 10, 1967 (M = 7.0) and October 17, 1973 (M = 5.2). The widespread geodetic and magnetic levelling observations covering the pre- and postearthquake periods indicate significant vertical and horizontal crustal displacements, possibly accompanied by large-scale migration of underground magma during the large seismic event of December 10, 1967 in the Koyna region (M = 7.0). Duration (T) of premonitory changes in tilt, strains, etc., is generally governed by the equation of the type logT = A + BM (A and B are statistically determined coefficients). Similar other instances of premonitory evidences are also observed in micro-earthquakes (M = − 1 to 2) due to activation of a fault caused by nearby reservoir water-level fluctuations.  相似文献   

6.
Due to the importance of Aswan area, Egypt, it has been selected for the present study. Since 1982, after the main shock of November 14, 1981 with M?=?5.6, several study programmes were initiated for monitoring seismicity and crustal movements at Aswan area (Tealeb 1996). Starting from 1997, GPS geodetic networks were established and observed many times in different campaigns. The observations are repeated twice a year. At the beginning of 2012, a moderate earthquake has occurred in the Aswan region with magnitude of 4.2 located at the southwest of the High Dam along Kalabsha fault. Before and after this event, these local geodetic networks were measured using GPS. Regional, Kalabsha-Sayal and Kalabsha networks were used in the present work. GPS data were processed using Bernese 5.0. The collected data before and after this event have shown that the area southwest of the High Dam and Kalabsha area suffered from stress and strain. The behaviour of the areas has changed after earthquake for pre-earthquake.  相似文献   

7.
Earthquakes cause a variety of hydrological phenomena, including changes in the ground water levels in bore wells. The Koyna region in the peninsular shield of India, hitherto considered stable in terms of seismic activity, has been active since 1967. More recently, the earthquakes have been localized to the newly impounded Warna reservoir, which is located south of Koyna, where a burst of seismicity occurred in 1993. The region continues to remain seismically active even after four decades. Twenty-one bore wells were drilled around the seismic source volume in the region to observe water level changes resulting from earthquake phenomena. Our studies have shown coseismic anomalous water level changes to be associated with the moderate earthquakes of April 25, 1997 and February 11, 1998. Our results show that changes in the ground water level in bore wells are correlated with micro-earthquake activity, both preceding and following moderately sized earthquakes. The results have implications in enhancing our understanding of earthquake mechanisms.  相似文献   

8.
New empirical relations are derived for source parameters of the Koyna–Warna reservoir-triggered seismic zone in Western India using spectral analysis of 38 local earthquakes in the magnitude range M L 3.5–5.2. The data come from a seismic network operated by the CSIR-National Geophysical Research Institute, India, during March 2005 to April 2012 in this region. The source parameters viz. seismic moment, source radius, corner frequency and stress drop for the various events lie in the range of 1013–1016 Nm, 0.1–0.4 km, 2.9–9.4 Hz and 3–26 MPa, respectively. Linear relationships are obtained among the seismic moment (M 0), local magnitude (M L), moment magnitude (M w), corner frequency (fc) and stress drop (?σ). The stress drops in the Koyna–Warna region are found to increase with magnitude as well as focal depths of earthquakes. Interestingly, accurate depths derived from moment tensor inversion of earthquake waveforms show a strong correlation with the stress drops, seemingly characteristic of the Koyna–Warna region.  相似文献   

9.
Seismicity changes associated with reservoir loading   总被引:12,自引:0,他引:12  
Changes in seismic activity have been related to the filling of large reservoirs in over thirty cases. These changes range from variations in the level of micro-earthquake activity detectable only with instruments of high sensitivity to destructive earthquakes with magnitudes greater than 6. On the other hand, the filling of many other large reservoirs has not been accompanied by increased seismicity.

A number of factors may contribute to the generation or absence of post-impounding seismicity. Increased vertical stress due to the load of the reservoir and decreased effective stress due to increased pore pressure can modify the stress regime in the reservoir region. Whether or not these stress changes are sufficient to generate earthquake activity will depend on a complex interaction of the induced stress with the state of pre-existing stress near the reservoir, and on the geologic and hydrologic conditions at the site. The combined effect of increased vertical load and increased pore pressure will have the greatest tendency to increase activity in regions where the maximum compressive stress is vertical (normal faulting). In regions where the minimum compressive stress is vertical (thrust faulting) increased stress due to a vertical load should have a minimum effect. For all of the larger reservoir-induced earthquakes the stress system determined from fault plane solutions is in agreement with the pre-existing stress field in the region of the reservoir. These earthquakes are all of strike-slip or normal type, there being no reported cases of large induced earthquakes with thrusting mechanisms.

The potential for major changes in seismicity may be highest in regions of moderate strain accumulation (low to moderate natural seismicity). In areas of high strain accumulation and high levels of natural seismicity, the stress changes induced by the reservoir will be small compared to natural variations. In aseismic areas, with low strain accumulation, the reservoir-induced stresses may be insufficient to raise the stress level to a state of failure.  相似文献   


10.
本文通过对国内外20起比较典型的水库诱发地震震例资料的分析,论述了水库诱发地震的特点和形成机制,进而说明其不可忽视的工程意义。  相似文献   

11.
Chander, R., 1991. On the possibility of reservoir-induced seismicity in the Garhwal Himalaya. Eng. Geol., 30: 393–399.

It is argued from a brief review of available evidence that the possibility of reservoir-induced seismicity (RIS) in the Himalaya as a whole cannot be ruled out at the present time. On the other hand, a review of recent local investigations of small earthquakes ( mb less than 5) and teleseismic investigations of moderate earthquakes (mb between 5 and 6, mainly) occurring in the Garhwal segment of the Alpide-Himalayan seismic belt provides evidence that RIS in the region can be anticipated. While their epicentral belts coincide geographically, the estimated focal depths of small and moderate earthquakes of the Garhwal Himalaya are in the ranges of 0–14 and 10–20 km, respectively. Small earthquakes occur by reactivation of strike-slip and reverse faults and moderate earthquakes occur on thrust faults. Elsewhere in the world, RIS has been observed most often in the crust at the depths where small earthquakes have been observed in the Garhwal Himalaya. In addition, RIS has been experienced during the impoundment of reservoirs in strike-slip and reverse fault environments, while theoretical analyses indicate that, if suitably located in relation to the reservoir, even a thrust fault may be destabilised by impoundment.  相似文献   


12.
Koyna-Warna region of western India is an active seismic zone due to the Reservoir Triggered Seismicity (RTS). Earthquake precursor studies are carried out monitoring hydrochemical and stable isotope signatures in the groundwater from 15 bore wells since January 2005, for more than 12 years (January 2005 to February 2017). Depth of these boreholes ranges from 100 to 250 m. Cyclic or temporal variation in hydrochemistry is observed in few sensitive wells in Koyna region. The Govare well in Koyna is found to be most sensitive and the observed hydrochemical cycle is closely associated with local earthquakes of M > 5. The earthquakes M <5 occurring either in Warna cluster or close to the observation wells, did not generate hydrochemical precursory changes. The increase in hydrochemistry is hypothesized as mixing of two aquifer waters with different hydrochemistry. It is noted that a precursory hydrochemical cycle is observed during first quarter of 2015, but no earthquake M > 5.0 occurred till date. The cyclic changes in hydrochemistry, however, indicate on-going earthquake processes and an impending earthquake of M > 5 in the region.  相似文献   

13.
Earthquake activity is monitored in real time at the Koyna reservoir in western India, beginning from August 2005 and successful short term forecasts have been made of M ∼ 4 earthquakes. The basis of these forecasts is the observation of nucleation that precedes such earthquakes. Here we report that a total of 29 earthquakes in the magnitude range of 3.5 to 5.1 occurred in the region during the period of August 2005 through May 2010. These earthquakes could broadly be put in three zones. Zone-A has been most active accounting for 18 earthquakes, while 5 earthquakes in Zone-B and 6 in Zone-C have occurred. Earthquakes in Zone-A are preceded by well defined nucleation, while it is not the case with zones B and C. This indicates the complexity of the earthquakes processes and the fact that even in a small seismically active area of only 20 km × 30 km earthquake forecast is difficult.  相似文献   

14.
The filling of the Koyna reservoir in western India and the associated triggered earthquakes have been well documented. Several studies have suggested that earthquakes are triggered on pre-existing faults in the region due to changes in pore pressure caused by pore pressure diffusion. To study in-situ pore pressure variations twenty-one borewells were drilled in the Koyna-Warna region under an Indo-German research program during 1995–1998. In most of these wells tidal signals are observed in well level variations indicating sensitivity to small strain changes in hydraulically connected, confined aquifers. Those signals, hence, are suitable to reflect variations in the stress field of local rock formations. More than a decade of well level monitoring has shown four types of earthquake related changes. The pre- and post-earthquake changes are mostly interpretative in nature and difficult to substantiate. The co-seismic and transient changes which are observed for local and large teleseismic events are well established. Wells connected to unconfined aquifers also showed changes related to seismicity in case of large magnitude earthquakes at closer distances. Some anomalous water level fluctuations are seen which are not associated with local or teleseismic earthquakes. These changes are coherent in nature and reflect aseismic regional volume strain.  相似文献   

15.
SummaryA Geodynamic Study of Peninsular India An attempt was made to elucidate the geodynamic conditions existing at the present time in Peninsular India. Morphological, structural and seismic information was collected for this purpose, as well as data from in-situ stress measurements by the hydraulic fracturing method. Inasmuch as the seismic activity was mainly concentrated around Koyna, the latter region was especially scrutinized. It has been found that the morphological (valley trends), structural (joint orientations) and seismic (fault plane solutions of earthquakes) evidence are all consistent with a neotectonic stress field whose maximum compression acts horizontally NW-SE, and whose minimum compression acts horizontally NE-SW. This trend is also confirmed by data from in-situ stress measurements in the Kolar Gold Fields. The lineaments gleaned from landsat imageries do not fit this pattern, indicating that they may not be related to the neotectonic conditions existing in India at all.With 30 Figures  相似文献   

16.
Anticipating the scale invariance of rock fracturing processes, we applied Keilis-Borok’s algorithm M8, originally designed for identifying times of increased probability (TIPS) of occurrence of strong earthquakes (M < 8.0), retrospectively to Koyna earthquakes which occurred in the region after the impoundment of the Shivaji Sagar reservoir in 1962. The algorithm which enables diagnosis of TIPS from the 7th year onwards after the commencement of the earliest available data set showed that the 5.3 magnitude earthquake of 20 September 1980 indeed occurred within a time of increased probability. This result, apart from its potential application to recognizing future TIPS in the region, points to selfsimilarity between the premonitory patterns of natural and induced earthquakes and to scale-invariant nature of their processes. Further, a typical precursory rise in seismicity followed by a relative quiescence was also found to precede all the three larger earthquakes of the sequence.  相似文献   

17.
Natural Hazards - Koyna located near the West Coast of India is an outstanding case of artificial water reservoir-triggered seismicity. It is observed that annually earthquakes get triggered in the...  相似文献   

18.
自2002年7月温州珊溪水库首次发生地震后,其地震活动持续至今,但目前人们对水库地震成因了解较少.基于对库区所处的区域地震地质背景、库区地形地貌、岩性及新构造运动特征的分析,采用野外地质调查的方法,获得了库区主要断层的地质特征,并评价了其渗透性.在此基础上,结合地震活动特征及震源机制解的研究成果,探讨了水库地震时间序列及发震机理.结果表明珊溪水库地震活动与库区岩性、断层(尤其是库区内的双溪-焦溪垟断层)及库水特征关系密切.水库地震主要发生在侏罗系凝灰岩夹砂岩、泥岩等隔水性好的层状岩层中,而渗透性较好的双溪-焦溪垟断层结构面则更利于库水下渗,这种岩体结构面组合方式一方面使库水容易沿断层结构面向深部渗透,另一方面断层结构面上的孔隙压力容易升高,因此降低了断层结构面上的正应力,应力平衡被打破,进而诱发地震.在水的渗透和地震活动的相互作用下,水库地震沿双溪-焦溪垟断层(尤其是第三分支断层)从SE向NW持续发生.   相似文献   

19.
Koyna–Warna region in western India is known to be the largest case of the reservoir-triggered seismicity in the world with M6.3 earthquake in 1967. This region continues to be seismically active even after 45 years with occurrences of earthquakes up to M5.0. The porous crustal rocks of Koyna–Warna region respond to changes in the prevailing stress/strain regime. This crustal section is highly fractured and is being fed by rivers and reservoirs. It is also subjected to fluctuating plate boundary forces and significant gravity-induced stresses due to crustal inhomogeneities. These changes induce variations in the water level in bore wells before, during and after an earthquake, and their study can help in understanding the earthquake genesis in the region. The ongoing seismicity thus requires understanding of coupled hydrological and tectonic processes in the region. Water table fluctuations are a reflection of the ongoing hydro-tectonics of the region. The fractal dimension of water levels in the bore wells of the region can be used as measure of the nonlinear characteristics of porous rock, revealing the underlying complexity. In this paper, we present values of correlation dimensions of the water level data in the bore wells using the nonlinear time series methodology. The spatiotemporal changes in the fractal dimensions have also been determined. The results show that hydro-seismically the region behaves as a low-dimensional nonlinear dynamical system.  相似文献   

20.
在地震地质背景研究的基础上,运用神经网络理论中改进的BP算法对三峡水库诱发地震强度进行了预测研究。预测结果表明,秭归盆地高桥断裂近库段有可能诱发Ms>6.0级的地震,可能诱发4.5相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号