首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pyrite oxidation: a state-of-the-art assessment of the reaction mechanism   总被引:1,自引:0,他引:1  
The oxidation of pyrite to release ferrous iron and sulfate ions to solution involves the transfer of seven electrons from each sulfur atom in the mineral to an aqueous oxidant. Because only one or, at most, two electrons can be transferred at a time, the overall oxidation process is quite complex. Furthermore, pyrite is a semiconductor, so the electrons are transferred from sulfur atoms at an anodic site, where oxygen atoms from water molecules attach to the sulfur atoms to form sulfoxy species, through the crystal to cathodic Fe(II) sites, where they are acquired by the oxidant species. The reaction at the cathodic sites is the rate-determining step for the overall process. This paper maps out the most important steps in this overall process.  相似文献   

2.
《Chemical Geology》2006,225(1-2):16-29
Pyrite oxidation rates were examined at various concentrations of dissolved oxygen (DO) in the presence of the sulfur and iron oxidizer Acidithiobacillus ferrooxidans. Five different batch experiments were performed at room temperature for 75 days under various DO levels (273, 129, 64.8, 13.2, and ≤ 0.006 μM), containing pyrite grains (particle size 63–250 μm) and a modified 9K nutrient medium at pH 3. The reactors were inoculated with A. ferrooxidans. In all experiments, pH decreased with time and sulfur and iron were released to the solution, indicating pyrite oxidation at all DO levels. Pyrite oxidation rates (ca. 5 × 10 10 mol m 2 s 1 at 273 μM DO) from all experiments showed positive correlation with DO, Fe(III), and bacterial concentration. These rates were significantly slower than rates presented in other published studies, but this is probably due to the significantly greater Fe(III) concentration at lower pH in these previous studies. The results obtained in this study suggest that ferric iron reduction at the pyrite surface is the primarily mechanism for microbial pyrite oxidation in the presence of DO. The results from our study support the indirect mechanism of sulfide oxidation, where A. ferrooxidans oxidizes ferrous iron in the presence of DO, which then oxidizes pyrite.  相似文献   

3.
4.
《Applied Geochemistry》1994,9(2):161-173
Possible groundwater quality changes related to pyrite oxidation during artificial groundwater recharge and its storage in the Tertiary sands of the London Basin are investigated. Pyrite textures in the Tertiary sands are examined by scanning electron microscopy while an experimental approach is used to study mechanisms of pyrite oxidation and of some associated chemical reactions. In the Tertiary sands of the London Basin aquifer, pyrite occurs as aggregates made of discrete individual crystals 0.5–5 μm in size or, in a cryptocrystalline form, often as pseudomorphs of biogenic debris. It can expose a very large specific surface area to porefluids. Although ferric iron, which can be an oxidising agent of pyrite, is abundant in the solid phase of the Tertiary sands, it does not appear to take a significant part in this case. Pyrite oxidation seems to rely on a supply of oxygen. Leaching experiments using a 0.001 M H2SO4 solution were carried out to examine interactions between mildly acidic groundwater resulting from pyrite oxidation at a moderate rate and the host-sediment. In the presence of CaCO3 in the solid phase, H+ is rapidly buffered by CaCO3 dissolution. Oscillations of this reaction around equilibrium appear to trigger cation-exchange reactions on clay mineral surfaces, resulting in the release of major cations (e.g. K and Mg) into solution. In the absence of CaCO3 in the solid phase, H+ buffering occurs less efficiently solely through exchange of cations for H+ on clay minerals surfaces. If the rate of pyrite oxidation in the Tertiary sands becomes high enough for the buffering capacity of the system to be exceeded, the groundwater pH begins to fall. Interactions between low pH (2) groundwaters and the host sediments were examined by leaching solid material in 0.01 M and 0.1 M H2SO4 solutions. Concentrations of Fe, Mg and K increase in solution throughout the experiment, indicating partial dissolution of clay minerals. The composition of the porefluid thus depends on the geochemical composition and surface area of the different clay minerals present.  相似文献   

5.
We investigated the phosphorus (P) and iron (Fe) fractionation in four cores with anoxic sediments, deposited during the mid-Cretaceous oceanic anoxic event 2 (∼94 Ma) and the Paleocene-Eocene thermal maximum (∼55 Ma), that were exposed to oxygen after core recovery. Surprisingly, P associated with iron oxyhydroxides (Fe-bound P) was a major P phase in these laminated sediments deposited under euxinic conditions. A significant fraction of total Fe was present as (poorly) crystalline ferric Fe. This fraction increased with increasing storage time of the investigated cores. In carbonate-poor samples, Fe-bound P accounted for up to 99% of total P and its abundance correlated with pyrite contents. In samples with higher CaCO3 contents (>5 wt% in the investigated samples), P was mostly present in authigenic Ca-P minerals, irrespective of pyrite contents. We conclude that the P fractionation in anoxic, carbonate-poor, sediments is strongly affected by pyrite oxidation that occurs when these sediments are exposed to oxygen. Pyrite oxidation produces sulfuric acid and iron oxyhydroxides. The abundance of poorly crystalline Fe oxyhydroxides provides further evidence that these were indeed formed through recent (post-recovery) oxidation rather than in situ tens of millions of years ago. The acid dissolves apatite and the released phosphate is subsequently bound in the freshly formed iron oxyhydroxides. Pyrite oxidation thus leads to a conversion of authigenic Ca-P to Fe-bound P. In more calcareous samples, CaCO3 can act as an effective buffer against acidic dissolution of Ca-P minerals. The results indicate that shielding of sediments from atmospheric oxygen is vital to preserve the in situ P fractionation and to enable a valid reconstruction of marine phosphorus cycling based on sediment records.  相似文献   

6.
The rate of pyrite oxidation in moist air was determined by measuring, over time, the pressure difference between a sealed chamber containing pyrite plus oxygen and a control. The experiments carried out at 25°C, 96.7% fixed relative humidity, and oxygen partial pressures of 0.21, 0.61, and 1.00 atm showed that the rate of oxygen consumption is a function of oxygen partial pressure and time. The rates of oxygen consumption (r, mol/m2sec) fit the expression
(A)  相似文献   

7.
Pyrite oxidation is considered to be a main contribution to the acidification of minesite spoils and the generation of the Acid Mine Drainage (AMD) which has become the greatest threat to the ecological environment. In this paper, pyrite oxidation and its controls are reviewed with respect to the latest literature. Conceptual model and empirical rate law model with reference to indoor experiments are classified and presented to describe pyrite oxidation in heterogeneous minesite spoil piles. The influences of Thiobacillus (T) ferrooxidans on pyrite oxidation are simply summarized. In order to prevent the generation of the AMD, three approaches including the addition of alkali to minesite spoil, use of dry covers, and coating on the minesite spoil surface, are discussed.  相似文献   

8.
黄铁矿净化水中低浓度磷   总被引:2,自引:0,他引:2  
以产自安徽铜陵新桥矿的黄铁矿为典型样品,研究黄铁矿对磷的吸附作用。静态实验考察黄铁矿粒度、固液比、pH值、离子强度、温度、吸附时间等因素对黄铁矿去除磷效果的影响,XPS和FE-SEM研究吸附磷后黄铁矿颗粒表面形貌和成分特征。结果表明:黄铁矿粒径越小(50~180目),去除磷效率越高(9.3%~90.7%);提高固液比(0.2~2 g/L),磷的去除率增加(6.5%~97.1%);在pH值3~9.65范围内黄铁矿对磷都有很好的去除效率(95%以上);NO3-对磷的去除效果表现为微弱的促进作用,Cl-有微弱的抑制作用,溶液中SO42-、HCO3-对黄铁矿吸附磷表现出较强的抑制作用。温度对黄铁矿吸附效率基本没有影响。黄铁矿对磷吸附动态实验表明除磷效率在16 h后接近最大值。除磷作用机理是黄铁矿表面缓慢氧化产生的三价铁对磷的化学吸附。成果表明黄铁矿用于净化污水中低浓度磷具有很大的潜力。  相似文献   

9.
Sulfide oxidation by microbial activities play an important role in the release of heavy metals. An important source of contamination and formation of AMD is the heavy metals convey to soil, rivulet and groundwater. Pyrite is a commonly sulfide minerals in mine wastes, so it is vitally to prove up the microbial oxidation process.  相似文献   

10.
The Iberian Pyrite Belt is a world-ranking massive sulphide province in which a reassessment of the palaeovolcanology has dramatically changed understanding of the source of metals and mechanism of ore formation. In the northern sector, the deposits are hosted by a sill–sediment complex in which more than 90% of the sills post-date the sulphide sheets. Because of a very high sill/sediment ratio, these late intrusions dominate the host succession and have severely disrupted the post-mineralization configuration thus obscuring the true genetic relationships. For example, some oxide deposits have been separated by hectometric sills from sulphide deposits they originally capped, creating seemingly totally independent mineralizing systems. In addition, stratiform sulphide sheets without underlying stockworks are not necessarily allochthonous. An early timing for the mineralization with respect to volcanism means that metals had to be predominantly sourced from the sedimentary basin and the continental crust below the volcanogenic sequence.  相似文献   

11.
黄铁矿载金的原因和特征   总被引:21,自引:0,他引:21  
对102个金矿床载金矿物的统计表明,黄铁矿是最普遍最重要的载金矿物。造成黄铁矿成为主要载金矿物的原因,有三个矿物学方面的因素,即结构因素、成核因素和电化学因素。结构因素表现在黄铁矿晶体结构中存在对硫 [S2]2-,对硫 形成过程中对金离子具还原效应。成核因素表现在自然金成核常选择原子排布与之最接近的黄铁矿表面为衬底,以降低成核能。电化学因素表现在黄铁矿的热电性导致金离子在其表面发生电化学反应而沉淀结晶。对黄铁矿载金能力的分析表明,细粒、它形、裂隙发育程度高、As和Sb含量高以及P型的黄铁矿载金能力高,自形黄铁矿中的{210}、S面{100}及其聚形晶的载金能力高。  相似文献   

12.
电感耦合等离子体原子发射光谱法测定黄铁矿中微量元素   总被引:5,自引:7,他引:5  
常平  王松君等 《岩矿测试》2002,21(4):304-306
采用电感耦合等离子体原子发射光谱法检测了黄铁矿中Cd,Co,Cu,Mn,Pb,Zn和Ni。用干扰系数校正法消除黄铁矿中铁对上述元素的干扰,采用HCl-HNO3体系溶解矿样,不需化学分离,直接测定。方法已应用于国家标准物质GBW07267的测定。结果与标准值相符,相对标准偏差(n=8)为1.5%-7.3%。  相似文献   

13.
We used scanning electron microscopy and energy dispersive X-ray analysis to examine sediments from vegetated portions of three salt marshes, the Great Sippewissett Marsh (Cape Cod, MA), Sapelo Island (Georgia), and the Hackensack Meadowlands (N.J.), and from the sediments of an estuary, Newark Bay (N.J.). Pyrite particles were abundant in sediments from all sites. Both fine grained pyrite crystals and framboids were found. Single, fine grained crystals (diameter = 0.2 to 2.0 micrometers) predominated in all samples, strong evidence for rapid formation of pyrite.We also found both microcrystalline and framboidal iron-oxyhydroxide phases in many of the sediment samples. This is evidence of pyrite oxidation within the sediments and suggests that iron is conserved in salt marshes even as pyrite is oxidized. The thermodynamic stability of iron phases in marsh sediments, and recent pyrite oxidation studies in coal, suggest goethite as the crystalline iron-oxyhydroxide phase present. In addition, we sometimes found a red amorphous coating on grass roots from the Great Sippewissett and Sapelo Island marshes. This coating is likely a form of hydrated iron (III) oxide.  相似文献   

14.
Palaeosols may be modified in a variety of ways during burial diagenesis but significant alteration can take place during the earliest phases of burial caused by rising groundwaters. A calcrete palaeosol, the Heatherslade Geosol, from the Lower Carboniferous of South Wales, contains abundant pyrite which overprinted the original soil fabrics. The pyrite is interpreted as the product of anaerobic conditions caused by drowning during the early stages of a marine transgression. Unusual diamond-shaped forms of pyrite occur which possibly represent pseudomorphs after gypsum.  相似文献   

15.
Pyrite is an environmentally significant mineral being the major contributor to acid rock drainage. Synchrotron based SPEM (scanning photoelectron microscopy) and micro-XPS (X-ray photoelectron spectroscopy) have been used to characterise fresh and oxidised pyrite (FeS2) with a view to understanding the initial oxidation steps that take place during natural weathering processes. Localised regions of the pyrite surface containing Fe species of reduced coordination have been found to play a critical role. Such sites not only initiate the oxidation process but also facilitate the formation of highly reactive hydroxyl radical species, which then lead the S oxidation process.Four different S species are found to be present on fresh fractured pyrite surfaces: S22−(bulk) (4-fold coordination), S22−(surface) (3-fold coordination), S2− and S0/Sn2− (metal deficient sulfide and polysulfide respectively). These species were found to be heterogeneously distributed on the fractured pyrite surface. Both O2 and H2O gases are needed for effective oxidation of the pyrite surface. The process is initiated when O2 dissociatively and H2O molecularly adsorb onto the surface Fe sites where high dangling bond densities exist. H2O may then dissociate to produce OH radicals. The adsorption of these species leads to the formation of Fe-oxy species prior to the formation of sulfoxy species. Evidence suggests that Fe-O bonds form prior to Fe-OH bonds. S oxidation occurs through interactions of OH radicals formed at the Fe sites, with formation of SO42− occurring via S2O32−/SO32− intermediates. The pyrite oxidation process is electrochemical in nature and was found to occur in patches, where site specific adsorption of O2 and H2O has occurred. Fe and S oxidation was found to occur within the same area of oxidation probably in atomic scale proximity. Furthermore, the O in SO42− arises largely from H2O; however, depending on the surface history, SO42− formed early in the oxidation process may also contain O from O2.  相似文献   

16.
本项工作试图利用等离子光谱分析的特点,制定一个用样量少,分析速度快,分析成本低和测定元素多的黄铁矿单矿物分析方法。由于黄铁矿单矿物中铁的干扰严重,几项易挥发元素的检出限较差,所以还需保持必要的取样量。 实验部分 1.工作条件 光量计:Jarrell—Ash Mark Ⅲ 1160 Plasma ATOMCOMP 雾化器:高盐雾化器,附蠕动泵。  相似文献   

17.
 Acid mine drainage (AMD) occurs when sulfide minerals are exposed to an oxidizing environment. Most of the methods for preventing AMD are either short-term or high cost solutions. Coating with iron phosphate is a new technology for the abatement of AMD. It involves treating the sulfide with a coating solution composed of H2O2, KH2PO4, and sodium acetate as a buffer agent. The H2O2 oxidizes the sulfide surface and produces Fe3+ so that iron phosphate precipitates as a coating on the sulfide surface. Experiments performed under laboratory conditions prove that an iron phosphate coating can be established on pyrrhotite surfaces with optimal concentrations of the coating solution in the range of: 0.2M/0.01M H2O2, 0.2M KH2PO4, and 0.2M sodium acetate NaAc, depending on the experimental scale. Iron phosphate coating may be a long-term solution to the problem of AMD. The method would be easy to implement; the reagent cost, however, is not low enough, although it is lower than the conventional treatment with lime. Received: 30 March 1995 · Accepted: 6 September 1995  相似文献   

18.
Carbonate chimneys and other carbonate structures occur widespread in the Gulf of Cadiz and probably reflect the presence of cold seeps and associated release of methane in the geological past, possibly in the Early Pleistocene, but it is unclear under what conditions and by which processes these carbonates were formed. We studied a fossil methane-related carbonate crust collected from the Kidd mud volcano in the gulf. Concentrations of microbial lipids, their stable carbon isotope composition, sequences of fossil 16S rRNA genes of anaerobic methanotrophic archaea in combination with mineralogical and carbon and oxygen isotopic composition of carbonate were obtained for seven different horizons of the crust. This combination of organic and inorganic geochemical techniques with molecular ecological methods gave a consistent view on processes resulting in the formation of the crust and indicated that it took place in two phases and in a downward direction. Archaeal lipid biomarkers and fossil 16S rRNA gene sequence data revealed the dominance of archaeal ANME-2 group and elevated methane partial pressures during the formation of the top part of the crust. The lower part of the carbonate was likely formed in an environment with reduced methane fluxes as revealed by the dominance of fossil remains of ANME-1 archaea. The combination of these methods can be used as an effective tool to reconstruct in unprecedented detail the palaeo-biogeochemical processes resulting in the formation of carbonate fabrics. This interdisciplinary strategy may also be applied for other fossil methane-derived carbonates, generating new concepts and knowledge about past methane-related carbonate systems.  相似文献   

19.
The chemolithoautotrophic bacterium, Acidithiobacillus ferrooxidans, commonly occurs in acid mine drainage (AMD) environments where it is responsible for catalyzing the oxidation of pyrite and concomitant development of acidic conditions. This investigation reports on the growth of this bacterial species on the pyrite surface and in the aqueous phase at a pH close to 2 as well as the role of adsorbed lipid in preventing pyrite dissolution. Both acid washed pyrite and acid-washed pyrite coated with lipids were used as substrates in the studies. The choice of lipid, 1,2-bis(10,12-tricosadiynoyl)-sn-Glycero-3-Phosphocholine lipid (23:2 Diyne PC), a phosphocholine lipid, was based on earlier work that showed that this lipid inhibits the abiotic oxidation rate of pyrite. Atomic force microscopy showed that under the experimental conditions used in this study, the lipid formed ~4–20 nm layers on the mineral surface. Surface-bound lipid greatly suppresses the oxidation process catalyzed by A. ferrooxidans. This suppression continued for the duration of the experiments (25 days maximum). Analysis of the bacterial population on the pyrite surface and in solution over the course of the experiments suggested that the pyrite oxidation was dependent in large part on the fraction of bacteria bound to the pyrite surface.  相似文献   

20.
It has been suggested that the two morphologies of sedimentary pyrite, framboids and euhedra, may reflect two distinct pathways of pyrite formation. Framboids form indirectly via iron monosulphides, whereas euhedra form from direct precipitation from solution. A third pathway which is bridging these two forms is proposed here, namely the continuous growth from a monosulphide globule through framboids to a euhedral single crystal. It is also suggested that framboids probably occur over a range of three orders of magnitude, from the least complex microframboids through framboids to polyframboids.Dedicated to Professors G. C. Amstutz and L. G. Love for their unrivalled contribution to the knowledge of pyrite framboids  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号