共查询到20条相似文献,搜索用时 0 毫秒
1.
The USGS reference glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G were investigated by different analytical techniques. All these materials have a geological (basaltic) matrix and are therefore useful in igneous geochemistry as matrix-matched reference materials for microanalytical techniques. The new GS glasses have trace elements in groups at concentration levels of about < 0.01, 5, 50 and 500 μg g -1. Their major element compositions have been determined by EPMA, and trace elements have been analysed by LA-ICP-MS and two isotope dilution techniques using TIMS and ICP-MS. EPMA and LA-ICP-MS analyses indicated that the USGS reference glasses are homogeneous at the μm to mm scale with respect to major (variations < 1-2%) and most trace elements (variations 1-4%). Trace element data obtained from the different analytical techniques agreed within an uncertainty of 1-5%, indicating that between method results are comparable. Therefore, the preliminary working values for the four USGS GS glasses calculated from these data have a low level of uncertainty. 相似文献
2.
We have measured 87Sr/ 86Sr and 143 Nd/ 144 Nd isotope ratios in different batches and aliquots of the new US Geological Survey (USGS) reference materials (RMs) BCR-2, BHVO-2, AGV-2 and GSP-2 and the original USGS RMs BCR-1, BHVO-1, AGV-1 and GSP-1 by thermal ionisation mass spectrometry. In addition, we also analysed the eight Max-Planck-Institut-Dingwell (MPI-DING) reference glasses. Nearly all isotope ratios obtained in the different aliquots and batches agree within uncertainty limits indicating excellent homogeneity of the USGS powders and the MPI-DING glasses. With the exception of GSP-2, the new USGS RMs are also indistinguishable from the ratios found in the original USGS RMs ( 87Sr/ 86Sr: 0.704960, 0.704958 (BCR-1, -2), 0.703436, 0.703435 (BHVO-1, -2), 0.703931, 0.703931 (AGV-1, -2); 143 Nd/ 144 Nd: 0.512629, 0.512633 (BCR-1, -2), 0.512957, 0.512957 (BHVO-1, -2); 0.512758, 0.512755 (AGV-1, -2)). This means that for normalisation purposes in Sr and Nd isotope geochemistry BCR-2, BHVO-2 and AGV-2 can well replace BCR-1, BHVO-1 and AGV-1 respectively. 相似文献
3.
Different batches of the new US Geological Survey (USGS) reference materials (RMs) BCR-2, BHVO-2, AGV-2, DTS-2 and GSP-2 and the original USGS RMs BCR-1, BHVO-1, AGV-1, DTS-1 and GSP-1 have been analysed by isotope dilution using thermal ionisation mass spectrometry (ID-TIMS) and by multi-ion counting spark source mass spectrometry (MIC-SSMS). The concentrations of K, Rb, Sr, Ba and the rare earth elements were determined with overall analytical uncertainties of better than 1% (ID-TIMS) and 3% (MIC-SSMS). The analyses of different aliquots and batches of BCR-2, BHVO-2, AGV-2 and GSP-2, respectively, agree within 1%, i.e. approximately the analytical uncertainties of the data. This indicates an homogeneous distribution of the trace elements in these RMs. Differences in element concentrations of up to 17% in different aliquots of the depleted RM DTS-2 are outside the analytical uncertainty of our data. They may be attributed to a slightly heterogeneous distribution of trace elements in this dunite sample. Our trace element data for BCR-2, BHVO-2, AGV-2 and GSP-2 agree within about 3% with preliminary reference values published by the USGS. They also agree within 1-6% with those of the original RMs BCR-1, BHVO-1, AGV-1 and GSP-1. Large compositional differences are found between DTS-2 and DTS-1, where the concentrations of K, Rb, Sr and the light REE differ by factors of 2 to 24. 相似文献
4.
利用多接收电感耦合等离子体质谱仪(Neptune plus)建立了高精度铅同位素比值MC-ICP-MS测试方法。建立该方法的过程中,重点评估了加入的Tl标准溶液对铅同位素比值测试结果的影响,并最终确定Tl标准溶液的浓度为25 ng/mL,同时样品溶液Pb的浓度应该大于25 ng/mL(即Pb/Tl浓度比应大于1)。利用该方法对铅同位素标准物质SRM 981进行了长期监控(2020年7月—2021年6月),测试结果为:206Pb/204Pb=16.9415±0.0010、207Pb/204Pb=15.4985±0.0009、208Pb/204Pb=36.7204±0.0023,与统计的文献报道值一致。长期监控的全流程空白均小于0.25 ng,能满足地质样品高精度铅同位素比值测试的需要。同时运用该方法,对4个元素含量标样(BCR-2、AGV-2、BHVO-2和BIR-1a)进行了铅同位素比值测试,测试结果与文献报道的测试结果和精度一致,表明建立的方法是准确、可靠的。 相似文献
5.
Major and trace element abundances in two different fragments of reference material basalt glass BCR-2G are reported. The data were obtained by ion and electron microprobe and represent both random point and profile analyses. Major and trace element abundances are constant within a few per mil and a few percent, respectively. This overall homogeneity is valid for scales of a few tens of micrometres to a few tens of centimetres. It is shown that the difference in the scatter of apparent element abundances is not due to chemical heterogeneity but reflects analytical uncertainty. Within error, the concentrations of both the major and lithophile trace elements in BCR-2G appear to be identical to the bulk dry weight abundances in BCR-1. Possible exceptions are the alkali metals. 相似文献
6.
Data are reported for rare earth elements (REE) in three geological glass reference materials (BIR-1G, BHVO-2G and BCR-2G) using a UV (266 nm) laser ablation ICP-MS system and the classical (HF-HClO 4) acid decomposition method, followed by conventional nebulisation ICP-MS. External calibration of laser ablation analyses was performed using NIST SRM reference materials with internal standardisation using 29Si and 44Ca. Replicate analyses of reference basaltic glasses yielded an analytical precision of 1-5% (RSD) for all the elements by solution ICP-MS and 1-8% (RSD) by laser ablation ICP-MS. The relative differences between the REE concentrations measured by solution and laser ablation ICP-MS compared with the reference values were generally less than 11 % for most elements. The largest deviations occurred for La determined by solution ICP-MS in BIR-1G. The results of both solution and laser ablation ICP-MS agreed well, generally better than 7%, with the exception of La, Pr and Sm in BIR-1G. The measured REE laser ablation data for BIR-1G, BHVO-2G and BCR-2G agreed with the previously published data on these basaltic reference glasses, within a range of 0-10% for most elements. No significant influences were observed for the predicted spectral interferences on some REE isotopes in the analysis of basaltic glasses. 相似文献
7.
We report silicon isotopic determinations for USGS rock reference materials BHVO-1 and BHVO-2 using a Nu Plasma multi-collector (MC)-ICP-MS, upgraded with a new adjustable entrance slit, to obtain medium resolution, as well as a stronger primary pump and newly designed sampler and skimmer cones ("B" cones). These settings, combined with the use of collector slits, allowed a resolution to be reached that was sufficient to overcome the 14N 16O and 14N 2 interferences overlying the 30Si and the 28Si peaks, respectively, in an earlier set-up. This enabled accurate measurement of both δ 30Si and δ 29Si. The δ value is expressed in per mil variation relative to the NBS 28 quartz reference material. Based on data acquired from numerous sessions spread over a period of six months, we propose a recommended average δ 30Si of −0.33 ± 0.05‰ and −0.29 ± 0.11‰ (2se) for BHVO-1 and BHVO-2, respectively. Our BHVO grand mean silicon isotope composition (δ 30Si =−0.31 ± 0.06‰) is significantly more negative than the only published value for BHVO-2, but is in very good agreement with the recently established average value of ocean island basalts (OIB), confirming the conclusion that the OIB reservoir has a distinct isotopic composition from the solar reservoir as sampled by chondrites. 相似文献
8.
The authors measured Pb isotope compositions of seven USGS rock reference standards, i.e. AGV-1, AGV-2, BHVO-1, BHVO-2, BCR-2, BER-1/1 and W-2, together with NBS 981 using a micromass isoprobe multi-collector inductively-coupled plasma mass spectrometer (MC-ICP-MS) at the University of Queensland. 203Tl-205Tl isotopes were used as an internal standard to correct for mass-dependant isotopic fractionation. The results for both NBS 981 and USGS rock standards AGV-1 and BHVO-1 are comparable to or better than double- and triple-spike TIMS (thermal ionization mass spectrometry) data in precision. The data for BHVO-2 and, to a lesser extent, AGV-2 and BCR-2 are reproducibly higher for 206Pb/204Pb, 207Pb/204Pb and 208Pb/204Pb than double-spike TIMS data in the literature. The authors also obtained the Pb isotope data for BIR-1/1 and W-2, which may be used as reference values in future studies. It is found that linear correction for Pb isotopic fractionation is adequate with the results identical to those corre 相似文献
9.
The Central Atlantic Magmatic Province (CAMP) is one of the largest igneous provinces on Earth, extending more than 5000 km north to south, on both sides of the Atlantic Ocean. Its emplacement occurred about 200 Ma ago, at the Triassic–Jurassic boundary, and is linked to the initial breakup of Pangaea. Two areas of the province are studied here: French Guyana/Surinam (South America) and Guinea (West Africa), in order to document the petrogenesis and geodynamical significance of high-Ti and low-Ti basaltic magmas from the CAMP. In Guyana, doleritic and gabbroic dykes are located on the edge of the Guiana Shield, and represent limited volumes of magma. They display low SiO2 (47–50%), high TiO2 (2.5–3.5%) and high FeO tholeiitic trends and show variably enriched trace element patterns ((La/Yb)n=1.5–5.1). Their isotopic signature and ratios of very incompatible elements (εNdi=+5.8 to +4.2, (87Sr/86Sr)i=0.703–0.705, (207Pb/204Pb)i=15.46–15.64) match a depleted PREMA (prevalent mantle)-like source. Their genesis can be modeled by ca. 15% partial melting of a lherzolite source, and a subsequent limited fractional crystallization (5–10%) or a slight upper crustal assimilation–fractional crystallization (AFC, r=0.1, Proterozoic contaminant). In Guinea, in contrast, huge volumes of CAMP magmas were intruded along the Rockelides suture and the West African craton, forming the Fouta Djalon sills and the Kakoulima laccolith. The laccolith is more than 1000 m thick. These features consist of gabbros, dolerites, diorites and mafic (gabbro) and ultramafic (dunite, wherlite) cumulates. Guinean tholeiites show high SiO2 (51–58%), low TiO2 (0.7–1.2%) and FeO trends, with high LILE/HFSE ratios and slight negative Nb–Ta anomalies. Isotopic signatures (εNdi=+0.4 to −5.3, (87Sr/86Sr)i=0.705–0.710, (207Pb/204Pb)i=15.57–15.66) indicate a more enriched source than for Guyana as well as a higher rate of magma–upper crust interaction through an AFC process (r=0.3, Birimian crust contaminant) and, probably, an additional upper crustal contamination for the most differentiated sample. This geochemical study supports the prevalence in Guinea, as for other low-Ti CAMP tholeiites, of a lithospheric mantle source, previously enriched during ancient subduction events, and preferentially reactivated in late Triassic times by edge-driven convection between cratonic and mobile belt domains. A larger contribution from a depleted asthenospheric source is required to generate high-Ti tholeiites in Guyana, which may reflect the development of CAMP rifting towards the initiation of the Central Atlantic oceanic crust. 相似文献
10.
The United States Geological Survey granitic and granodioritic reference materials G‐2 and GSP‐2 were decomposed in high‐pressure bombs using both HF‐HNO 3 and HF‐HNO 3‐HClO 4 in order to evaluate the feasibility of characterising the entire suite of geologically relevant trace elements through direct analysis with a high‐resolution inductively coupled plasma‐mass spectrometer (HR‐ICP‐MS). The digested samples were diluted to the appropriate levels and analysed at low, medium and high resolution depending on the required sensitivity and potential interferences for each element. Memory effects during analysis of the high field strength elements (HFSE) were negligible when analysed using an all‐Teflon, uncooled sample introduction system and combined with adequate wash times with 4% v/v aqua regia + 0.5% v/v HF between samples. The concentration of the remaining lithophile elements was determined with a conventional, cooled, Scott‐type spray chamber using a wash solution of 1% v/v HNO 3. Total procedural blanks contributed between 0.01 to 0.5% to final sample concentrations and blank subtractions were typically unnecessary. Abundances for Li, Hf, Ba, Zr, Ga, Rb, Sr, La, Ce, Th and U were systematically higher, while those for the heavy rare earth elements (HREEs), Cu and Y were systematically lower in this study compared to USGS values for G‐2 and GSP‐2. This is likely to be related to, respectively, higher recoveries from more efficient digestion of refractory phases (i.e., zircon, tourmaline), and better resolution of interferences when using a HR‐ICP‐MS. Sample digestion experiments also showed that perchloric acid digestion in high pressure bombs resulted in superior recoveries and better precision for the bulk of the trace elements analysed. The concentration of the remaining elements overlapped within uncertainty with recommended reference values and with values determined in other studies using isotope‐dilution TIMS, ICP‐MS and XRF. Concentrations for the elements Cd, Sn, Sb, Ta, Bi, Tb, Ni and Mo are also reported for G‐2 and GSP‐2 reference materials. Our study shows therefore that it is feasible to determine thirty‐nine geologically relevant trace elements accurately and directly in granitoid sample digests when using a HR‐ICP‐MS, thereby negating the need for ion exchange or isotopic spiking. 相似文献
11.
We present data for the concentrations of eleven rare earth elements (La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Er, Yb, Lu) in eleven international geochemical reference materials obtained by isotope dilution multi-collector inductively coupled plasma-mass spectrometry (MC-ICP-MS). We have analysed both rock powders and synthetic silicate glasses, and the latter provide precise data to support the use of these as reference materials for in situ trace element determination techniques. Our data also provide precise measurements of the abundance of mono-isotopic Pr in both glasses and powders, which allows more accurate constraints on the anomalous redox-related behaviour of Ce during geochemical processes. All materials were analysed in replicate providing data that typically reproduce to better than one percent. Sm/Nd ratios in all these materials also reproduce to better than 0.2% and are accurate to < 0.2% and can thus be used as calibrants for Sm-Nd geochronology. Our analyses agree well with existing data on these reference materials. In particular, for NIST SRM 610, USGS BHVO-2, AGV-1 and AGV-2, our measured REE abundances are typically within < 2% (and mostly 1%) of REE concentrations previously determined by isotope dilution analysis and thermal ionisation mass spectrometry, consistent with the higher degree of precision and accuracy obtained from isotope dilution techniques. Close agreement of results between basaltic glass reference materials USGS BHVO-2G and BCR-2G and the BHVO-2 and BCR-2 powders from which they were created suggests that little fractionation, concentration or dilution of REE contents occurred during glass manufacture. 相似文献
12.
内自古白乃庙地区产出有白乃庙铜(金)矿床(南、北矿带)、白乃庙金矿床和徐尼乌苏金矿化带,是华北陆台北缘金属成矿带的重要组成部分。笔者测定和解释了上述三个矿床的钕、锶和铅同位素比值和变化特征。研究认为:白乃庙铜(金)矿床南、北矿带在成矿时代、成矿物质来源和形皮过程方面存在明显差异,南矿带条带状、块状硫化物矿石的形成作用始于1130×10 ̄6a前的基性火山喷发活动。相比之下,北矿带细脉浸染状和脉状铜-钼-金矿石与加里东期(440×10 ̄6a)花岗闪长斑岩的侵位和结晶分异密切相关。白乃庙金矿床和徐尼乌苏金矿化带是岩浆热液、大气降水混合,并且对基底岩层或绿片岩围岩进行淋滤、萃取的结果。白乃庙地区铜(金)矿床和金矿床(点)成矿物质来源和形成机制的厘定,对于了解华北地台北缘内蒙古中南段金属成矿带的形成与演化具有重要意义。 相似文献
13.
通过对陕西金堆城钼矿区花岗斑岩体和八里坡斑岩体进行地球化学测试,测得金堆城斑岩体的SiO2含量为72.89%~74.06%,MgO为0.07%~0.3%,稀土总量为43.29×10-6~93.94×10-6,稀土元素配分曲线呈右倾型,具有明显的铕负异常和弱的负铈异常(δEu为0.43~0.78,δCe为0.74~0.86),富集大离子亲石元素K、Rb、U、Th和Sr等元素,亏损Ba、P和Ti等元素。八里坡斑岩体的SiO2含量为69.87%~70.80%,Al2O3 14.93%~15.46%,MgO 0.28%~0.48%,Sr/Y比值大于60,稀土总量为125.23×10-6~139.63×10-6,铕为无异常或微弱的正异常(δEu为0.98~1.04),铈为微弱的负异常(δCe为0.92~0.96),富集Ba、U、K等大离子亲石元素,而亏损P、Ta和Ti等元素。金堆城斑岩体和八里坡斑岩体的岩石类型为I型花岗岩,Pb同位素显示金堆城斑岩体的Pb主要来自下地壳,但有地幔物质的加入,八里坡斑岩体的Pb主要来自下地壳。金堆城斑岩体的ε(Nd,t)值为较低负值(-13.8~-15.2),但ε(Sr,t)变化较大,为-46.4~13.6,八里坡斑岩体具有负低ε(Nd,t)值(-20.4)和正高ε(Sr,t)值(64.5~65.2)。金堆城花岗斑岩和八里坡花岗斑岩的Sr、Nd、Pb同位素与华北地块相似,这两个岩体的源区为华北地块组成部分。 相似文献
14.
New glass reference materials GSA-1G, GSC-1G, GSD-1G and GSE-1G have been characterised using a prototype solid state laser ablation system capable of producing wavelengths of 193 nm, 213 nm and 266 nm. This system allowed comparison of the effects of different laser wavelengths under nearly identical ablation and ICP operating conditions. The wavelengths 213 nm and 266 nm were also used at higher energy densities to evaluate the influence of energy density on quantitative analysis. In addition, the glass reference materials were analysed using commercially available 266 nm Nd:YAG and 193 nm ArF excimer lasers. Laser ablation analysis was carried out using both single spot and scanning mode ablation. Using laser ablation ICP-MS, concentrations of fifty-eight elements were determined with external calibration to the NIST SRM 610 glass reference material. Instead of applying the more common internal standardisation procedure, the total concentration of all element oxide concentrations was normalised to 100%. Major element concentrations were compared with those determined by electron microprobe. In addition to NIST SRM 610 for external calibration, USGS BCR-2G was used as a more closely matrix-matched reference material in order to compare the effect of matrix-matched and non matrix-matched calibration on quantitative analysis. The results show that the various laser wavelengths and energy densities applied produced similar results, with the exception of scanning mode ablation at 266 nm without matrix-matched calibration where deviations up to 60% from the average were found. However, results acquired using a scanning mode with a matrix-matched calibration agreed with results obtained by spot analysis. The increased abundance of large particles produced when using a scanning ablation mode with NIST SRM 610, is responsible for elemental fractionation effects caused by incomplete vaporisation of large particles in the ICP. 相似文献
15.
内蒙古鸡冠山钼矿床位于中亚-蒙古巨型造山带东段,是西拉沐沦钼金属成矿带中典型的大型斑岩型钼矿床。矿床产于燕山晚期火山侵入杂岩中,矿体与岩体关系密切,矿化类型以细脉浸染状斑岩型矿化为主。在野外地质观察的基础上,本文对矿石矿物黄铁矿、辉钼矿进行了S同位素组成分析,对矿床围岩全岩及黄铁矿单矿物进行了Pb同位素组成分析。结果表明,钼矿石δ~(34)S变化范围为4. 617‰~7. 072‰,平均值为5. 653‰,离散度小,硫化物δ~(34)S值全为正值,表明矿石中S源是均一的。辉钼矿δ~(34)S变化范围为4. 617‰~5. 351‰,平均值为4. 875‰。硫同位素比值5. 653‰具花岗质岩浆硫特征,推测其硫可能主要来源于下地壳岩浆源,并有一定量的地幔物质混入。全岩的~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb和~(208)Pb/~(204)Pb分别为17. 876~19. 618、15. 519~15. 609和38. 111~40. 408,表明鸡冠山钼矿床围岩的全岩铅同位素组成均变化较大。矿石矿物黄铁矿的~(206)Pb/~(204)Pb、~(207)Pb/~(204)Pb和~(208)Pb/~(20 4)Pb分别为17. 781~17. 830、15. 523~15. 526和38. 084~38. 102,表明矿石矿物铅同位素组成变化较小。围岩全岩和矿石硫化物的铅同位素投影点均落在造山带演化线的下方,表明铅很可能源于地幔或者下地壳。 相似文献
16.
The Yinchanggou Pb-Zn deposit, located in southwestern Sichuan Province, western Yangtze Block, is stratigraphically controlled by late Ediacaran Dengying Formation and contains >0.3 Mt of metal reserves with 11 wt% Pb + Zn. A principal feature is that this deposit is structurally controlled by normal faults, whereas other typical deposits nearby (e.g. Maozu) are controlled by reverse faults. The origin of the Yinchanggou deposit is still controversial. Ore genetic models, based on conventional whole-rock isotope tracers, favor either sedimentary basin brine, magmatic water or metamorphic fluid sources. Here we use in situ Pb and bulk Sr isotope features of sulfide minerals to constrain the origin and evolution of hydrothermal fluids. The Pb isotope compositions of galena determined by femtosecond LA-MC-ICPMS are as follows: 206Pb/ 204Pb = 18.17–18.24, 207Pb/ 204Pb = 15.69–15.71, 208Pb/ 204Pb = 38.51–38.63. These in situ Pb isotope data overlap with bulk-chemistry Pb isotope compositions of sulfide minerals ( 206Pb/ 204Pb = 18.11–18.40, 207Pb/ 204Pb = 15.66–15.76, 208Pb/ 204Pb = 38.25–38.88), and both sets of data plotting above the Pb evolution curve of average upper continental crust. Such Pb isotope signatures suggest an upper crustal source of Pb. In addition, the coarse-grained galena in massive ore collected from the deep part has higher 206Pb/ 204Pb ratios (18.18–18.24) than the fine-grained galena in stockwork ore sampled from the shallow part ( 206Pb/ 204Pb = 18.17–18.19), whereas the latter has higher 208Pb/ 204Pb ratios (38.59–38.63) than the former ( 208Pb/ 204Pb = 38.51–38.59). However, both types of galena have the same 207Pb/ 204Pb ratios (15.69–15.71). This implies two independent Pb sources, and the metal Pb derived from the basement metamorphic rocks was dominant during the early phase of ore formation in the deep part, whereas the ore-hosting sedimentary rocks supplied the majority of metal Pb at the late phase in the shallow part. In addition, sphalerite separated from different levels has initial 87Sr/ 86Sr ratios ranging from 0.7101 to 0.7130, which are higher than the ore formation age-corrected 87Sr/ 86Sr ratios of country sedimentary rocks ( 87Sr/ 86Sr 200 Ma = 0.7083–0.7096), but are significantly lower than those of the ore formation age-corrected basement rocks ( 87Sr/ 86Sr 200 Ma = 0.7243–0.7288). Again, such Sr isotope signatures suggest that the above two Pb sources were involved in ore formation. Hence, the gradually mixing process of mineralizing elements and associated fluids plays a key role in the precipitation of sulfide minerals at the Yinchanggou ore district. Integrating all the evidence, we interpret the Yinchanggou deposit as a strata-bound, normal fault-controlled epigenetic deposit that formed during the late Indosinian. We also propose that the massive ore is formed earlier than the stockwork ore, and the temporal-spatial variations of Pb and Sr isotopes suggest a certain potential of ore prospecting in the deep mining area. 相似文献
17.
The Lamont‐Doherty Earth Observatory radiogenic isotope group has been systematically measuring Sr‐Nd‐Pb‐Hf isotopes of USGS reference material BCR‐2 (Columbia River Basalt 2), as a chemical processing and instrumental quality control monitor for isotopic measurements. BCR‐2 is now a widely used geochemical inter‐laboratory reference material (RM), with its predecessor BCR‐1 no longer available. Recognising that precise and accurate data on RMs is important for ensuring analytical quality and for comparing data between different laboratories, we present a compilation of multiple digestions and analyses made on BCR‐2 during the first author's dissertation research. The best estimates of Sr, Nd and Hf isotope ratios and measurement reproducibilities, after filtering at the 2 s level for outliers, were 87Sr/ 86Sr = 0.705000 ± 11 (2 s, 16 ppm, n = 21, sixteen digestions, one outlier), 143Nd/ 144Nd = 0.512637 ± 13 (2 s, 25 ppm, n = 27, thirteen digestions, one outlier) and 176Hf/ 177Hf = 0.282866 ± 11 (2 s, 39 ppm, n = 25, thirteen digestions, no outliers). Mean Nd and Hf values were within error of those reported by Weis et al. (2006, 2007) in their studies of RMs; mean Sr values were just outside the 2 s uncertainty range of both laboratories. Moreover, a survey of published Sr‐Nd‐Hf data shows that our results fall within the range of reported values, but with a smaller variability. Our Pb isotope results on acid leached BCR‐2 aliquots ( n = 26, twelve digestions, two outliers) were 206Pb/ 204Pb = 18.8029 ± 10 (2 s, 55 ppm), 207Pb/ 204Pb = 15.6239 ± 8 (2 s, 52 ppm), 208Pb/ 204Pb = 38.8287 ± 25 (2 s, 63 ppm). We confirm that unleached BCR‐2 powder is contaminated with Pb, and that sufficient leaching prior to digestion is required to achieve accurate values for the uncontaminated Pb isotopic compositions. 相似文献
18.
宝山铅锌矿床是湘南地区代表性矿床之一。宝山铅锌矿床的成矿作用与156~158 Ma的宝山花岗闪长斑岩密切相关。花岗闪长斑岩主要由古老地壳部分熔融而成。为确定成矿物质来源,文章系统研究了宝山铅锌矿床的硫、铅、碳、氧同位素组成特征。矿床中硫化物黄铁矿、闪锌矿、方铅矿的δ34S值呈狭窄的塔式分布,变化在-2.17‰~6.46‰之间,平均值为3.13‰。δ34S值总体表现为δ34S黄铁矿δ34S闪锌矿δ34S方铅矿,表明硫同位素分馏基本达到了平衡。矿石、花岗闪长斑岩和赋矿地层硫同位素对比研究表明,矿石中的硫主要由岩浆分异演化而来,岩浆中的硫主要来自古老地壳。矿石206Pb/204Pb、207Pb/204Pb和208Pb/204Pb比值分别为18.188~18.844、15.661~15.843和38.562~39.912,赋矿地层206Pb/204Pb、207Pb/204Pb和208Pb/204Pb比值分别为18.268~19.166、15.620~5.721和38.364~39.952。矿石铅同位素组成比地层中的更富放射性成因铅,矿石中部分铅来自宝山花岗闪长质岩浆,在成矿流体运移过程中有部分地层铅参与了成矿,岩浆中的铅主要来自古老地壳。热液方解石的碳、氧同位素组成介于岩浆和赋矿碳酸盐岩的碳、氧同位素之间,主要是由于岩浆流体和碳酸盐岩不同比例的水岩反应所致,测水组有机碳的加入造成了部分热液方解石δ13CPDB值偏低。 相似文献
19.
Here, we present determinations of thallium (Tl) concentrations in the USGS reference materials BIR‐1G, BHVO‐2G and BCR‐2G measured by solution ICP‐MS. The Tl content in these three glasses spans a range of about 2–230 ng g ?1, which is similar to the values published for the respective powder materials. The determined range of Tl concentrations in these three glass reference materials makes them ideal for investigating Tl concentrations in basaltic and andesitic volcanic glasses. We also performed a series of laser ablation ICP‐MS measurements on the three samples, which show that this technique is able to determine Tl concentrations in glass samples with concentrations as low as 2 ng g ?1. 相似文献
20.
In this study, the Cd isotopic composition of various geological reference materials and anthropogenic samples was investigated. The measurements were made by multicollector ICP-MS and instrumental mass fractionation was controlled using a "sample-standard bracketing" technique. Cadmium isotopic data are reported relative to an internal Cd solution (Cd Spex) and expressed as the 114 Cd/ 110Cd delta value. Two other Cd solutions (Prolabo and JMC) were analysed and yielded the same 0% delta value. A fractionated Cd metal sample (Münster Cd) was used as a secondary reference material for Cd isotopic measurements and we obtained a 114 Cd/ 110 Cd delta value of 4.48% relative to Cd Spex solution. As opposed to multi-stage Cd purification previously published in the literature, a new one step anionic exchange purification using dilute HCl for the analysis of Cd isotopes in geological samples was developed. This method enabled a high recovery (> 95%) and effective separation of the sample matrix to be achieved. The long-term external reproducibility was evaluated at 0.12% (2 standard deviations) for the 114 Cd/ 110Cd ratio, based on reference solutions and replicated measurements of samples over one year. The variation of Cd isotopic composition of natural terrestrial samples is restricted to a small range of 0.4%, which is similar to previously reported results. In contrast, large variations of Cd isotopic composition were found for anthropogenic samples with values as low as −0.64% for a dust sample issued from a lead smelter and values as high as +0.50% for NIST SRM 2711 (metal-rich soil). These variations are 10 times larger than the reproducibility and suggest that Cd isotopes can be useful as tracers of anthropogenic sources of Cd in the environment. 相似文献
|