首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this paper, we present and discuss the effects of scattered light echoes (LEs) on the luminosity and spectral appearance of Type Ia supernovae (SNe). After introducing the basic concept of LE spectral synthesis by means of LE models and real observations, we investigate the deviations from pure SN spectra, light and colour curves, the signatures that witness the presence of an LE and the possible inferences on the extinction law. The effects on the photometric parameters and spectral features are also discussed. In particular, for the case of circumstellar dust, LEs are found to introduce an apparent relation between the post-maximum decline rate and the absolute luminosity, which is most likely going to affect the well-known Pskowski–Phillips relation.  相似文献   

2.
As part of the European Supernova Collaboration, we obtained extensive photometry and spectroscopy of the Type Ia supernova (SN Ia) SN 2002dj covering epochs from 11 d before to nearly two years after maximum. Detailed optical and near-infrared observations show that this object belongs to the class of the high-velocity gradient events as indicated by Si, S and Ca lines. The light curve shape and velocity evolution of SN 2002dj appear to be nearly identical to SN 2002bo. The only significant difference is observed in the optical to near-infrared colours and a reduced spectral emission beyond 6500 Å. For high-velocity gradient SNe Ia, we tentatively identify a faster rise to maximum, a more pronounced inflection in the V and R light curves after maximum and a brighter, slower declining late-time B light curve as common photometric properties of this class of objects. They also seem to be characterized by a different colour and colour evolution with respect to 'normal' SNe Ia. The usual light curve shape parameters do not distinguish these events. Stronger, more blueshifted absorption features of intermediate-mass elements and lower temperatures are the most prominent spectroscopic features of SNe Ia displaying high-velocity gradients. It appears that these events burn more intermediate-mass elements in the outer layers. Possible connections to the metallicity of the progenitor star are explored.  相似文献   

3.
The most luminous Supernova SN2006gy (more than 100 times brighter than a typical supernova) has been a challenge to explain by standard models. For example, pair-instability supernovae which are luminous enough seem to have too slow a rise, and core-collapse supernovae do not seem to be luminous enough. We present an alternative scenario involving a Quark Nova (an explosive transition of the newly born neutron star to a quark star) in which a second explosion (delayed) occurs inside the ejecta of a normal supernova. The reheated supernova ejecta can radiate at higher levels for longer periods of time primarily due to reduced adiabatic-expansion losses, unlike the standard supernova case. We find an encouraging match between the resulting light curve and that observed in the case of SN2006gy suggesting that we might have at hand the first ever signature of a Quark Nova. Successful application of our model to SN2005gj and SN2005ap is also presented.  相似文献   

4.
We present spectroscopic and photometric observations of the peculiar Type II supernova (SN) 1998A. The light curves and spectra closely resemble those of SN 1987A, suggesting that the SN 1998A progenitor exploded when it was a compact blue supergiant. However, the comparison with SN 1987A also highlights some important differences: SN 1998A is more luminous and the spectra show bluer continua and larger expansion velocities at all epochs. These observational properties indicate that the explosion of SN 1998A is more energetic than SN 1987A and more typical of Type II supernovae. Comparing the observational data with simulations, we deduce that the progenitor of SN 1998A was a massive star  (∼25 M)  with a small pre-supernova radius  (≲6 × 1012 cm)  . The Ba  ii lines, unusually strong in SN 1987A and some faint II-P events, are almost normal in the case of SN 1998A, indicating that the temperature plays a key role in determining their strength.  相似文献   

5.
During the last ten years, observations of long‐duration gamma‐ray bursts brought to the conclusion that at least a fraction of them is associated with bright supernovae of type Ib/c. In this talk, after a short review on the previously observed GRB‐SN connection cases, we present the recent case of GRB 100316/SN 2010bh. In particular, during the observational campaign of SN 2010bh, a pivotal role was played by VLT/X‐shooter, sampling with unique high quality data the spectral energy distribution of the early evolution phases from the UV to the K band (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
We present near- (NIR) and mid-infrared (MIR) photometric data of the Type Ibn supernova (SN) 2006jc obtained with the United Kingdom Infrared Telescope (UKIRT), the Gemini North Telescope and the Spitzer Space Telescope between days 86 and 493 post-explosion. We find that the IR behaviour of SN 2006jc can be explained as a combination of IR echoes from two manifestations of circumstellar material. The bulk of the NIR emission arises from an IR echo from newly condensed dust in a cool dense shell (CDS) produced by the interaction of the ejecta outward shock with a dense shell of circumstellar material ejected by the progenitor in a luminous blue variable (LBV)-like outburst about two years prior to the SN explosion. The CDS dust mass reaches a modest  3.0 × 10−4 M  by day 230. While dust condensation within a CDS formed behind the ejecta inward shock has been proposed before for one event (SN 1998S), SN 2006jc is the first one showing evidence for dust condensation in a CDS formed behind the ejecta outward shock in the circumstellar material. At later epochs, a substantial and growing contribution to the IR fluxes arises from an IR echo from pre-existing dust in the progenitor wind. The mass of the pre-existing circumstellar medium (CSM) dust is at least  ∼8 × 10−3 M  . This paper therefore adds to the evidence that mass-loss from the progenitors of core-collapse SNe could be a major source of dust in the Universe. However, yet again, we see no direct evidence that the explosion of an SN produces anything other than a very modest amount of dust.  相似文献   

7.
We analyse the differences in infrared circumstellar dust emission between oxygen-rich Mira and non-Mira stars, and find that they are statistically significant. In particular, we find that these stars segregate in the K–[12] versus [12]–[25] colour–colour diagram, and have distinct properties of the IRAS LRS spectra, including the peak position of the silicate emission feature. We show that the infrared emission from the majority of non-Mira stars cannot be explained within the context of standard steady-state outflow models.
The models can be altered to fit the data for non-Mira stars by postulating non-standard optical properties for silicate grains, or by assuming that the dust temperature at the inner envelope radius is significantly lower (300–400 K) than typical silicate grain condensation temperatures (800–1000 K) . We argue that the latter is more probable and provide detailed model fits to the IRAS LRS spectra for 342 stars. These fits imply that two-thirds of non-Mira stars and one-third of Mira stars do not have hot dust (>500 K) in their envelopes.
The absence of hot dust can be interpreted as a recent (∼100 yr) decrease in the mass-loss rate. The distribution of best-fitting model parameters agrees with this interpretation and strongly suggests that the mass loss resumes on similar time-scales. Such a possibility appears to be supported by a number of spatially resolved observations (e.g. recent Hubble Space Telescope images of the multiple shells in the Egg Nebula) and is consistent with new dynamical models for mass loss on the asymptotic giant branch.  相似文献   

8.
The quest for the cosmological parameters has come to fruition with the identification of a number of supernovae at a redshift of     . Analyses of the brightness of these standard candles reveal that the Universe is dominated by a large cosmological constant. The recent identification of the     SN 1997ff in the northern Hubble Deep Field has provided further evidence for this cosmology. Here we examine the case for gravitational lensing of SN 1997ff owing to the presence of galaxies lying along our line of sight. We find that, while the alignment of SN 1997ff with foreground masses is not favourable for it to be multiply imaged and strongly magnified, two galaxies do lie close enough to result in significant magnification:     for the case where these elliptical galaxies have a velocity dispersion of 200 km s−1. Given the small difference between supernova brightnesses in different cosmologies, detailed modelling of the gravitational lensing properties of the intervening matter is therefore required before the true cosmological significance of SN 1997ff can be deduced.  相似文献   

9.
We propose a self–consistent model to explain all observational properties reported so far on the isolated neutron star (INS) RX J0720-3125 with the aim of giving a step forward towards our understanding of INSs. For a given magnetic field structure, which is mostly confined to the crust and outer layers, we obtain theoretical models and spectra which account for the broadband spectral energy distribution (including the apparent optical excess), the X-ray pulsations, and for the spectral feature seen in the soft X-ray spectrum of RX J0720-3125 around 0.3 keV. By fitting our models to existing archival X-ray data from 6 different XMM–Newton observations and available optical data, we show that the observed properties are fully consistent with a normal neutron star, with a proper radius of about 12 km, a temperature at the magnetic pole of about 100 eV, and a magnetic field strength of 2–3×1013 G. Moreover, we are able to reproduce the observed long–term spectral evolution in terms of free precession which induces changes in the orientation angles of about 40 degrees with a periodicity of 7 years. In addition to the evidence of internal toroidal components, we also find strong evidence of non–dipolar magnetic fields, since all spectral properties are better reproduced with models with strong quadrupolar components.   相似文献   

10.
We use a large suite of carefully controlled full hydrodynamic simulations to study the ram pressure stripping of the hot gaseous haloes of galaxies as they fall into massive groups and clusters. The sensitivity of the results to the orbit, total galaxy mass, and galaxy structural properties is explored. For typical structural and orbital parameters, we find that ∼30 per cent of the initial hot galactic halo gas can remain in place after 10 Gyr. We propose a physically simple analytic model that describes the stripping seen in the simulations remarkably well. The model is analogous to the original formulation of Gunn & Gott, except that it is appropriate for the case of a spherical (hot) gas distribution (as opposed to a face-on cold disc) and takes into account that stripping is not instantaneous but occurs on a characteristic time-scale. The model reproduces the results of the simulations to within ≈10 per cent at almost all times for all the orbits, mass ratios, and galaxy structural properties we have explored. The one exception involves unlikely systems where the orbit of the galaxy is highly non-radial and its mass exceeds about 10 per cent of the group or cluster into which it is falling (in which case the model underpredicts the stripping following pericentric passage). The proposed model has several interesting applications, including modelling the ram pressure stripping of both observed and cosmologically simulated galaxies and as a way to improve present semi-analytic models of galaxy formation. One immediate consequence is that the colours and morphologies of satellite galaxies in groups and clusters will differ significantly from those predicted with the standard assumption of complete stripping of the hot coronae.  相似文献   

11.
Early-time optical observations of supernova (SN) 2005cs in the Whirlpool Galaxy (M51) are reported. Photometric data suggest that SN 2005cs is a moderately underluminous Type II plateau SN (SN IIP). The SN was unusually blue at early epochs (   U − B ≈−0.9  about three days after explosion) which indicates very high continuum temperatures. The spectra show relatively narrow P Cygni features, suggesting ejecta velocities lower than observed in more typical SNe IIP. The earliest spectra show weak absorption features in the blue wing of the He  i 5876-Å absorption component and, less clearly, of Hβ and Hα. Based on spectral modelling, two different interpretations can be proposed: these features may either be due to high-velocity H and He  i components, or (more likely) be produced by different ions (N  ii , Si  ii ). Analogies with the low-luminosity, 56Ni-poor, low-velocity SNe IIP are also discussed. While a more extended spectral coverage is necessary in order to determine accurately the properties of the progenitor star, published estimates of the progenitor mass seem not to be consistent with stellar evolution models.  相似文献   

12.
In this paper we study the relation of radio emission to X-ray spectral and variability properties for a large sample of black hole X-ray binary systems. This is done to test, refine and extend – notably into the timing properties – the previously published 'unified model' for the coupling of accretion and ejection in such sources. In 14 outbursts from 11 different sources we find that in every case the peak radio flux, on occasion directly resolved into discrete relativistic ejections, is associated with the bright hard to soft state transition near the peak of the outburst. We also note the association of the radio flaring with periods of X-ray flaring during this transition in most, but not all, of the systems. In the soft state, radio emission is in nearly all cases either undetectable or optically thin, consistent with the suppression of the core jet in these states and 'relic' radio emission from interactions of previously ejected material and the ambient medium. However, these data cannot rule out an intermittent, optically thin, jet in the soft state. In attempting to associate X-ray timing properties with the ejection events we find a close, but not exact, correspondence between phases of very low integrated X-ray variability and such ejections. In fact the data suggest that there is not a perfect one-to-one correspondence between the radio, X-ray spectral or X-ray timing properties, suggesting that they may be linked simply as symptoms of the underlying state change and not causally to one another. We further study the sparse data on the reactivation of the jet during the transition back to the hard state in decay phase of outbursts, and find marginal evidence for this in one case only. In summary we find no strong evidence against the originally proposed model, confirming and extending some aspects of it with a much larger sample, but note that several aspects remain poorly tested.  相似文献   

13.
We study four scenarios for the SCP 06F6 transient event that was announced recently. Some of these were previously briefly discussed as plausible models for SCP 06F6, in particular with the claimed detection of a z=0.143 cosmological redshift of a Swan spectrum of a carbon rich envelope. We adopt this value of z for extragalactic scenarios. We cannot rule out any of these models, but can rank them from most to least preferred. Our favorite model is a tidal disruption of a CO white dwarf (WD) by an intermediate-mass black hole (IMBH). To account for the properties of the SCP 06F6 event, we have to assume the presence of a strong disk wind that was not included in previous numerical simulations. If the IMBH is the central BH of a galaxy, this explains the non-detection of a bright galaxy in the direction of SCP 06F6. Our second favorite scenario is a type Ia-like SN that exploded inside the dense wind of a carbon star. The carbon star is the donor star of the exploded WD. Our third favorite model is a Galactic source of an asteroid that collided with a WD. Such a scenario was discussed in the past as the source of dusty disks around WDs, but no predictions exist regarding the appearance of such an event. Our least favorite model is of a core collapse SN. The only way we can account for the properties of SCP 06F6 with a core collapse SN is if we assume the occurrence of a rare type of binary interaction.  相似文献   

14.
It is argued that all SNI come from short-lived stars and do not occur in a typical, isolationist, gas-free early-type galaxy. SNI occur only in those galaxies which accrete gas and form stars. SN properties of E/SOs are, therefore, determined by environmental factors. Presence of gas and dust in early-type galaxies, SN occurrence, nuclear emission, and radio-activity are all manifestations of the same phenomenon, namely availability of gas.What is now urgently required is multi-colour photometry of supernovic early-type galaxies around the regions of recorded SN to see if there are signs of recent star-formation.  相似文献   

15.
This is the second in a series of papers presenting results from the SCUBA Local Universe Galaxy Survey. In our first paper we provided 850-μm flux densities for 104 galaxies selected from the IRAS Bright Galaxy Sample and we found that the 60-, 100-μm ( IRAS ) and 850-μm (SCUBA) fluxes could be adequately fitted by emission from dust at a single temperature. In this paper we present 450-μm data for the galaxies. With the new data, the spectral energy distributions of the galaxies can no longer be fitted with an isothermal dust model – two temperature components are now required. Using our 450-μm data and fluxes from the literature, we find that the 450/850-μm flux ratio for the galaxies is remarkably constant, and this holds from objects in which the star formation rate is similar to our own Galaxy, to ultraluminous infrared galaxies (ULIRGs) such as Arp 220. The only possible explanation for this is if the dust emissivity index for all of the galaxies is ∼2 and the cold dust component has a similar temperature in all galaxies     . The 60-μm luminosities of the galaxies were found to depend on both the dust mass and the relative amount of energy in the warm component, with a tendency for the temperature effects to dominate at the highest L 60. The dust masses estimated using the new temperatures are higher by a factor of ∼2 than those determined previously using a single temperature. This brings the gas-to-dust ratios of the IRAS galaxies into agreement with those of the Milky Way and other spiral galaxies which have been intensively studied in the submm.  相似文献   

16.
We spatially and temporally resolve the future Supernova (SN) rate in the Solar vicinity and the whole Galaxy by comparing observational parameters of massive stars with theoretical models for estimating age and mass and, hence, the remaining lifetime until the SN explosion. Our SN rate derived in time and space for the future (few Myr) should be the same as in the last few Myr by assuming a constant rate. From BVRIJHK photometry, parallax, spectral type, and luminosity class we compile a Hertzsprung‐Russell diagram (HRD) for 25027 massive stars and derive extinction, and luminosity, then mass, age, and remaining lifetime from evolutionary models. Within 600 pc our sample of SN progenitors and, hence, SN prediction, is complete, and all future SN events of our sample stars take place in 8 % of the area of the sky, whereas 90 % of the events take place in 7 % of the area of the sky. The current SN rate within 600 pc is increased by a factor of 5–6 compared with the Galactic rate. For a distance of 5 kpc our sample is incomplete, nevertheless 90 % of those SN events take place in only 12 % of the area of the projected sky. If the SN rate in the near future is the same as the recent past, there should be unknown young neutron stars concentrated in those areas. Our distribution can be used as input for constraints of gravitational waves detection and for neutron star searches. (© 2014 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Near-infrared photometry was performed on 56 southern 6.7-GHz methanol maser sources. A simple spherically symmetric model of the radiative transfer through a dust shell was developed and used to study the conditions in the dust cloud in which the masers are produced. The parameters investigated were the size of the cloud, the spectral type of the embedded star, the optical depth of the dust cloud and the dust density distribution. It was found that the infrared colours of the models have a complex dependence on the parameters and that no unique combination of parameter values explains the spectral energy distribution of any particular source. The model effectively reproduces the far-infrared ( IRAS ) colours but cannot simultaneously explain the near-infrared colours for any of the observed sources.  相似文献   

18.
Recent results have shown that a substantial fraction of high-redshift Lyman α (Lyα) galaxies contain considerable amounts of dust. This implies that Lyα galaxies are not primordial, as has been thought in the past. However, this dust has not been directly detected in emission; rather it has been inferred based on extinction estimates from rest-frame ultraviolet (UV) and optical observations. This can be tricky, as both dust and old stars redden galactic spectra at the wavelengths used to infer dust. Measuring dust emission directly from these galaxies is thus a more accurate way to estimate the total dust mass, giving us real physical information on the stellar populations and interstellar medium enrichment. New generation instruments, such as the Atacama Large Millimeter Array and Sub-Millimeter Array, should be able to detect dust emission from some of these galaxies in the submillimeter. Using measurements of the UV spectral slopes, we derive far-infrared flux predictions for of a sample of  23 z ≥ 4  Lyα galaxies. We find that in only a few hours, we can detect dust emission from 39 ± 22 per cent of our Lyα galaxies. Comparing these results to those found from a sample of 21 Lyman break galaxies (LBGs), we find that LBGs are on average 60 per cent more likely to be detected than Lyα galaxies, implying that they are more dusty, and thus indicating an evolutionary difference between these objects. These observations will provide better constraints on dust in these galaxies than those derived from their UV and optical fluxes alone. Undeniable proof of dust in these galaxies could explain the larger than expected Lyα equivalent widths seen in many Lyα galaxies today.  相似文献   

19.
Supernova (SN) 2002ap in M74 was discovered on 2002 January 29. Being one of the nearest (10 Mpc) SN events in the last decades, and spectroscopically similar to the so-called 'hypernovae' 1997ef and 1998bw, both possibly associated with gamma-ray bursts (GRBs), it is of great interest. Shortly after its discovery, we launched an intensive photometric and spectroscopic monitoring campaign of this event, and here we report the results of the first month of observations. We use our UBVRI photometry to estimate the magnitudes at, and dates of, peak brightness. Our data suggest that this object reached its peak B -band luminosity on February     . Based on its similarity to SN 1998bw, we estimate the range of possible dates for a GRB that may have been associated with SN 2002ap. We find that it may include dates outside the time frame for which all available gamma-ray data have been intensively scanned, according to recent reports. The absolute magnitude at peak brightness of SN 2002ap  ( M B =-16.9)  shows that it was significantly fainter than SN 1998bw, or normal Type Ia SNe, but similar to SN 1997ef. Our spectroscopic observations confirm that SN 2002ap is strikingly similar to SNe 1998bw and 1997ef. We briefly describe the spectral evolution of this object. To assist other observers and to stimulate theoretical models, we make our entire data set publicly available in digital form (http://wise-obs.tau.ac.il/∼avishay/local.html).  相似文献   

20.
It is generally acknowledged that the mass-loss of asymptotic giant branch (AGB) stars undergoes variations on different time-scales. We constructed models for the dust envelopes for a sample of AGB stars to assess whether mass-loss variations influence the spectral energy distribution. To constrain the variability, extra observations at millimetre wavelengths (1.2 mm) were acquired. From the analysis of the dust models, two indications for the presence of mass-loss variations can be found, being (1) a dust temperature at the inner boundary of the dust envelope that is far below the dust condensation temperature and (2) an altered density distribution with respect to  ρ( r ) ∝ r −2  resulting from a constant mass-loss rate. For five out of the 18 studied sources a two-component model of the envelope is required, consisting of an inner region with a constant mass-loss rate and an outer region with a less steep density distribution. For one source an outer region with a steeper density distribution was found. Moreover, in a search for time variability in our data set at 1.2 mm, we found that WX Psc shows a large relative time variation of 34 per cent which might partially be caused by variable molecular line emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号