首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
- A composite pipeline is defined as a main big pipe composed of one or several small pipes. The flow behaviour around a submarine composite pipeline is more complicated than that around a single submarine pipeline. A series model test of composite pipelines in a wave-current coexisting field was conducted by the authors. Both in-line and lift forces were measured, and the resultant forces were also analyzed. The results of lift forces and resultant forces are reported in this paper. It is found that the lift force coefficients for composite pipelines are well related to the KC number. The lift force coefficients for an irregular wave-current coexisting field are smaller than those for a regular wave-current coexisting field. The frequency of lift force is usually twice the wave frequency or higher. The authors test indicates that the resultant forces are about 10 to 20 percent larger than in-line forces (horizontal forces). The effect of water depth is analyzed. Finally, the relationship between lift f  相似文献   

2.
The inline and lift forces on bipiles in parallel array induced by both irregular waves and currents were investigated experimentally in this paper. The characteristics in both time and frequency domains of inline, lift and resultant forces as well were analyzed. The grouping effect coefficients of inline and resultant forces on two piles related to KC number and relative spacing parameters are given. A comparison of the magnitude and direction of resultant forces on two piles in parallel array with the corresponding values for single cylinder is also made.  相似文献   

3.
Results of an experimental study of the effect of surface proximity on hydrofoil lift are presented. The biplane image theory, a horseshoe vortex model and momentum theory are described in relation to the effect of surface proximity on hydrofoil lift and drag. The biplane image theory and the horseshoe vortex model are shown to predict the same effect on lift, and are seen to be in good agreement with the experimental data. The Payne momentum theory is seen to differ significantly from the measured results. The data indicate a significant reduction in lift at depths less than two chords with very little effect at greater depth.  相似文献   

4.
Sun  Zhao-yang  Yu  Jian-cheng  Zhang  Ai-qun  Jin  Qian-long 《中国海洋工程》2019,33(6):746-752
Sail is the core part of autonomous sailboat and wing sail is a new type of sail. Wing sail generates not only propulsion but also lateral force and heeling moment. The latter two will affect the navigation status and bring resistance. Double sail can effectively reduce the center of wind pressure and heeling moment. In order to study the effect of distance between two sails, airfoil and attack angle on the total lift coefficient of double sail propulsion system, pressure coefficient distribution and lift coefficient calculation model have been established based on vortex panel method. By using the basic finite solution, the fluid dynamic forces on the two-dimensional sails are computed.The results show that, the distance in the range of 0 to 1 time chord length, when using the same airfoil in the fore and aft sail, the total lift coefficient of the double sail increases with the increase of distance, finally reaches a stable value in the range of one to three times chord length. Lift coefficients of thicker airfoils are more sensitive to the change of distance. The thicker the airfoil, the longer distance is required of the total lift coefficient toward stable.When different airfoils are adopted in fore and aft sail, the total lift coefficient increases with the increase of the thickness of aft sail. The smaller the thickness difference is, the more sensitive to the distance change the lift coefficient is. The thinner the fore sail is, the lower the influence will be on the lift coefficient of aft sail.  相似文献   

5.
在利用傅氏级数法模拟波、流场中水平圆柱上的升力时,其傅氏系数及初相位的选取是问题的关键。本文进行了近底水平圆柱在振荡流场中的物理模型实验,采用傅氏级数法推求各参数,得到不同Kc数及间隙比(e/D)情况下的各种参数值。实验要素范围Kc数为5-20,Re数为2500-10000,间隙比为0.1-1.0。  相似文献   

6.
This paper presents an open-loop control system for a new experimental vehicle, named the biorobotic autonomous underwater vehicle (BAUV). The rigid cylindrical hull of the vehicle is attached with six strategically located fins to produce forces and moments in all orthogonal directions and axes with minimal redundancy. The fins are penguin-wing inspired and they implement the unsteady high-lift principle found widely in swimming and flying animals. The goal has been to design an underwater vehicle that is highly maneuverable by taking the inspiration from nature where unsteady hydrodynamic principles of lift generation and the phase synchronization of fins are common. We use cycle-averaged experimental data to analyze the hydrodynamic forces and moments produced by a single foil as a function of its kinematic motion parameters. Given this analysis, we describe a method for synthesizing and coordinating the sinusoidal motion of all six foils to produce any desired resultant mean force and moment vectors on the vehicle. The mathematics behind the resulting algorithm is elegant and effective, yielding compact and efficient implementation code. The solution method also considers and accommodates the inherent physical constraints of the foil actuators. We present laboratory experimental results that demonstrate the solution method and the vehicle's resulting high maneuverability.   相似文献   

7.
The lift force and turning moment acting on a model towed obliquely to the direction of motion have been measured. Two models were used; one of them was tested fitted with and without a rudder. These measurements were used to determine the magnitude of the lift coefficient and the point of application of the transverse force acting on the model. The data were then used to determine the lift component of the roll damping moment. It has been found that the equivalent linear damping coefficient due to lift is a nonlinear function of the forward speed of the ship.  相似文献   

8.
Li Lei  Lin Mian 《Ocean Engineering》2010,37(5-6):491-497
The fluid force coefficients on a transversely oscillating cylinder are calculated by applying two-dimensional large eddy simulation method. Considering the “jump” phenomenon of the amplitude of lift coefficient is harmful to the security of the submarine slender structures, the characteristics of this “jump” are dissertated concretely. By comparing with experiment results, we establish a numerical model for predicting the jump of lift force on an oscillating cylinder, providing consultation for revising the hydrodynamic parameters and checking the fatigue life scale design of submarine slender cylindrical structures.  相似文献   

9.
A rectangular mist lift tube of 20 m effective height was constructed to investigate the mist generation and up flow processes with various temperatures, pressures and mass flow rates of the incoming hot water through two different mist generation plates. Parameters such as temperature, pressure and dryness of the two phase mixture at six different heights of the lift tube as well as the lift mass flow ratio were measured and analysed. A theoretical analysis was made based on simplified one dimensional model of two-velocity-two-phase flow. The calculated results were discussed regarding temperature, pressure and dryness variations along the lift tube height and compared with the experimental results.  相似文献   

10.
王艺 《中国海洋工程》2008,22(3):371-384
In this paper, equations calculating lift force of a rigid circular cylinder at lock-in in uniform flow are deduced in detail. Besides, equations calculating the lift force on a long flexible circular cylinder at lock-in are deduced based on mode analysis of a multi-degree freedom system. The simplified forms of these equations are also given. Furthemore, an approximate method to predict the forces and response of rigid circular cylinders and long flexible circular cylinders at lock-in is introduced in the case of low mass-damping ratio. A method to eliminate one deficiency of these equations is introduced. Comparison with experimental results shows the effectiveness of this approximate method.  相似文献   

11.
A tower hinged at the bottom was oscillated mechanically in a sinusoidal fashion in a plane in still water. An instrumented section in the tower measured the inline and transverse forces locally on the tower due to the hydrodynamic effects. These forces are analyzed for the added mass, drag and lift coefficients which are presented as functions of Keulegan-Carpenter and Reynolds number. The lift force frequencies are also investigated. The measured overall reactions on the tower are used to verify the values of the local coefficients. The results presented here are not only applicable to articulated towers but to other moving elements of an offshore structure, e.g. risers, tension-legs, etc.  相似文献   

12.
赵宇蒙  温鸿杰  任冰  王超 《海洋工程》2021,39(4):134-143
基于光滑粒子流体动力学(SPH)方法,开发了能够准确描述水流作用下圆柱强迫振动特性的数学模型。通过引入适合于无网格粒子法的开边界算法,来模拟出入流边界条件,建立了具有造流功能的SPH数值水槽。圆柱及计算域的上下边界均采用修正的动力边界条件进行模拟。借助于粒子位移矫正和压力修正算法,避免了圆柱周围流体粒子压力大幅震荡以及结构下游区域出现空腔等非物理性现象。使用典型的圆柱绕流数据,验证了所建SPH模型的计算性能,研究了固定圆柱在低雷诺数情况下的尾涡脱落模式和升阻力变化规律。明确了低雷诺数下强迫振动圆柱在频率锁定以及非锁定区间内的升力变化规律,量化了升力与外界激励频率之间的关系。  相似文献   

13.
The drag and lift force are measured on circular cylinders fitted with end plates in a wind tunnel. The gap between the cylinder and the wall, G, the thickness of the turbulent boundary layer along the wall, δ, and the Reynolds number, Re, are varied in the following ranges: 0 < G/D < 2, 0.12 < δ/D < 0.97 and 4.8 × 104 Re 3 × 105. The lift and drag coefficients are presented in terms of a new variable G/δ.

It is found that the lift coefficient is governed by the gap to diameter ratio G/D while the drag coefficient is dominated by the ratio of gap to thickness of the boundary layer, G/δ.  相似文献   


14.
A flow past a circular-section cylinder with a perforated conic shroud, in which the perforation is located at the peak of the conic disturbance as the shroud installed on the cylinder and uniformly distributed with several circular holes, is numerically simulated at a Reynolds number of 100. Two factors in the perforation are taken into account, i.e. the attack angle relative to the direction of incoming flow and diameter of holes. The effect of such perforation on the drag, lift and vortex-shedding frequency is mainly investigated. Results have shown that variation of the attack angle has a little effect, especially on the drag and vortex-shedding frequency, except in certain cases due to the varied vortex-shedding patterns in the near wake. The increasing hole diameter still exhibits a little effect on the drag and frequency of vortex shedding, but really reduces the lift, in particular at larger wavelength, such as the lift reduction reaching almost 66%–68% after introducing the perforation.  相似文献   

15.
A flow past a circular-section cylinder with a perforated conic shroud, in which the perforation is located at the peak of the conic disturbance as the shroud installed on the cylinder and uniformly distributed with several circular holes, is numerically simulated at a Reynolds number of 100. Two factors in the perforation are taken into account, i.e. the attack angle relative to the direction of incoming flow and diameter of holes. The effect of such perforation on the drag, lift and vortex-shedding frequency is mainly investigated. Results have shown that variation of the attack angle has a little effect, especially on the drag and vortex-shedding frequency, except in certain cases due to the varied vortex-shedding patterns in the near wake. The increasing hole diameter still exhibits a little effect on the drag and frequency of vortex shedding, but really reduces the lift, in particular at larger wavelength, such as the lift reduction reaching almost 66%–68% after introducing the perforation.  相似文献   

16.
零航速减摇鳍升力模型研究   总被引:6,自引:0,他引:6  
为了解决船舶在零航速下减摇的问题,采用一种新的运动控制方法,使减摇鳍的工作不再受航速的限制。根据零航速条件下的特殊运动方式,对减摇鳍在非定常流中的受力情况进行分析,详细讨论了各种流体作用力的产生机理,并给出定量计算公式。结果表明,零航速减摇鳍的升力与它的几何尺寸、旋转角速度和角加速度有关。在此基础上建立了零航速减摇鳍的升力模型,通过仿真结果与实验数据的对比,验证了该模型的正确性。  相似文献   

17.
The hydrodynamic forces on the stationary partially submerged cylinder are investigated through towing test with Reynolds number ranging from 5 × 104 to 9 × 105. Three test groups of partially submerged cylinders with submerged depths of 0.25 D, 0.50 D, and 0.75 D and one validation group of fully submerged cylinders are conducted. During the experiments, the hydrodynamic forces on the cylinders are measured using force sensors. The test results show a considerable difference in the hydrodynamic coefficients for the partially submerged cylinders versus the fully submerged cylinders. A significant mean downward lift force is first observed for the partially submerged cylinders in a steady flow. The maximum of the mean lift coefficients can reach 1.5. Two distinct features are observed due to the effects of overtopping: random distributions in the mean drag coefficients and a clear quadratic relationship between the mean lift coefficients and the Froude number appear in the non-overtopping region. However, the novel phenomenon of a good linear relationship with the Froude number for the mean hydrodynamic coefficients is clearly shown in the overtopping region. In addition, fluctuating hydrodynamic coefficients are further proposed and investigated. These results are helpful to have a better understanding of the problem and to improve related structural designs.  相似文献   

18.
两层粘性流体中圆柱体受迫振荡数值模拟   总被引:1,自引:1,他引:1  
研究两层粘性流体中无限长水平圆柱体的受迫振荡问题。在湍流模式下,采用VOF方法追踪两层流体的内界面,基于动网格技术模拟圆柱体的运动边界,对均匀流中横向振荡圆柱体的绕流场进行了数值模拟。计算受迫振荡圆柱体的升力系数、阻力系数随时间的演化曲线和圆柱体的尾涡分布,以及圆柱体的受迫振荡激发两层流体内界面的扰动,并与均匀流体的情况进行了比较分析。研究表明,流体的两层分层效应对受迫振荡圆柱体的升阻力系数和尾涡分布特性都有显著影响,在水下输油气管道涡激振动特性的工程评估中,应考虑流体的密度分层效应。  相似文献   

19.
This paper discusses the numerical prediction of the induced pressure and lift of the planing surfaces in a steady motion based on the potential flow solver as well as the spray drag by use of the practical method.The numerical method for computation of the induced pressure and lift is potential-based boundary element method.Special technique is identified to present upwash geometry and to determine the spray drag.Numerical results of a planing flat plate and planing craft model 4666 are presented.It is shown that the method is robust and efficient and the results agree well with the experimental measurements with various Froude humors.  相似文献   

20.
Numerical simulations are carried out for wave action on a submerged horizontal circular cylinder by means of a viscous fluid model, and it is focused on the examination of the discrepancies between the viscous fluid results and the potential flow solutions. It is found that the lift force resulted from rotational flow on the circular cylinder is always in anti-phase with the inertia force and induces the discrepancies between the results. The influence factors on the magnitude of the lift force, especially the correlation between the stagnation-point position and the wave amplitude, and the effect of the vortex shedding are investigated by further examination on the flow fields around the cylinder. The viscous numerical calculations at different wave frequencies showed that the wave frequency has also significant influence on the wave forces. Under higher frequency and larger amplitude wave action, vortex shedding from the circular cylinder will appear and influence the wave forces on the cylinder substantially.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号