首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 531 毫秒
1.
四川盆地H2S的硫同位素组成及其成因探讨   总被引:23,自引:3,他引:20  
四川盆地天然气绝大部分含有硫化氢,部分含量高达15%以上。其中高含硫化氢天然气主要分布在三叠系飞仙关组、雷口坡组和嘉陵江组;震旦系、石炭系、二叠系属于低含硫化氢,上三叠统须家河组和侏罗系属于微含硫化氢或不含硫化氢天然气藏。研究表明,三叠系飞仙关组、雷口坡组和嘉陵江组、震旦系、石炭系储层中发育的膏质岩类为TSR形成硫化氢提供了物质基础;富含有机硫源岩的高温裂解是二叠系低含硫化氢天然气的主要成因。硫同位素组成表明,高含硫化氢天然气的硫同位素比储层硫酸盐硫同位素δ34S亏损7‰~11‰;而低含硫化氢天然气硫同位素分布区间较宽,在0‰~20‰之间,大部分比同期硫酸盐的硫同位素轻15‰左右。四川盆地三叠系膏岩的硫同位素值分布较宽,并呈现阶梯状变化,而硫化氢的硫同位素则呈现出相似的分布规律,表明各气层硫化氢中的硫来自于本层系的硫酸盐,即TSR发生在各自的储集层中;另外四川盆地三叠系TSR发生时各气藏的温度条件相近,即各气藏的硫化氢在大致相同的温度条件下发生;同时也说明TSR过程中硫同位素的分馏过程与硫酸盐本身硫同位素数值的高低无关,而与TSR反应的温度条件和反应程度有关。还建立了运用硫化氢的硫同位素和含量判识硫化氢成因类型的模式。  相似文献   

2.
全球含硫化氢天然气的分布特征及其形成主控因素   总被引:1,自引:0,他引:1       下载免费PDF全文
含硫化氢天然气是天然气资源的重要组成部分,也是硫磺的重要来源之一,其全球资源量巨大,分布范围广泛。高含硫化氢天然气主要分布在北美洲、欧洲、前苏联、中东、亚洲等地区的大型油气田中。这些油气田的油气地球化学性质各不相同,硫化氢成因复杂,硫化氢含量变化较大,从0.1%~98%都有分布。通过对全球各大含硫化氢油气田进行系统的调查研究,发现含硫化氢的油气藏主要分布在三叠纪和石炭纪碳酸盐岩储层中,构造位置位于被动大陆边缘;碳酸盐岩储集体物性较好,盖层通常由膏盐与岩盐组成,膏盐的位置对硫化氢的产生影响很大;良好的盖层也是大量硫化氢气体得以聚集保存的重要条件。大量硫化氢的产生一般出现在温度等于或高于120℃的储集体中,并伴随有大量的二氧化碳产生。  相似文献   

3.
天然气中硫化氢硫同位素组成及沉积地球化学相   总被引:26,自引:3,他引:26  
沈平  王兰生 《沉积学报》1997,15(2):216-219
四川盆地天然气中普遍含有较高浓度的H2S。作者在四川各时代气田采集气样近120个,分析了H2S含量资料、探讨了天然气中H2S浓度及其硫同位素组成与沉积地球化学相的相关性。研究表明,高硫化氢浓度和高δ34s值均与碳酸盐-蒸发盐岩的分布有直接的成因联系。而与煤系、碎屑岩和非碳盐的海相地层形成的天然气中其硫化氢含量低、δ34s值也低。据此,本文利用硫化氢硫同位素探讨天然气的来源及沉积环境。  相似文献   

4.
TSR(硫酸盐热化学还原反应)是高含硫化氢天然气形成的重要途径,是指烃类在高温条件下将硫酸盐还原生成H2S、CO2等酸性气体的过程。由于硫化氢的剧毒和强腐蚀性,在石油天然气行业的钻井、完井、修井、净化加工以及运输等各个方面的危害一直备受人们的关注,对硫化氢和TSR的评价一直是负面的,在油气勘探中更多是在回避。最近研究发现,TSR作用对石油天然气工业具有重要的积极作用。TSR的发生,首先需要硫酸盐类溶解提供SO42-,储集空间得到初步改善;其次TSR反应形成的硫化氢,溶于水后显示出较强的酸性溶蚀作用,对白云岩储层具有最佳的溶蚀效果。在高温条件和储层中地层水的作用下,硫化氢与白云岩发生较强烈的酸性流体-岩石相互作用(水岩反应),促进了白云岩次生孔洞的发育和高孔高渗优质储集层的形成,使油气储层保存下限增大和深部天然气聚集成藏成为可能。而目前飞仙关组高含硫化氢气藏普遍压力系数小、充满度低,这与TSR及硫化氢对储层溶蚀导致储集空间增容有关。四川盆地油气勘探结果证实,所有高含硫化氢天然气藏均对应了次生孔隙十分发育的优质储层,岩性主要以白云岩为主,储层埋藏深度超过8 000 m时依然发育优质储层。  相似文献   

5.
四川盆地飞仙关组气藏硫化氢成因及其依据   总被引:2,自引:0,他引:2  
四川盆地东北部下三叠统飞仙关组鲕滩气藏天然气烃类气体以甲烷为主,含量主要分布在75%~90%之间,C2+含量为0~0.15%;非烃气体以H2S和CO2为主,含量分别为5%~20%和1%~10%。已有观点认为H2S为飞仙关组气藏附近的石膏经硫酸盐热化学还原作用(TSR)而成。随着川东北气区大中型高含硫化氢气田的发现,硫化氢成因机理的研究备受关注。应用金管、高压釜和石英管等实验方法模拟了硫化氢气体的生成,同时检测了模拟生成的硫化氢和石膏、硫磺等硫化物的硫同位素。实验结果表明:硫磺与正己烷在较低温度即可生成大量的硫化氢气体,而正己烷与硫酸钙的反应总体上比较困难,且生成的H2S量较少;富含黄铁矿的低成熟泥灰岩模拟生烃过程中可以生成与甲烷相当,甚至超过甲烷含量的硫化氢气体;含硫化合物与烃类反应生成的硫化氢的硫同位素值比原始物质的硫同位素值重。地层中的SO2-4是海相地层中H2S气体形成的最初来源。含硫烃源岩直接生成高硫化氢天然气和储层中单质硫与烃类的反应是川东北飞仙关组天然气中硫化氢形成的主要原因。  相似文献   

6.
中国高含硫化氢天然气成因初探   总被引:1,自引:0,他引:1  
高含硫化氢天然气主要分布在四川盆地川东北地区三叠系飞仙关组渡口河、罗家寨、普光、铁山坡等飞仙关组气藏(T1f)和渤海湾盆地冀中坳陷晋县凹陷东北部孔店组孔一段-沙河街组沙四段(Ek^1-Es^4)气藏中。硫化氢含量分布在40%~92%,属世界上硫化氢含量最高气藏之一。笔者通过对这两个地区70余口取心井的5000m岩心观察和取样测试分析,特别是对石膏、硫磺、黄铁矿和天然气的硫同位素分析,以及油、气地球化学的综合研究,认为这两个地区高含硫化氢天然气均属硫酸盐热化学还原反应(TSR)成因,  相似文献   

7.
硫酸盐热还原(TSR)是高含硫天然气形成的主要原因,但是参与TSR反应的主要烃类组分仍存在争议。在对比分析湿气—硫酸镁反应体系、甲烷—硫酸钙反应体系以及重烃—硫酸镁反应体系模拟实验的基础上,通过对TSR化学反应表达式的分析以及化学动力学、热力学等理论的探讨,结合实际地质资料,认为甲烷是C2+烃类参与TSR反应的产物,TSR的发生与C2+气态烷烃的产生具有同步性,TSR的反应速率随着C2+气态烷烃的增加而加快,当湿气裂解为干气后,硫化氢含量几乎不再增加,从而形成干气伴生硫化氢。根据油气生成演化阶段分析,认为TSR主要发生在热裂解生凝析气阶段,原油裂解为硫化氢伴生天然气后,压力系统发生改变,天然气重新聚集成藏,如果构造环境发生改变就会进一步调整成藏。因此,天然气中硫化氢含量不仅受生成条件控制,还受运移通道、保存条件等因素控制。  相似文献   

8.
四川盆地上二叠统长兴组生物礁和下三叠统飞仙关组鲕滩是“九五”期间的勘探重点,通过对长兴组-飞仙关组气藏的烃源岩、储层沥青和天然气的地球化学研究,确认了上二叠统的滨岸煤系泥岩和海槽相碳酸盐岩为主要烃源岩,长兴组-飞仙关组气藏天然气主要来源于下伏的上二叠统烃源岩,天然气以垂相运移为主,飞仙关组部分气藏天然气中硫化氢含量较高与储层中膏岩层的分布和热硫酸盐还原作用有关,上述这些特征与沉积相带密切相关。  相似文献   

9.
论硫化氢生成的地质条件   总被引:1,自引:0,他引:1  
根据硫化氢的赋存环境、组成特征和热还原反应模拟试验等,提出硫化氢生成需具备五项基本地质条件:(1)地层中富含石膏;(2)富含还原剂—烃类物质;(3)较大埋深或较高的地温条件;(4)地层水作为介质和反应场所;(5)严密的封存体系。热还原反应必须在有水条件下才能进行,硫酸盐水解后的硫酸根是硫化氢的直接供体。硫化氢的生成实际经历了一个天然气向地层水的溶入和脱出过程,两者的密切关系造成含硫化氢天然气通常出现在气-水界面附近,密封条件极好的岩性气藏或构造气藏当中,构造低部位或气藏下倾方向。但是,后期构造抬升有可能造成硫化氢与地层水的分离。  相似文献   

10.
四川盆地高含H2S天然气的分布与TSR成因证据   总被引:49,自引:5,他引:44  
四川盆地是中国高含硫化氢天然气分布最集中的地区,目前已在震旦系(威远气田)、下三叠统飞仙关组(罗家寨、普光、渡口河、铁山坡、七里北)、嘉陵江组(卧龙河)和中三叠统雷口坡组(磨溪、中坝)发现了近10个高含硫化氢的大中型气田(藏),探明储量5000×108 m3.这些高含硫化氢气藏普遍经历过较大的埋深过程(储层经历过较高温度),储层上下或储层中间均发育有膏质岩类,且气源充足,具备硫酸盐热化学还原反应(Thermochemical Sulfate Reduction,TSR)发生的物质基础和热动力条件.从气藏地质特征以及天然气组成和碳、硫同位素等方面的证据表明,四川盆地中、下三叠统和震旦系气藏的硫化氢属于TSR成因.而且TSR对烃类的大量选择性消耗一方面导致天然气干燥系数增大,另一方面导致气藏充满度降低,气藏压力系数变小.  相似文献   

11.
Through the analysis of original carbon isotopes in the blocks on the right bank of the Amu Darya River, Turkmenistan, it can be firstly concluded that the carbon dioxide (CO2) in the sour gas reservoirs belongs to the inorganic-origin gas. The origin of hydrogen sulfide (H2S) in the Amu Darya Right Bank Block is thermochemical sulfate reduction from the detailed analysis of hydrocarbon source rocks data, reservoir characteristics, vitrinite reflectance of organic matter, and sour gas content. Then, the factors affecting the distribution of sour gases in the Amu Darya Right Bank Block were investigated by the analysis of conventional sour gas distribution factors including geological structure, fracture and fault, caprock integrity, sedimentary facies, reservoir types, lithofacies, the source of sulfur and so on. The following basic findings were achieved: ① The basement rift in the study area is conductive to the distribution of CO2. The caprock integrity contributes to the concentration of CO2. The gas reservoirs in the biological dike reefs, patch reefs and overthrust zones usually have medium CO2 content. ② The geological structure and fracture caused the complexity of the distribution of H2S. The gypsum-salt rock in upper Jurassic-Tithonian is an important sulphur source, and the main hydrocarbon source rocks are also the major sulfur source of H2S gas reservoirs. Furthermore, the giant gypsum layers in the middle-upper Jurassic Callovian-Oxfordian and the upper Jurassic-Tithonian are conductive to preservation of H2S, and the small openings and holes in the reservoir is also correlative to the distribution of H2S. ③ The H2S in the study area is mostly distributed in the formations with the geothermal temperature of higher than 100 ℃. The open platform deep-water sedimentary facies are harmful to the formation of H2S. The patch reef and overthrust zones belong to the belts of low H2S content, however, the biological dike reef zones belong to the belts of medium-high H2S content. However, the origin and distribution factors of sour gases in natural gas reservoirs were obtained. At the same time, it was pointed out that more necessary and accurately quantitative research is still needed to determine the origin and distribution of acid gases in the Amu Darya Right Bank Block, Turkmenistan.  相似文献   

12.
The Lower Triassic Jialingjiang Formation reservoirs are distributed widely in the East Sichuan Basin, which are composed mainly of fractured reservoirs. However, natural gas with high concentration of H2S, ranging from 4% to 7%, was discovered in the Wolonghe Gas pool consisting primarily of porous reservoirs, while the other over 20 fractured gas reservoirs have comparatively low, tiny and even no H2S within natural gases. Researches have proved the H2S of the above reservoirs are all from the TSR origin. Most of the Jialingjiang Formation natural gases are mainly generated from Lower Permian carbonate rocks, the Wolonghe gas pool's natural gases are from the Upper Permian Longtan Formation, and the natural gases of the Huangcaoxia and Fuchengzhai gas pools are all from Lower Silurian mudstone. The formation of H2S is controlled by the characteristics and temperature of reservoirs, and is not necessarily related with gas sources. The Jialingjiang Formation in East Sichuan is buried deeply and its reservoir temperature has ever attained the condition of the TSR reaction. Due to poor reservoir potential, most of the gas pools do not have enough room for hydrocarbon reaction except for the Wolonghe gas pool, and thus natural gases with high H2S concentration are difficult to be generated abundantly. The south part of East Sichuan did not generate natural gases with high H2S concentration because the reservoir was buried relatively shallow, and did not suffer high temperature. Hence, while predicting the distribution of H2S, the characteristics and temperature of reservoirs are the necessary factors to be considerd besides the existence of anhydrite.  相似文献   

13.
四川盆地米仓山前陆冲断带成藏条件分析   总被引:12,自引:4,他引:8  
本文运用层序地层学、平衡剖面分析与缩短量计算和生烃史恢复等方法,从区域构造分析和地震剖面解释入手,通过野外地质调查、地震资料解释、典型剖面平衡剖面分析和缩短量计算,结合成藏条件的分析和生烃史恢复,探讨了米仓山前陆冲断带构造演化特征,揭示该带的成藏条件和天然气富集特征。提出了米仓山演化模式,认为米仓山前陆冲断带成藏条件优越,可供钻探的圈闭发育,天然气勘探潜力巨大,储层、保存条件是成藏关键。其中,二叠系为主要烃源岩,二叠系生屑灰岩和飞仙关组鲕粒灰岩为主要储集层,雷口坡组和嘉陵江组膏盐岩层为主要盖层。并且,冲断带构造演化的时序性表现为由西向东变形强度、缩短量变小,变形时间变晚,同时前陆盆地的不同构造单元间的相互关系发生变化,造成勘探目的层系、圈闭幅度、类型的相应变化。  相似文献   

14.
何宏  李红霞  张科  陶小晚  蔡春芳 《地质科学》2014,49(4):1327-1336
塔中地区奥陶系天然气成因多样;Ⅰ号坡折带中东部奥陶系天然气以高干燥系数、 甲烷同位素值重为特征;与塔深1井寒武系原油裂解气接近;应主要来自寒武系原油裂解气成因。寒武系贫H2S、 高成熟原油裂解气在喜马拉雅山期时;气侵奥陶系油气藏;得到了以下主要证据的支持: 1)天然气甲烷δ13C值大多比Chung et al.(1988)天然气模式甲烷δ13C值计算值高3‰以上;2)干燥系数与甲烷δ13C值大体上具有正相关关系;3)天然气干燥系数与H2S含量大体上具有负相关关系。这些特征表明;存在贫H2S、 相对富13C甲烷为主的干气与富H2S、 相对贫13C甲烷的湿气混合作用。奥陶系中H2S-δ34S 值为14‰~20‰;远低于中深1井寒武系原地热化学硫酸盐还原作用(TSR)成因的H2S(33‰);支持了奥陶系中H2S并不是来源于寒武系古油气藏。于是提出;来自寒武系贫H2S的干气在喜马拉雅山期对良里塔格组和鹰山组油气藏发生了气洗;油气藏的气/油比值增大、 导致了原油蜡含量增高、 甲烷δ13C值发生正偏移。  相似文献   

15.
通过实验测试并结合理论计算,本文确定了徐深气田典型区块和气层组的天然气偏差系数及PVT相态,发现天然气偏差系数受温度、压力和天然气组成的共同作用,天然气组份中CO2,含量大于80%的2口井的天然气偏差系数明显低于其它井.天然气中饱和水汽含量高低受储层温度、压力、气体组成和地层水含盐量等因素的综合影响.这为深入开展气藏储量评价、开发动态分析、气藏数值模拟和气井出水机理等研究提供了可靠的基础参数.  相似文献   

16.
了解天然气水合物的微观结构特征对水合物资源勘探和评价具有重要意义。采用显微激光拉曼光谱技术,对青海聚乎更钻探区内DK8-19、DK11-14 和DK12-13等3个站位共9个天然气水合物岩心样品进行了分析测试,探讨了钻探区天然气水合物的拉曼光谱特征。结果表明,青海聚乎更钻探区天然气水合物广泛分布,垂直方向在126.1~322.2 m范围内不连续分布,不同钻孔、不同埋深水合物样品的拉曼光谱特征基本一致,初步判断为Ⅱ型结构水合物,且为多元气体水合物。水合物客体除甲烷、乙烷、丙烷及丁烷等 烷烃外,普遍含有氮气组分。此外,在DK8-19站位埋深为126.1 m样品中发现水合物相中硫化氢组分的拉曼信号,这说明特定区域内可能存在硫化氢气体且形成了水合物。聚乎更钻探区水合 物样品拉曼光谱特征为冻土区天然气水合物成藏与分布规律研究提供了新的启示。  相似文献   

17.
泸州市地热水资源主要赋存于三叠系中统雷口坡组、下统嘉陵江组热储层及二叠系茅口组、栖霞组热储层中。上述热储层在叙永县—古蔺县以南,呈层状产出,分布面积广,岩性、厚度稳定,地质构造简单;叙永县—古蔺县以北深埋地腹,兼有层状热储和带状热储特征,地质构造比较复杂。通过热矿水成矿地质背景和补迳排条件分析,提出了勘查开发泸州市地热水的可行性和下步工作建议。  相似文献   

18.
黄仁春 《现代地质》2014,28(2):412-418
四川盆地雷口坡组已成为一个重要的天然气勘探目的层,有关雷口坡组天然气的来源以及雷口坡组是否具有生气潜力还存在争议。研究表明雷口坡组泥质白云岩与泥质灰岩有机碳含量平均达到0.72%,具有较高的生烃潜力。雷口坡组天然气以烃类气体为主,干燥系数为0.99。不同于其他海相层系天然气,其CO2和N2含量较少,总量<10%,仅含微量的H2S;它们的甲烷碳同位素相对较重(-31.5‰~-36.3‰),而乙烷碳同位素较轻,基本上都小于-28‰(-27.7‰~-36.6‰),且部分气呈δ13C113C2反序分布,属高-过成熟海相油型气。其烷烃气系列碳同位素组成既不同于上覆的须家河组陆相天然气,也有异于下伏飞仙关组-长兴组海相气,具有不同的气源,经与雷口坡组烃源岩轻烃组成的对比,认为其气源主要来自本层位。成藏条件分析表明,雷口坡组天然气的富集主要受烃源岩和储层的发育及分布控制,只有紧邻烃源岩发育的浅滩相白云岩/裂缝型灰岩构成的“岩性圈闭”才能形成天然气的聚集。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号