首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The redox speciation of dissolved iron in seawater was evaluated at 121 locations in the Pacific Ocean at depths of 15-1000 m, using the method of luminol chemiluminescence. The results indicate that reduced iron, Fe(II), is ubiquitous in surface seawater with a relatively consistent pattern of occurrence. Surface maxima were present in most profiles, with median concentrations of 25-30 pM representing 12-14% of the total dissolved iron. Concentrations decreased monotonically with depth to<12 pM within the upper euphotic zone. This pattern was observed during both day and nighttime sampling events, which suggests that non-photochemical production mechanisms can produce photochemical-like signatures. Further, if theoretical rates of Fe(II) oxidation are applicable to the open ocean, then the employed sampling methods precluded assessment of photochemically-produced Fe(II), regardless of ambient light conditions. For this and other reasons, the concentrations reported here for the upper water column likely represent lower limits of labile iron concentration, and suggest that dissolved iron may be more available for uptake than previously believed. Deeper in the water column, Fe(II) was also frequently detected, though it constituted a small fraction of the total dissolved iron. Possible source mechanisms at these depths include thermal (dark) reduction of Fe(III) organic complexes or remineralization of sinking biogenic particles containing Fe(II). In the northern Philippine Sea between the Japanese coast and the Izu-Bonin volcanic arc system, Fe(II) concentrations were found to be atypically high, possibly because of high atmospheric dust deposition near the surface and transport of sediment-derived iron at depth.  相似文献   

2.
Five vertical profiles of silver (Ag) in the subarctic northeast Pacific are presented. Dissolved (< 0.2 μm) Ag concentrations within the surface mixed layer range from 6–25 pM, with the highest observed values at the most coastal site. Elevated Ag concentrations at this station are most likely attributable to the estuarine circulation in the Juan de Fuca Strait. One open-ocean station (P20) exhibited a strong surface Ag maximum. The station was located at the edge of a Haida eddy which raises the possibility that such eddies transport Ag seaward from the coastal zone. Ag concentrations in the deep waters ranged from 60–80 pM. These measurements are consistent with other recent Ag data collected in the Pacific. Ag profiles throughout the Pacific Ocean yield a strong positive correlation between Ag concentration and dissolved silicic acid concentration. However, Ag is depleted relative to silicic acid at intermediate depths where dissolved O2 concentrations are low, implying a possible removal of Ag from oxygen-depleted waters by scavenging and/or precipitation.  相似文献   

3.
Dissolved titanium distributions in the Mid-Atlantic Bight   总被引:1,自引:0,他引:1  
Stephen A. Skrabal   《Marine Chemistry》2006,102(3-4):218-229
Although titanium is abundant in Earth's crust, its sources and distribution in the ocean are poorly understood. To elucidate its behavior, distributions of dissolved (< 0.2 μm) Ti were determined in surface waters and vertical profiles from the Mid-Atlantic Bight (MAB). Concentrations of Ti decreased from 390 pM at the Delaware Bay mouth to < 100 pM across the Delaware continental shelf. In vertical profiles, small increases in bottom waters suggest a possible flux of Ti from shelf sediments, consistent with previous reports of pore water enrichments of dissolved Ti in MAB sediments. Concentrations in surface waters of the outer shelf and slope ranged between 30 and 140 pM, with most values below 90 pM. Concentrations in a 1000 m vertical profile in the eastern Gulf Stream ranged between 110 and 280 pM, and showed a variable distribution attributed to the mixing of water masses in the outer MAB. A simple model of Ti sources to the MAB suggests that atmospheric deposition of dissolved Ti is comparable to net riverine contributions and therefore must be considered in applications of Ti as a tracer of oceanographic processes.  相似文献   

4.
Dissolved iron and Fe(II) were measured in the oxygen minimum zone (OMZ) of the Arabian Sea in September 2004. The OMZ is a well-demarcated feature characterized by high rates of denitrification, and a deep nitrite maximum coinciding with oxygen levels below 1 μmol L−1. This zone is significantly enriched in dissolved Fe relative to overlying and underlying waters and up to 50% of the dissolved Fe is present as Fe(II). The maxima in Fe(II) are at the same depth as the deep nitrite maxima, centered around 200–250 m. They coincide with a local maximum in total dissolved Fe, suggesting that Fe accumulates at this depth because of the greater solubility of Fe(II) over Fe(III). Fe(II) is thermodynamically unstable even at submicromolar oxygen levels, so active biological reduction is the most plausible source. To our knowledge, this is the first report of a potential link between Fe reduction, elevated dissolved Fe concentrations, and nitrite accumulation within an OMZ. Denitrification has a high Fe requirement associated with the metalloenzymes for nitrate and nitrite reduction, so in situ redox cycling of Fe has important implications for the nitrogen cycle.  相似文献   

5.
Mercury speciation and its distribution in surface and deep waters of the Mediterranean Sea were studied during two oceanographic cruises on board the Italian research vessel URANIA in summer 2003 and spring 2004 as part of the Med Oceaneor and MERCYMS projects. The study included deep water profiles of dissolved gaseous Hg (DGM), reactive Hg (RHg), total Hg (THg), monomethyl Hg (MeHg) and dimethyl Hg (DMeHg) in open ocean waters. Average concentrations of measured Hg species were characterized by seasonal and spatial variations. Overall average THg concentrations ranged between 0.41 and 2.65 pM (1.32 ± 0.48 pM) and were comparable to those obtained in previous studies of the Mediterranean Sea. A significant fraction of Hg was present as “reactive” Hg (average 0.33 ± 0.32 pM). Dissolved gaseous Hg (DGM), which consists mainly of Hg0, represents a considerable proportion of THg (average 20%, 0.23 ± 0.11 pM). The portion of DGM typically increased towards the bottom, especially in areas with strong tectonic activity (Alboran Sea, Strait of Sicily, Tyrrhenian Sea), indicating its geotectonic origin. No dimethyl Hg was found in surface waters down to the depth of 40 m. Below this depth, its average concentration was 2.67 ± 2.9 fM. Dissolved fractions of total Hg and MeHg were measured in filtered water samples and were 0.68 ± 0.43 pM and 0.29 ± 0.17 pM for THg and MeHg respectively. The fraction of Hg as MeHg was in average 43%, which is relatively high compared to other ocean environments. The concentrations reported in this study are among the lowest found in marine environments and the quality of analytical methods are of key importance. Speciation of Hg in sea water is of crucial importance as THg concentrations alone do not give adequate data for understanding Hg sources and cycling in marine environments. For example, photoinduced transformations are important for the presence of reactive and elemental mercury in the surface layers, biologically mediated reactions are important for the production/degradation of MeHg and DGM in the photic zones of the water column, and the data for DGM in deep sea indicate the natural sources of Hg in geotectonicaly active areas of the Mediterranean Sea.  相似文献   

6.
The pore water concentrations of dissolved silica in sediment cores from the continental slope offshore from Cape Hatteras, North Carolina, varied from 150 to almost 700 μ,M with depth in the top 40 cm of sediment. Sediment cores from 630 to 2010 m depth had very similar profiles of dissolved silica in their pore waters, even though these cores came from regions greatly different in slope, topography, sedimentation rate, and abundance of benthic macrofauna. Cores from 474 to 525 m were more variable, both with respect to pore water dissolved silica profiles, and with respect to sediment texture. Experiments indicate that both the rate of dissolution of silica and the saturation concentration decrease as sediment depth below the sediment-seawater interface increases. These data are consistent with depletion of a reactive silica phase in surface sediment, which may be radiolarian tests, or the alteration of biogenic silica to a less reactive form over time. Experimental results suggest that the pore water dissolved silica concentration in sediments below the top few centimeters may be higher than the sediments could now achieve. The flux of dissolved silica out of these sediments is estimated to be 15 μmoles cm−2 yr−1.  相似文献   

7.
During a cruise of r/v ‘Oceania’ in May 2006, seven vertical dissolved organic carbon (DOC) concentration profiles were produced against a background of CTD, chlorophyll a (chl a) and phaeopigment concentration profiles. The results indicate distinct vertical and spatial DOC fluctuations, ranging from 248 ± 7 μmol C dm−3 at 70 m depth at the westernmost station G/06 to 398 ± 5 μmol C dm−3 at 5 m depth at station A/06 in the western Gulf of Gdańsk. DOC concentrations were the highest at 10 m depth, where phytoplankton activity was relatively intensive, as reflected by the active chl a concentration distribution. DOC concentrations decreased towards the sea bottom.  相似文献   

8.
Observed potential temperatures and concentrations of dissolved oxygen are analyzed to elucidate their variations during the period from 1958 to 1996 at Stn. P (37°43′ N, 134°43′ E) and from 1965 to 1996 at Stn. H (40°30′ N, 137°40′ E) in the Japan Sea. At Stn. P, increases of the potential temperature for the period are found below 800 m depth with the largest value of 0.16 ± 0.09°C per century at 800 m depth. At Stn. H, the potential temperature increased below 500 m depth. The increase rate has the largest value of 0.50 ± 0.18°C per century at 500 m depth and it is 0.30 ± 0.09°C per century at 800 m depth. The concentrations of dissolved oxygen increased around 800 m depth at Stn. P. At Stn. H, they increased above 800 m depth. On the other hand, they decreased below 1200 m depth at both stations. The layer of the dissolved oxygen minimum has deepened in these decades. These features appearing in the distributions of temperature and dissolved oxygen are successively simulated by a vertical one-dimensional advection-diffusion model including consumption of dissolved oxygen and termination of the deep water supply. These results suggest that the supply of the Japan Sea Proper Water into the deep layer, which is cold and rich in dissolved oxygen, has been decreasing for the last four decades. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

9.
Some of the results about vertical profile of heavy metals of seawater to the south of Japan in Oct. 1990 are presented and discussed in relation to the concentration of dissolved Cu, Cd and Ni to biogeochemical environments. It points out that the distribution of dissolved Cu is higher in surface water than that in/upper 500 m layer, and maxima value attains the 8. 2 n mol/dm3 in depth of 4 000 m. The concentrations of dissolved Ni ranges from 3. 4 n mol/dm3 in surface seawater to 8. 5 n mol/dm3 in the deep to the south of Japan. The highest values are observed in the colder waters. This paper shows also that the vertical profile of dissolved Cd is perfect nutrient-type distribution. And dissolved Cd and Phosphate are linearly correlated by the regression equation. The ·Cd : ·N : ·P atomic ratio is 3. 5 × 10-4 : 14 : 1.  相似文献   

10.
黄海冷水团的化学水文学特征   总被引:2,自引:1,他引:1  
Based on the field data obtained during summer cruises in 2006, the overall perspective of chemical and hydrographic characteristics of the Yellow Sea Cold Water Mass(YSCWM) are discussed through the crossYSCWM transect profiles and horizontal distributions of hydrological and chemical variables, with emphasis on the differences between the northern Yellow Sea Cold Water Mass(NYSCWM) and the southern Yellow Sea Cold Water Mass(SYSCWM). The results show that YSCWM is characterized by low temperature(10°C) and dissolved oxygen(DO) concentration, high salinity(32.0) and nutrient concentrations. Compared to the SYSCWM, the NYSCWM possesses lower values of temperature, salinity and nutrient concentrations but higher values of DO.Also its smaller variation ranges of variables(except for temperature) demonstrate that NYSCWM is more uniform than that of SYSCWM. In addition, thermocline is more intensive in the SYSCWM than that of NYSCWM.Furthermore, DO and Chl a maxima appear at the depth of 30 m in the SYSCWM, while these phenomena are not obvious in the NYSCWM.  相似文献   

11.
Concentrations of dissolved Ni, Cu, Zn, Cd and Pb were measured in water samples collected during a cruise with R.V Pelagia (29-6/14-7-1993) in the northern North Sea and N.E. Atlantic Ocean. At least six depths (0–90 m) were sampled with modified Go-Flo samplers from a rubber zodiac. In the study area, the first 25 m were well mixed and stratification occurred below this depth. The local bloom of Emiliania huxleyi hardly affected the trace metals concentration, except for some removal of Cd as seen from its correlation with nitrate. The mean dissolved concentrations were for Ni (3.66 nM), Cu (1.61 nM), Zn (4.5 nM), Cd (48 pM) and Pb (108 pM). These concentrations are among the lowest reported for the North Sea and are of similar magnitude to those found in the eastern North Atlantic at the same latitude. Zn was the only exception with values 10 times higher compared to those in the Atlantic Ocean, suggesting external inputs, mainly atmospheric and possibly from surrounding land masses. The observed ratio Zn:Cd in the North Sea and estuaries is in between the high ratio 600–900 for continental sources and the low ratio 5–10 for oceanic waters. Latter low ratio is consistent with the 21-fold stronger inorganic complexation of Cd in seawater which, in combination with the preferential biological uptake of Zn, may lead to the observed about hundredfold fractionation of Zn versus Cd in the marine system. Other processes may play a role but would need further investigation. The dissolved Pb values tend to be lower than found before in the North Sea, indicating decreasing inventories due to reduced anthropogenic emissions.  相似文献   

12.
A central theme of the ongoing GEOTRACES program is to improve the understanding of processes occurring at ocean interfaces with continents, sediments, and ocean crust. In this context, we studied the distributions of Al, Mn, Fe, Co, Ni, Cu, Zn, Cd, and Pb around the Juan de Fuca Ridge (JdFR) in total dissolvable (td), dissolved (d), and labile particulate (lp) fractions, which represent a fraction in unfiltered samples, filtered samples through an AcroPak capsule filter, and the difference between td and d, respectively. Al and Fe were dominated by lp-species, while Ni, Zn, and Cd were dominated by d-species with undetectable amounts of lp-species. Major findings in this study are as follows: (1) The continental margin (CM) provided large sources of Al, Mn, Fe, and Co from the surface to ~2000 m in depth. The supply from CM caused high surface concentrations of dMn and dCo, a subsurface (100–300 m depth) maximum of dCo, and intermediate (500–2000 m depth) maxima of lpAl and lpFe. The supply of dFe from CM was ~10 times that from the high-temperature hydrothermal activity at station BD21, which is located at ~3 km from the Middle Valley venting site and ~ 200 km from Vancouver Island. (2) DPb was maximum at the top layer of North Pacific Intermediate Water, probably owing to isopycnal transport of anthropogenic Pb via advection of subducted surface waters. Although dCo and dPb had different sources in the upper water, they showed a strong linearity below 300 m (r 2 = 0.95, n = 38), indicating concurrent scavenging. (3) A high-temperature hydrothermal plume occurred at a depth of 2300 m at BD21, accounting for maxima of dAl, dMn, dFe, lpCu, and lpPb and a minimum of dCu. (4) Strong bottom maxima of lpAl, lpMn, lpFe, lpCo, and lpPb occurred above the abyssal plain at the western foot of the JdFR, indicating resuspension of sediments. However, bottom maxima of d-species were apparent only for dAl and dCu.  相似文献   

13.
Distributions of dissolved vitamin B12 and total dissolved Co were measured to gain an understanding of the cycling of these interdependent micronutrients in six marine settings including; an upwelling location, a semi-enclosed bay, two urban coastal systems, and two open ocean locations. Along the coast of Baja California, Mexico, concentrations of B12 and dissolved Co varied from 0.2 to 11 pM and 180 to 990 pM, respectively. At a nearby upwelling station, vitamin B12 and Co concentrations ranged from 0.3 to 7.0 pM and 22 to 145 pM, and concentrations did not correlate with upwelling intensity. Concentrations of B12 were highest within Todos Santos Bay, a semi-enclosed bay off the coast of Baja California, Mexico, during a dinoflagellate bloom, ranging from 2 to 61 pM, while Co concentrations varied between 61 and 194 pM. In the anthropogenically impacted Long Island Sound, NY, U.S.A., B12 levels were between 0.1 and 23 pM and Co concentrations varied from 60 to 1900 pM. However, anthropogenic inputs were not evident in B12 levels in the San Pedro Basin, located outside Los Angeles, Ca, U.S.A., where concentrations of B12 were 0.2–1.8 pM, approximating observed open ocean B12 concentrations. In the Southern Ocean and North Atlantic Ocean, B12 levels were 0.4–4 pM and 0.2–2 pM, respectively. Total Co concentrations in the Southern Ocean and North Atlantic tended to be low; measuring 26–59 pM and 15–80 pM, respectively. These low Co concentrations may limit B12 synthesis and its availability to B12-requiring phytoplankton because the total dissolved Co pool is not necessarily entirely bioavailable.  相似文献   

14.
A series of high resolution (10 cm) vertical profiles of iron were determined across the oxic/anoxic boundary in the Lower Pond of the Pettaquamscutt Estuary. Selective chemical treatments and multiple analytical methods were used to detemine the oxidation state and lability of iron across the oxic/anoxic boundary. The vertical distributions of dissolved and total iron were determined by atomic absorption spectroscopy, and dissolved Fe(II) and reducible iron were determined using a modified Ferrozine spectrophotometric method. Well-developed maxima of total dissolved iron ≈7·5 μM occurred within the oxic/anoxic transition zone. Analysis of Fe(II) by the FZ method indicates that more than 95% of the dissolved iron determined by atomic absorption spectroscopy within the maximum is in the form of Fe(II). The concentration of dissolved Fe(II) ranged from <4 nM in oxygenated surface waters to between 7 and 8 μM at the total dissolved iron maximum.Both dissolved and total iron samples were treated with ascorbic acid to quantify the fraction of iron that was reducible in this system. Dissolved iron is quantitatively reduced to Fe(II) by 3·5 m depth, and particulate iron was almost completely dissolved by 6 m. Thermodynamic speciation calculations indicate that the dominant species of Fe(II) in the anoxic waters is the Fe(HS)+complex. In addition, the concentration of Fe(II) in the anoxic zone appears to be controlled by precipitation of a sulfide phase, the ion activity product for waters below 7 m is in good agreement with the solubility product of mackinawite.The vertical distribution of oxidation states of the metals indicates non-equilibrium conditions due to microbiological and chemical processes occurring in the redox transition zone. A one-dimensional vertical, eddy diffusion model is presented that incorporates redox reactions of iron, sulfide and oxygen. The modeling suggests the maximum in Fe(II) can be achieved through inorganic oxidation and reduction reactions, however the depth at which the maximum occurs is sensitive to sulfide oxidation, which appears to be dominated by biological oxidation. The magnitude of the Fe(II) maximum depends on the flux of iron into the basin, and reductive dissolution of particulate iron.  相似文献   

15.
The vertical distribution of reactive mercury has been measured at two stations in the eastern North Atlantic and one station in the southeast Atlantic in conjunction with the IOC Open Ocean Baseline Survey. The average concentrations of reactive Hg in vertical profiles ranged from 0.70 to 1.07 pM with the highest values found at the northeast Atlantic stations and the lowest at the southeast station. No significant concentration gradients were found below the surface mixed layer at the two stations in the eastern North Atlantic. At station 7, in the southeast Atlantic, an increase in reactive Hg was noted in the water adjacent to the mixed layer (35–200 m) which was coincident with an oxygen depletion, down to 20% saturation at 200 m. The concentration of reactive Hg in the North Atlantic Deep Water (0.48–1.34 pM), the Antarctic Intermediate Water (0.47 pM), the Antarctic Bottom Water (0.67–1.25 pM), and the Mediterranean Outflow Water (0.83–1.06 pM) were noted. The trends in Hg concentration in the water masses between stations showed the concentration decreasing with distance from the water mass source except for Hg in the Antarctic Bottom Water. The increase noted in this water mass was attributed to mixing with North Atlantic Deep Water and or release from bottom sediments.  相似文献   

16.
This report presents major and minor element profiles for interstitial waters recovered from the oxygen-minimum zone of the Gulf of California. The major elements and nutrients show concentration-depth profiles typical for anoxic, laminated sediments, with sulfate-reduction occurring close to the sediment-water interface, accompanied by increases in alkalinity and ammonia. Barium is solubilized near the sediment-water interface, but decreases below 10 cm depth, showing concentrations consistent with barite solubility. The dissolved concentrations of Mn, Fe, and Al are higher in the upper part of the sedimentary column; Mn and Fe due to reduction of oxides and Al probably because of dissolution of siliceous material. In contrast, dissolved Mo, V, and Cr show concentrations increasing with depth. The strong correlation of the concentrations of Mo, V and Cr with “yellow substance” absorbance reflect the importance of dissolved organic matter for the mobility of these elements during early diagenesis.  相似文献   

17.
The intense halocline and redoxcline in the Orca Basin, northwest Gulf of Mexico, induce dramatic water column profiles for manganese, iron, and suspended particulates. Within a 17 m interval, the salinity of the basin water increases from 66 to 260 & permil and dissolved oxygen decreases to zero. Midway through this transition zone, concentrations of suspended matter peak at 900 g/liter. Dissolved iron and manganese concentrations in the anoxic brine increase from oceanic values to maxima of 1.6 and 22 mg/liter, respectively. Upward migration of dissolved manganese from the brine leads to production of manganese-rich particles in the slightly oxygenated overlying water.  相似文献   

18.
Lead has been determined in 105 water samples from the north east Atlantic and from the North Sea. Rigorous precautions were applied to avoid contamination during sampling and analysis.Two different analytical methods were used: ASV and AAS. Determinations with ASV were carried out on board, directly after sampling. After two months storage, acidified samples were analysed by AAS after freon dithiocarbamate extraction and nitric acid back extraction. Particulate lead was determined by AAS after an acid digestion.The profiles of lead concentration versus depth show around 160 pM at the surface and around 20 pM at the bottom, both in the Atlantic and in the Norwegian Sea. The shapes of the profiles are different, however, depending on the hydrography of the area sampled. The profiles from the north east Atlantic coincide with a recently published profile from the north west Atlantic. Moreover, these profiles have lead concentrations about a factor of three higher than those in the Pacific.Considering the high lead input to the North Sea, the lead concentrations found there are remarkably low, probably because of scavenging effects in estuaries leading to a short residence time in the water column. The dominant lead input in offshore regions is from the atmosphere. The highest lead levels are found in the northern North Sea, around 300 pM in surface water.In the Atlantic, particulate lead is a minor part of the total lead whereas in the North Sea the particulate fraction is larger, up to 40%.  相似文献   

19.
《Journal of Sea Research》1999,41(1-2):35-53
Suspended matter samples filtered from surface waters and two depth profiles from the Flores Sea and Makasar Strait were investigated by electron probe X-ray microanalysis (EPXMA) and laser microprobe mass analysis (LAMMA). EPXMA yielded discrete morphological and chemical analysis of the major particle types of suspended matter. Cluster analysis revealed that thirteen main particle types described the composition of suspended matter of the Flores Sea and Makasar Strait. Silicates, aluminosilicates and Fe-oxyhydroxides were the predominant particle types. Suspended matter of the basins studied contained high levels of tin-bearing particles. On the basis of their composition, tin particles can be divided into three groups: (1) tin oxide/hydroxides (cassiterite, romarchite, hydroromarchite); (2) iron-oxyhydroxides with adsorbed tin; and (3) mixed oxidation state tin hydroxysulphates. Only ultra-fine cassiterite particles enter the seawater in suspended state. Dissolved tin species entering the sea have three alternatives: (1) to be scavenged by Fe-oxyhydroxides; (2) to precipitate as tin oxide/hydroxides (romarchite, hydroromarchite); (3) to precipitate as tin hydroxysulphates. The conclusion is that dissolved and suspended tin originate from local sources in the land frame of the basins as well as from remote sources in the Indonesian Archipelago. Four different sectors of the waters studied have suspended matter with different composition: (1) the Mahakam River–Delta zone; (2) the open Flores Sea; (3) the landlocked Saleh Bay; (4) the Makasar Strait proper. The depth distribution of suspended particle types is mainly influenced by: (1) the bottom nepheloid layer and calcite lysocline in the Flores Sea; (2) the high bioproduction in the surface water layer and the vertical distribution of organic matter in the Makasar Strait.  相似文献   

20.
Shelf break systems are highly dynamic environments. However little is known about the influence that benthic interactions and water mass mixing may have on vertical distributions of iron in these systems. Dissolved Fe (< 0.4 μm) concentrations were measured in samples from nine vertical profiles across the upper slope (150–2950 m water depth) at the Atlantic Ocean–Celtic Sea shelf break. Dissolved iron concentrations varied between less than 0.2 and 5.4 nM, and the resulting detailed section showed evidence of a range of processes influencing the Fe distributions. The near sea floor data were interpreted in terms of release and removal processes. The concentrations of dissolved Fe present in near seabed waters were consistent with release of Fe from in situ remineralisation of particulate organic matter at two upper slope stations, and possibly release from pore water upon resuspension on shelf. Lateral transport of dissolved iron was evident from elevated Fe concentrations in an intermediate nepheloid layer and its advection along isopycnals. Surface waters at the shelf break also showed evidence of vertical mixing of deeper iron-rich waters. These waters contained macronutrients that sustained primary productivity in these otherwise nutrient-depleted surface waters. The data also suggest some degree of stabilisation of relatively high concentrations of iron, presumably through ligand association or as colloids. This study supports the view that lateral export of dissolved iron to the interior of the ocean from shelf and coastal zones and may have important implications for the global budget of oceanic iron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号