首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Thirteen synoptic maps of expansion rate of the coronal magnetic field (CMF; RBR) calculated by the so-called ‘potential model’ are constructed for 13 Carrington rotations from the maximum phase of solar activity cycle 22 through the maximum phase of cycle 23. Similar 13 synoptic maps of solar wind speed (SWS) estimated by interplanetary scintillation observations are constructed for the same 13 Carrington rotations as the ones for the RBR. The correlation diagrams between the RBR and the SWS are plotted with the data of these 13 synoptic maps. It is found that the correlation is negative and high in this time period. It is further found that the linear correlation is improved if the data are classified into two groups by the magnitude of radial component of photospheric magnetic field, |Bphor|; group 1, 0.0 G ≦ |Brpho| < 17.8 G and group 2, 17.8 G ≦ |Brpho|. There exists a strong negative correlation between the RBR and the SWS for the group 1 in contrast with a weak negative correlation for the group 2. Group 1 has a double peak in the density distribution of data points in the correlation diagram; a sharp peak for high-speed solar wind and a low peak for low-speed solar wind. These two peaks are located just on the axis of maximum variance of data points in the correlation diagram. This result suggests that the solar wind consists of two major components and both the high-speed and the low-speed winds emanating from weak photospheric magnetic regions are accelerated by the same mechanism in the course of solar activity cycle. It is also pointed out that the SWS can be estimated by the RBR of group 1 with an empirical formula obtained in this paper during the entire solar activity cycle.  相似文献   

2.
Relationships between solar wind speed and expansion rate of the coronal magnetic field have been studied mainly by in-ecliptic observations of artificial satellites and some off-ecliptic data by Ulysses. In this paper, we use the solar wind speed estimated by interplanetary scintillation (IPS) observations in the whole heliosphere. Two synoptic maps of SWS estimated by IPS observations are constructed for two Carrington rotations CR 1830 and 1901; CR 1830 starting on the 11th of June, 1990 is in the maximum phase of solar activity cycle and CR 1901 starting on the 29th of September, 1995 is in the minimum phase. Each of the maps consist of 64800 (360×180) data points. Similar synoptic maps of expansion rate of the coronal magnetic field (RBR) calculated by the so-called potential model are also constructed under a radial field assumption for CR 1830 and CR1901. Highly significant correlation (r=–0.66) is found between the SWS and the RBR during CR1901 in the solar minimum phase; that is, high-speed winds emanate from photospheric areas corresponding to low expansion rate of the coronal magnetic field and low speed winds emanate from photospheric areas of high expansion rate. A similar result is found during CR 1830 in solar maximum phase, though the correlation is relatively low (r=–0.29). The correlation is improved when both the data during CR 1830 and CR 1901 are used together; the correlation coefficient becomes –0.67 in this case. These results suggest that the correlation analysis between the SWS and the RBR can be applied to estimate the solar wind speed from the expansion rate of the coronal magnetic field, though the correlation between them may depend on the solar activity cycle. We need further study of correlation analysis for the entire solar cycle to get an accurate empirical equation for the estimation of solar wind speed. If the solar wind speed is estimated successfully by an empirical equation, it can be used as an initial condition of a solar wind model for space weather forecasts.  相似文献   

3.
Solar Wind Forecasting with Coronal Holes   总被引:1,自引:0,他引:1  
An empirical model for forecasting solar wind speed related geomagnetic events is presented here. The model is based on the estimated location and size of solar coronal holes. This method differs from models that are based on photospheric magnetograms (e.g., Wang–Sheeley model) to estimate the open field line configuration. Rather than requiring the use of a full magnetic synoptic map, the method presented here can be used to forecast solar wind velocities and magnetic polarity from a single coronal hole image, along with a single magnetic full-disk image. The coronal hole parameters used in this study are estimated with Kitt Peak Vacuum Telescope He I 1083 nm spectrograms and photospheric magnetograms. Solar wind and coronal hole data for the period between May 1992 and September 2003 are investigated. The new model is found to be accurate to within 10% of observed solar wind measurements for its best 1-month period, and it has a linear correlation coefficient of ∼0.38 for the full 11 years studied. Using a single estimated coronal hole map, the model can forecast the Earth directed solar wind velocity up to 8.5 days in advance. In addition, this method can be used with any source of coronal hole area and location data.  相似文献   

4.
Interplanetary scintillation (IPS) measurements of the solar wind speed for the distance range between 13 and 37 R S were carried out during the solar conjunction of the Nozomi spacecraft in 2000?–?2001 using the X-band radio signal. Two large-aperture antennas were employed in this study, and the baseline between the two antennas was several times longer than the Fresnel scale for the X-band. We successfully detected a positive correlation of IPS from the cross-correlation analysis of received signal data during ingress, and estimated the solar wind speed from the time lag corresponding to the maximum correlation by assuming that the solar wind flows radially. The speed estimates range between 200 and 540?km?s?1 with the majority below 400?km?s?1. We examined the radial variation in the solar wind speed along the same streamline by comparing the Nozomi data with data obtained at larger distances. Here, we used solar wind speed data taken from 327 MHz IPS observations of the Solar-Terrestrial Environment Laboratory (STEL), Nagoya University, and in?situ measurements by the Advanced Composition Explorer (ACE) for the comparison, and we considered the effect of the line-of-sight integration inherent to IPS observations for the comparison. As a result, Nozomi speed data were proven to belong to the slow component of the solar wind. Speed estimates within 30 R S were found to be systematically slower by 10?–?15 % than the terminal speeds, suggesting that the slow solar wind is accelerated between 13 and 30 R S.  相似文献   

5.
Solar wind speeds (SWSs) estimated by interplanetary scintillation (IPS) observations during Carrington rotation 1753 are projected onto the so-called source-surface of 2.5 solar radii along magnetic field lines in interplanetary space. The following two working hypotheses are examined from different points of view: (1) The SWS is a weighted mean along the line of sight to a radio source; the weight for the SWS depends on the distance from theP-point, the closest approach to the Sun on the line of sight. (2) The weighting function has a very sharp peak at theP-point, so that the SWS shows a real solar wind speed at theP-point. In both the two cases, the SWSs projected onto the source surface are further projected onto the photosphere along magnetic field lines in the corona. Footpoints of these field lines are inferred as photospheric source regions of the solar wind. The intensity of the Hei (1083 nm) absorption line (HEI) in the chromosphere corresponding to these photospheric sources is interpolated from observational data. The weighted mean of the HEI is calculated in case 1. The HEI corresponding to theP-point is used in case 2. The SWS is compared with the HEI in both the two cases. It is found that the correlation between the SWS and the HEI is better in case 2 than in case 1. It is further inferred by correlation analysis between the SWS and the HEI that the solar wind is accelerated within 27 solar radii on average. Although the data examined in this paper were limited to just one solar rotation, these results suggest that the SWS estimated by the IPS technique corresponds to the solar wind speed near theP-point and the weighting function along the line of sight may have a very sharp peak near theP-point.  相似文献   

6.
Hakamada  Kazuyuki  Kojima  Masayoshi 《Solar physics》1999,187(1):115-122
The synoptic map of the solar wind speed (SWS) estimated by the computer-assisted tomography (CAT) method with interplanetary scintillation observations is constructed for the 1909 Carrington rotation. A similar synoptic map of expansion rate (RBR) of the coronal magnetic field calculated by the so-called 'potential model' with the photospheric magnetic field is also constructed under the radial field assumption (RF model). These maps consist of 64800 (180×360) data points of equal area. We examine for the first time relations between the SWS estimated by the CAT technique and the RBR calculated by the RF model. A highly significant correlation is found between the SWS and the RBR. A simple correlation coefficient is about –0.72; that is, high-velocity winds emanate from photospheric areas corresponding to a low expansion rate of the coronal magnetic field, and low-velocity winds emanate from photospheric areas of high expansion rate. This result suggests that there is some acceleration mechanism relating to the coronal field expansion.  相似文献   

7.
It is presently believed that the high speed solar wind originates almost entirely in coronal holes. Theory suggests that the origin of the high speeds is extended energy deposition in proportion to the magnetic field intensity in the holes and at 1.5–3.0 solar radii heliocentric distance. Evidence from the time of the Maunder Minimum, together with the above results, allows a hypothesis to be made for the state of the solar wind at that time. Firstly, carbon-14 data indicate an enhanced cosmic ray intensity, with the conclusion that the interplanetary magnetic field (IMF) was smooth and perhaps of low intensity. Secondly, the apparent absence of a corona during eclipses requires low coronal density, suggesting an absence of closed magnetic loops. Thirdly, the absence of sunspots eliminates the possibility of a solar maximum type of corona of low emission intensity and implies a low large-scale photospheric field intensity. Finally, the absence of mid-latitude aurorae implies either that the solar wind speed or the IMF intensity or both, were low and not irregular.A resulting self-consistent hypothesis is that the solar wind was of the simplest variety, analogous to that described in models of the so-called “quiet solar wind”. All closed coronal field regions would have been absent and extended energy deposition in the corona would have been far less important than today. At 1 a.u., the density and speed would have been less than 5 cm?3 and 300 km?1s, respectively. At the same time, there would have been a very low level of fluctuation all the way from the microscale up to the contrast between high and low speed solar wind streams. Also, if the IMF is the source of the 22 yr and magnetic sector associated modulations in the present terrestrial climate, these modulations may have been suppressed during the Maunder Minimum. Recently, it has been discovered that the 22 yr modulation in fact was suppressed during the Maunder Minimum (C. Stockton and M. Mitchell, personal communication), in support of the above suggestion.  相似文献   

8.
We study the influence of the large-scale interplanetary magnetic field configuration on the solar energetic particles (SEPs) as detected at different satellites near Earth and on the correlation of their peak intensities with the parent solar activity. We selected SEP events associated with X- and M-class flares at western longitudes, in order to ensure good magnetic connection to Earth. These events were classified into two categories according to the global interplanetary magnetic field (IMF) configuration present during the SEP propagation to 1 AU: standard solar wind or interplanetary coronal mass ejections (ICMEs). Our analysis shows that around 20 % of all particle events are detected when the spacecraft is immersed in an ICME. The correlation of the peak particle intensity with the projected speed of the SEP-associated coronal mass ejection is similar in the two IMF categories of proton and electron events, ≈?0.6. The SEP events within ICMEs show stronger correlation between the peak proton intensity and the soft X-ray flux of the associated solar flare, with correlation coefficient r=0.67±0.13, compared to the SEP events propagating in the standard solar wind, r=0.36±0.13. The difference is more pronounced for near-relativistic electrons. The main reason for the different correlation behavior seems to be the larger spread of the flare longitude in the SEP sample detected in the solar wind as compared to SEP events within ICMEs. We discuss to what extent observational bias, different physical processes (particle injection, transport, etc.), and the IMF configuration can influence the relationship between SEPs and coronal activity.  相似文献   

9.
A direct transfer of energy from photospheric activity to the solar wind by means of electric currents is discussed. Currents are assumed to flow in quiescent prominences which occasionally erupt and give rise to expanding loop-like structures in the corona, as observed from Skylab. Due to expansion, the legs of the loops are transformed into coronal rays which carry currents from the photosphere to the outer parts of the corona or interplanetary medium and then back again to the photosphere. It is proposed that energy is transferred from photospheric activity to the solar wind in the following ways: (1) as kinetic energy of the ejected loop matter; (2) as electric power directly fed into the extended loops; and (3) as torsional waves produced by fluctuations in the loop currents.  相似文献   

10.
The second and third flybys of Mercury by the MESSENGER spacecraft occurred, respectively, on 6 October 2008 and on 29 September 2009. In order to provide contextual information about the solar wind properties and the interplanetary magnetic field (IMF) near the planet at those times, we have used an empirical modeling technique combined with a numerical physics-based solar wind model. The Wang–Sheeley–Arge (WSA) method uses solar photospheric magnetic field observations (from Earth-based instruments) in order to estimate the inner heliospheric radial flow speed and radial magnetic field out to 21.5 solar radii from the Sun. This information is then used as input to the global numerical magnetohydrodynamic model, ENLIL, which calculates solar wind velocity, density, temperature, and magnetic field strength and polarity throughout the inner heliosphere. WSA-ENLIL calculations are presented for the several-week period encompassing the second and third flybys. This information, in conjunction with available MESSENGER data, aid in understanding the Mercury flyby observations and provide a basis for global magnetospheric modeling. We find that during both flybys, the solar wind conditions were very quiescent and would have provided only modest dynamic driving forces for Mercury's magnetospheric system.  相似文献   

11.
We study the temporal evolution of cosmic ray intensity during ~27-day Carrington rotation periods applying the method of superposed epoch analysis. We discuss about the average oscillations in the galactic cosmic ray intensity, as observed by ground based neutron monitors, during the course of Carrington rotation in low solar activity conditions and in different polarity states of the heliosphere (A<0 and A>0). During minimum and decreasing phases in low solar activity conditions, we compare the oscillation in one polarity state with that observed in other polarity state in similar phases of solar activity. We find difference in the evolution and amplitude of ~27-day variation during A<0 and A>0 epoch. We also compare the average variations in cosmic ray intensity with the simultaneous variations of solar wind parameters such as solar wind speed and interplanetary magnetic field strength. From the correlation analysis between the cosmic ray intensity and the solar wind speed during the course of Carrington rotation, we find that the correlation is stronger for A>0 than A<0.  相似文献   

12.
Unipolar streamers (also known as pseudo-streamers) are coronal structures that, at least in coronagraph images, and when viewed at the correct orientation, are often indistinguishable from dipolar (or “standard”) streamers. When interpreted with the aid of a coronal magnetic field model, however, they are shown to consist of a pair of loop arcades. Whereas dipolar streamers separate coronal holes of the opposite polarity and whose cusp is the origin of the heliospheric current sheet, unipolar streamers separate coronal holes of the same polarity and are therefore not associated with a current sheet. In this study, we investigate the interplanetary signatures of unipolar streamers. Using a global MHD model of the solar corona driven by the observed photospheric magnetic field for Carrington rotation 2060, we map the ACE trajectory back to the Sun. The results suggest that ACE fortuitously traversed through a large and well-defined unipolar streamer. We also compare heliospheric model results at 1 AU with ACE in-situ measurements for Carrington rotation 2060. The results strongly suggest that the solar wind associated with unipolar streamers is slow. We also compare predictions using the original Wang–Sheeley (WS) empirically determined inverse relationship between solar wind speed and expansion factor. Because of the very low expansion factors associated with unipolar streamers, the WS model predicts high speeds, in disagreement with the observations. We discuss the implications of these results in terms of theories for the origin of the slow solar wind. Specifically, premises relying on the expansion factor of coronal flux tubes to modulate the properties of the plasma (and speed, in particular) must address the issue that while the coronal expansion factors are significantly different at dipolar and unipolar streamers, the properties of the measured solar wind are, at least qualitatively, very similar.  相似文献   

13.
An explanation for the solar differential rotation is proposed that makes use of angular momentum transfer in the solar wind and corona. Evidence suggests that for most of the solar cycle, the solar wind is connected by magnetic field lines to high heliographic latitudes on the Sun.Thus the angular momentum lost to the solar wind would present a preferential drag to the photospheric material at high heliographic latitudes. It is shown that this drag is sufficient to offset the restoring forces of the Sun's subsurface magnetic field. In fact, the subsurface magnetic field and differential rotation are thought to grow until the stresses are sufficient to balance the torque induced by the solar wind. The present level of differential rotation and solar activity may be maintained by an intricate feedback mechanism involving the whole solar activity cycle.A power calculation based upon this model suggests the Sun's core rotates with a period of between 0.5 and 5 days. Furthermore, this view requires a major change in present theory of solar magnetic field generation.  相似文献   

14.
An exospheric kinetic solar wind model is interfaced with an observation-driven single-fluid magnetohydrodynamic (MHD) model. Initially, a photospheric magnetogram serves as observational input in the fluid approach to extrapolate the heliospheric magnetic field. Then semi-empirical coronal models are used for estimating the plasma characteristics up to a heliocentric distance of 0.1 AU. From there on, a full MHD model that computes the three-dimensional time-dependent evolution of the solar wind macroscopic variables up to the orbit of Earth is used. After interfacing the density and velocity at the inner MHD boundary, we compare our results with those of a kinetic exospheric solar wind model based on the assumption of Maxwell and Kappa velocity distribution functions for protons and electrons, respectively, as well as with in situ observations at 1 AU. This provides insight into more physically detailed processes, such as coronal heating and solar wind acceleration, which naturally arise from including suprathermal electrons in the model. We are interested in the profile of the solar wind speed and density at 1 AU, in characterizing the slow and fast source regions of the wind, and in comparing MHD with exospheric models in similar conditions. We calculate the energetics of both models from low to high heliocentric distances.  相似文献   

15.
L. A. Plyusnina 《Solar physics》1985,102(1-2):191-201
For the period 1969–1975, a study has been made of the dependence of the interplanetary magnetic field structure on the distribution and evolutionary properties of solar magnetic fields. By direct comparison of a sequence of synoptic charts of the photospheric magnetic field with the interplanetary magnetic field, and by applying the method of correlation analysis, it is shown that to areas with an unstable polarity of the interplanetary magnetic field there correspond regions with a complicated inverse polarity line that forms either narrow gulfs and islands against a background of the dominant polarity, or bipolar magnetic regions and their clusters. At the time of reconstruction of the photospheric magnetic field the correlation between the photospheric and interplanetary magnetic field element distributions worsens. An asymmetry of the correlation between the interplanetary and photospheric magnetic field structures of different hemispheres is found. During the period of study, the interplanetary field structure shows a better correlation with the distribution of the photospheric magnetic field at middle and lower latitudes (0°–40°) of the southern hemisphere.  相似文献   

16.
Magnetic fields and the structure of the solar corona   总被引:6,自引:0,他引:6  
Several different mathematical methods are described which use the observed line-of-sight component of the photospheric magnetic field to determine the magnetic field of the solar corona in the current-free (or potential-field) approximation. Discussed are (1) a monopole method, (2) a Legendre polynomial expansion assuming knowledge of the radial photospheric magnetic field, (3) a Legendre polynomial expansion obtained from the line-of-sight photospheric field by a least-meansquare technique, (4) solar wind simulation by zero-potential surfaces in the corona, (5) corrections for the missing flux due to magnetograph saturation. We conclude (1) that the field obtained from the monopole method is not consistent with the given magnetic data because of non-local effects produced by monopoles on a curved surface, (2) that the field given by a Legendre polynomial (which is fitted to the measured line-of-sight magnetic field) is a rigorous and self-consistent solution with respect to the available data, (3) that it is necessary to correct for the saturation of the magnetograph (at about 80 G) because fields exceeding 80 G provide significant flux to the coronal field, and (4) that a zero-potential surface at 2.5 solar radii can simulate the effect of the solar wind on the coronal magnetic field.  相似文献   

17.
The parameters of the magnetic flux distribution inside low-latitude coronal holes (CHs) were analyzed. A statistical study of 44 CHs based on Solar and Heliospheric Observatory (SOHO)/MDI full disk magnetograms and SOHO/EIT 284?Å images showed that the density of the net magnetic flux, B net, does not correlate with the associated solar wind speeds, V x . Both the area and net flux of CHs correlate with the solar wind speed and the corresponding spatial Pearson correlation coefficients are 0.75 and 0.71, respectively. A possible explanation for the low correlation between B net and V x is proposed. The observed non-correlation might be rooted in the structural complexity of the magnetic field. As a measure of the complexity of the magnetic field, the filling factor, f(r), was calculated as a function of spatial scales. In CHs, f(r) was found to be nearly constant at scales above 2 Mm, which indicates a monofractal structural organization and smooth temporal evolution. The magnitude of the filling factor is 0.04 from the Hinode SOT/SP data and 0.07 from the MDI/HR data. The Hinode data show that at scales smaller than 2 Mm, the filling factor decreases rapidly, which means a multifractal structure and highly intermittent, burst-like energy release regime. The absence of the necessary complexity in CH magnetic fields at scales above 2 Mm seems to be the most plausible reason why the net magnetic flux density does not seem to be related to the solar wind speed: the energy release dynamics, needed for solar wind acceleration, appears to occur at small scales below 1 Mm.  相似文献   

18.
Hourly interplanetary proton plasma data, measured by Helios-1 and Helios-2 heliocentric satellites over the period extending between the sunspot minimum and maximum of the 21rst solar cycle are analysed. This analysis gives an emphasis in the presence of a third type solar wind (intermediate) at 450 km s–1, appearing at solar minimum, during which large coronal holes are dominating in the Sun. This type of solar wind is hardly to be observed during the solar maximum period.Both Helios-1 and Helios-2 data give an average speed of the slow solar wind of 350 km s–1 for the period between these two extremes of solar activities.After correlation of the plasma temperature with its speed in different heliocentric distances, it comes out the stronger heating which takes place in distances shorter than 0.6 AU than in distances between 0.6 and 1.0 AU.A different behaviour of the radial proton temperature gradient in different solar activities appears after the calculation of the gradients as a function of solar wind speed and radial distance.  相似文献   

19.
Various solar wind forecasting methods have been developed during the past decade, such as the Wang?–?Sheeley model and the Hakamada?–?Akasofu?–?Fry Version 2 (HAFv2) model. Also, considerable correlation has been found between the solar wind speed v and the coronal hole (CH) area A M on the visible side of the Sun, showing quantitative improvement of forecasting accuracy in low CME activity periods (e.g., Vr?nak, Temmer, and Veronig, Solar Phys. 240, 315, 2007a). Properties of lower layers of the solar atmosphere are good indications of the subsequent interplanetary and geomagnetic activities. We analyze the SOHO/EIT 284 Å images and construct a new forecasting factor (Pch) from the brightness of the solar EUV emission, and a good correlation is found between the Pch factor and the 3-day-lag solar wind velocity (v) probed by the ACE spacecraft. The main difference between the Pch and A M factor is that Pch does not depend on the CH-boundary estimate and can reflect both the area and brightness of CH. A simple method of forecasting the solar wind speed near Earth in low CME activity periods is presented. Between Pch and v from 21 November until 26 December 2003, the linear correlation coefficient is R=0.89. For comparison we also analyze the data in the same period (DOY 25?–?125, 2005) as Vr?nak, Temmer, and Veronig (Solar Phys. 240, 315, 2007a), who used the CH areas A M for predicting the solar wind parameters. In this period the correlation coefficient between Pch and v is R=0.70, whereas for A M and v the correlation coefficient is R=0.62. The average relative difference between the calculated and the observed values is $\overline{|\delta|}\approx 12.15\%Various solar wind forecasting methods have been developed during the past decade, such as the Wang – Sheeley model and the Hakamada – Akasofu – Fry Version 2 (HAFv2) model. Also, considerable correlation has been found between the solar wind speed v and the coronal hole (CH) area A M on the visible side of the Sun, showing quantitative improvement of forecasting accuracy in low CME activity periods (e.g., Vršnak, Temmer, and Veronig, Solar Phys. 240, 315, 2007a). Properties of lower layers of the solar atmosphere are good indications of the subsequent interplanetary and geomagnetic activities. We analyze the SOHO/EIT 284 ? images and construct a new forecasting factor (Pch) from the brightness of the solar EUV emission, and a good correlation is found between the Pch factor and the 3-day-lag solar wind velocity (v) probed by the ACE spacecraft. The main difference between the Pch and A M factor is that Pch does not depend on the CH-boundary estimate and can reflect both the area and brightness of CH. A simple method of forecasting the solar wind speed near Earth in low CME activity periods is presented. Between Pch and v from 21 November until 26 December 2003, the linear correlation coefficient is R=0.89. For comparison we also analyze the data in the same period (DOY 25 – 125, 2005) as Vršnak, Temmer, and Veronig (Solar Phys. 240, 315, 2007a), who used the CH areas A M for predicting the solar wind parameters. In this period the correlation coefficient between Pch and v is R=0.70, whereas for A M and v the correlation coefficient is R=0.62. The average relative difference between the calculated and the observed values is . Furthermore, for the ten peaks during the analysis period, Pch and v show a correlation coefficient of R=0.78, and the average relative difference between the calculated and the observed peak values is . Moreover, the Pch factor can eliminate personal bias in the forecasting process, which existed in the method using CH area as input parameter, because CH area depends on the CH-boundary estimate but Pch does not. Until now the CH-boundary could not be easily determined since no quantitative criteria can be used to precisely locate CHs from observations, which led to differences in forecasting accuracy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号