首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the region of Three Gorges Reservoir (TGR) in China, there has been occurrence of several frequent earthquakes of moderate intensity since reservoir impounding occurred in 2003. These earthquakes are generally believed to be induced by reservoir impoundment and water-level variations. Usually, the geo-stress will change, when natural earthquakes occur. Following this principle, this paper adopted the rate and state theory to simulate and estimate Coulomb stress changes in the TGR region and obtained the pattern of Coulomb stress changes with time and the event sequence as well as the distribution of Coulomb stress changes in space. First, the TGR regional catalogue was analyzed and processed, leading to quantification of the magnitude of completeness and all of the parameters that are used in the stress–seismicity inversion process, including the reference seismicity rates, characteristic relaxation time, fault constitutive parameters, and stress rates. Second, the temporal evolution of the stress changes in different time windows was computed and analyzed, and it was found that there is an association between the Coulomb stress changes and rates of increase in the cumulative number of earthquakes. In addition, the earthquake occurred in November 2008 (M S = 4.1) was analyzed and attempted to simulate the distribution of stress changes in space through the stress–seismicity inversion model. The results proved that the modeled area coincides with the historical area of earthquakes that occurred after 2008. Finally, a prediction was made about the earthquake productivity rates after 2015, which showed a declining earthquake rate over time that ultimately returned to the background seismicity. This result is essentially in agreement with Omori’s law. To conclude, it is rational to use the stress-inversion method to analyze the relationship between induced earthquake seismicity and local stress changes as well as to simulate the area of earthquake occurrence and productivity rates of reservoir-induced earthquakes.  相似文献   

2.
The Mw7.5 Palu earthquake that occurred on September 28, 2018, in Indonesia caused much damage to the city of Palu. Preliminary investigations indicated that the Palu‐Koro Fault (PKF) hosted this damaging event. We calculated the seismicity before and after the 1996 Minahasa Mw7.9 earthquake and found that the seismicity on the PKF was enhanced after this earthquake. The earlier earthquake added Coulomb stress changes (?CFS) to the seismogenic fault plane. We calculated the ?CFS produced by the Palu earthquake on a specified received nodal plane; the results suggest that many aftershocks occurred in the region of increased ?CFS. This region was consistent with the region of increased seismicity. The ?CFS on neighbouring faults increased, and up to 55.282 bar of stress was observed on the PKF. Furthermore, we calculated the expected seismicity rate and found that it will require ~50 years to recover to its original level.  相似文献   

3.
Since unprecedented large-scale silent slip was detected by GPS in 2001 in the Tokai region, evaluating whether such movement is uniquely connected to the expected Tokai earthquake or repeatedly occurs in this area becomes vitally important. Because of short history of GPS observations and the limited areal coverage surrounding the Suruga trough, we take advantage of continuously recorded seismicity that is presumed to be sensitive to the deformation at seismogenic depth. Together with the well-maintained NIED earthquake data, we employ the seismicity-to-stress inversion approach of rate/state friction to infer the spatio-temporal stress changes in and around the presumed hypocentral zone of the future Tokai earthquake. Mapping stress changes inverted from microseismicity year by year, we find that the stress under Lake Hamana, the western expected future Tokai source, has been decreasing since 1999, during which the GPS data showed a normal trend of plate coupling. In contrast, stresses in the surrounding regions are calculated to have increased by transfer from Lake Hamana region. We interpret that this continuous process is associated with the 2000–2004 Tokai slow slip event. The characteristic patterns related to aseismic stress-release are also identified in the early 1980s and during 1987–1989, when slow events are inferred to have occurred on the basis of conventional geodetic measurements. Revisiting the seismotectonics and taking into account the mechanical implications of the inversion results, we argue that the transition zone situated between a deep stable creeping zone and a locked zone undergoes episodic creep and plays an important role in the transfer of stress to the locked zone. Consequently, even though we speculate that the current (2000 to present-day) silent slip event might be one of the repeating events, the inferred enlargement of the stress releasing area is significant and possibly raises the likelihood of the next Tokai earthquake.  相似文献   

4.
The current lithospheric geodynamics and tectonophysics in the Baikal rift are discussed in terms of a nonlinear oscillator with dissipation.The nonlinear oscillator model is applicable to the area because stress change shows up as quasi-periodic inharmonic oscillations at rifting attractor structures (RAS).The model is consistent with the space-time patterns of regional seismicity in which coupled large earthquakes,proximal in time but distant in space,may be a response to bifurcations in nonlinear resonance hysteresis in a system of three oscillators corresponding to the rifting attractors.The space-time distribution of coupled MLH > 5.5 events has been stable for the period of instrumental seismicity,with the largest events occurring in pairs,one shortly after another,on two ends of the rift system and with couples of smaller events in the central part of the rift.The event couples appear as peaks of earthquake ‘migration' rate with an approximately decadal periodicity.Thus the energy accumulated at RAS is released in coupled large events by the mechanism of nonlinear oscillators with dissipation.The new knowledge,with special focus on space-time rifting attractors and bifurcations in a system of nonlinear resonance hysteresis,may be of theoretical and practical value for earthquake prediction issues.Extrapolation of the results into the nearest future indicates the probability of such a bifurcation in the region,i.e.,there is growing risk of a pending M ≈ 7 coupled event to happen within a few years.  相似文献   

5.
Anomalous movements were detected simultaneously in both the seismic and the GPS observations in the Tokai area, the central part of the Japanese islands from the late 1990s to 2000. The anomalies are of great concern since the pending risk of a large megathrust earthquake in this area has been predicted for more than 20 years. The GPS data revealed that a slow-slip on the plate interface had commenced beneath Lake Hamana, the center of which is positioned around the edge of the assumed focal zone. On the other hand, the seismic data indicated that a delicate but clear quiescence appeared over a wide area that spreads into the main focal zone. Analyses of the seismicity changes in space and time confirmed that the contrast in the seismicity rate is distinct inside the focal zone. While the integrated seismicity indicated quiescence, some locations were distinguished as activated zones, possibly indicating the appearance of asperities. The rise of the seismicity rate in a quasi-stationary manner suggests an increase in the stress rate at that location. The following hypothesis is proposed based on the simultaneously detected evidences. The slow-slip progressing beneath Lake Hamana will induce a stress shift that invades the interior of the main locked zone, which will increase the contrast of the seismicity rate, possibly reflecting inhomogeneity in the locking strength. Even in this stage, the activated zones still maintain a locked state to prevent overall breakage. Investigations of the b-value changes and of tidal dependence in seismicity that reveal the stress-concentrated state also support the hypothesis. If this is the case, the observed change in seismicity would indicate the process of stress redistribution in the locking state, which represents the preparatory process toward final breakage. Tracking such seismicity changes would yield valid information for predictions of the next Tokai earthquake.  相似文献   

6.
The Himalayas has experienced varying rates of earthquake occurrence in the past in its seismo-tectonically distinguished segments which may be attributed to different physical processes of accumulation of stress and its release, and due diligence is required for its inclusion for working out the seismic hazard. The present paper intends to revisit the various earthquake occurrence models applied to Himalayas and examines it in the light of recent damaging earthquakes in Himalayan belt. Due to discordant seismicity of Himalayas, three types of regions have been considered to estimate larger return period events. The regions selected are (1) the North-West Himalayan Fold and Thrust Belt which is seismically very active, (2) the Garhwal Himalaya which has never experienced large earthquake although sufficient stress exists and (3) the Nepal region which is very seismically active region due to unlocked rupture and frequently experienced large earthquake events. The seismicity parameters have been revisited using two earthquake recurrence models namely constant seismicity and constant moment release. For constant moment release model, the strain rates have been derived from global strain rate model and are converted into seismic moment of earthquake events considering the geometry of the finite source and the rates being consumed fully by the contemporary seismicity. Probability of earthquake occurrence with time has been estimated for each region using both models and compared assuming Poissonian distribution. The results show that seismicity for North-West region is observed to be relatively less when estimated using constant seismicity model which implies that either the occupied accumulated stress is not being unconfined in the form of earthquakes or the compiled earthquake catalogue is insufficient. Similar trend has been observed for seismic gap area but with lesser difference reported from both methods. However, for the Nepal region, the estimated seismicity by the two methods has been found to be relatively less when estimated using constant moment release model which implies that in the Nepal region, accumulated strain is releasing in the form of large earthquake occurrence event. The partial release in second event of May 2015 of similar size shows that the physical process is trying to release the energy with large earthquake event. If it would have been in other regions like that of seismic gap region, the fault may not have released the energy and may be inviting even bigger event in future. It is, therefore, necessary to look into the seismicity from strain rates also for its due interpretation in terms of predicting the seismic hazard in various segments of Himalayas.  相似文献   

7.
采用β统计对汶川地震前后鄂尔多斯块体周缘地区的地震活动率进行了空间扫描分析,并采用JiChen的震源破裂模型计算了汶川地震产生的库仑破裂应力变化,以研究鄂尔多斯块体周缘地区近期地震活动性与汶川地震应力触发作用的关系。结果发现,鄂尔多斯块体西南缘弧形断裂束的南东段与南缘渭河盆地的地震活动率在汶川地震后提高显著,其他区域的地震活动率没有明显提高,库仑破裂应力计算得到两个区域的应力变化范围分别为0.005~0.02 MPa和0.001~0.01 MPa,表明汶川地震有可能触发了这两个区域的地震活动。鄂尔多斯块体东缘的山西断陷带处于库仑破裂应力计算的应力增加区,应力变化范围为0~0.012 MPa,2009年3月以来发生的4次ML4.5~5.2级强有感至微破坏地震有可能被汶川地震所延迟触发。b值、地震能量释放率与空间相关距离SCL等地震活动性参数随时间变化扫描结果显示,该区域可能处于不断趋近高应力累积的状态,其未来大震有可能提前发生。西缘地区为应力减小区,其目前的地震活动处于正常水平状态。  相似文献   

8.
We studied the temporal behavior of the background shallow seismicity rate in 700 circular areas across inland Japan. To search for and test the significance of the possible rate changes in background seismicity, we developed an efficient computational method that applies the space–time ETAS model proposed by Ogata in 1998 to the areas. Also, we conducted Monte Carlo tests using a simulated catalog to validate the model we applied. Our first finding was that the activation anomalies were found so frequently that the constant background seismicity hypothesis may not be appropriate and/or the triggered event model with constraints on the parameters may not adequately describe the observed seismicity. However, quiescence occasionally occurs merely by chance. Another outcome of our study was that we could automatically find several anomalous background seismicity rate changes associated with the occurrence of large earthquakes. Very significant seismic activation was found before the M6.1 Mt. Iwate earthquake of 1998. Also, possible seismic quiescence was found in an area 150 km southwest of the focal region of the M7.3 Western Tottori earthquake of 2000. The seismicity rate in the area recovered after the mainshock.  相似文献   

9.
We estimated spatio-temporal evolution of Coulomb stress within the subducted Pacific slab in Hokkaido from the analysis of seismicity rate change. For this purpose we used earthquake catalog from the Institute of Seismology and Volcanology (ISV), Hokkaido University for the period 1993/4/1–2006/12/31 after relocating to compensate location errors due to the heterogeneous P- and S-wave structure beneath Hokkaido. We found that spatial pattern of Coulomb stress change inverted from the seismicity rate change is comparable with static change in Coulomb stress estimated from dislocation models. Our results and analyses reveal important insights on spatio-temporal pattern of deformation of the subducted Pacific slab in terms of Coulomb stress change. We found that the 2003 Tokachi Oki earthquake (Mw = 8.0) pervasively perturbed Coulomb stress in a regional scale with a significant impact to trigger the 2004 Kushiro Oki earthquake. The 2004 Kushiro Oki earthquake (Mw = 7.0) is another significant stressing event that changed the pattern of Coulomb stress in the area. We found that stressing events with magnitude smaller than 7.0 has minimal impact on Coulomb stress change in the Pacific slab. Similarly, comparatively deep focused large earthquakes could not change Coulomb stress significantly. Further the pattern of Coulomb stress change after the 2003 Tokachi Oki earthquake correlates the pattern of afterslip distribution in Hokkaido.  相似文献   

10.
西南地区现代构造应力场与地震活动性的实验研究   总被引:1,自引:0,他引:1       下载免费PDF全文
前言西南地区(指云南、四川西部地区)位于我国南北构造带即南北地震带的南段,是地壳运动剧烈、构造形态复杂、地震活动十分频繁的地区。它西临印度洋板块的俯冲带,东濒古老稳定的四川地台和黔桂古陆,岩层遭到十分强烈的挤压,形成了一系列平行于印度洋板块的巨型褶皱带、深大断裂带及弧形山脉。  相似文献   

11.
汶川8.0级大地震震源机制与构造运动特征   总被引:2,自引:2,他引:0       下载免费PDF全文
徐纪人  赵志新 《中国地质》2010,37(4):967-977
根据地震震源机制、断层参数结果,结合GPS测定的同震位移场与构造研究的最新结果,综合分析研究了2008年汶川8级大地震汶川地震发生的地震活动背景、震源应力场、断层构造运动特征及其动力学机制。地震活动性分析研究结果表明,2008年汶川8级大地震是在青藏高原与其周边地域构造运动剧烈,2001年起始的地震活动高潮期的背景下发生的。其长达300km的地震震源断层填补了青藏高原东缘1900年以来存在的8级地震活动的空区。震源机制与区域应力场特征及其动力学机制研究表明,汶川8级地震震源处于南北地震带中南段东部,青藏高原东向扩张与四川盆地的抵抗是该区构造运动的主要特征。汶川地震及其强余震是在一个稳定的、主压应力P轴以北西西-东南东方向为主的震源应力场控制下发生的。说明汶川地震震源区域主要受到四川盆地、华南块体区域应力场的控制并发震的。龙门山断裂带西侧的青藏高原相对于四川盆地发生的东向上升;而东侧的四川盆地相对于青藏高原发生的西向下降构造运动是2008年汶川8级地震发生的主要地震成因即地震发生机制。  相似文献   

12.
吉塞尔斯地震活动可能是因蒸汽开发引起的.水在一个承受很高构造剪应力和应变的大范围破裂体中汽化为蒸汽。 汽田地震震源机制解与区域构造应变场几乎一致,并且在该区域范围内汽田地震与别的构造地震不易区分。观测中注意到地震活动与注液历史无关,这表明孔隙水压力增高与注液不可能是吉塞尔斯诱发地震的成因。 相反,所有证据都表明诱发地震与孔隙水压力及温度降低有关。形成机制有两种最大可能:其一,是裂隙排水(汽)导致局部剪应力增加所致,其二,是由稳定滑动转化为不稳定滑动(粘滑)。没有其它记载的诱发地震机制与吉塞尔斯汽田条件相符。  相似文献   

13.
Following the 1999 Mw 7.6 Chi-Chi earthquake, a large amount of seismicity occurred in the Nantou region of central Taiwan. Among the seismic activities, eight Mw  5.8 earthquakes took place following the Chi-Chi earthquake, whereas only four earthquakes with comparable magnitudes took place from 1900 to 1998. Since the seismicity rate during the Chi-Chi postseismic period has never returned to the background level, such seismicity activation cannot simply be attributed to modified Omori’s Law decay. In this work, we attempted to associate seismic activities with stress evolution. Based on our work, it appears that the spatial distribution of the consequent seismicity can be associated with increasing coseismic stress. On the contrary, the stress changes imparted by the afterslip; lower crust–upper mantle viscoelastic relaxation; and sequent events resulted in a stress drop in most of the study region. Understanding seismogenic mechanisms in terms of stress evolution would be beneficial to seismic hazard mitigation.  相似文献   

14.
Bogdan Enescu  Kiyoshi Ito   《Tectonophysics》2005,409(1-4):147-157
By using the double-difference relocation technique, we have determined the fine structure of seismicity during the 1998 Hida Mountain earthquake swarm. The distribution of seismic activity defines two main directions (N–S and E–W) that probably correspond to the regional stress pattern. The detailed structure of seismicity reveals intense spatio-temporal clustering and earthquake lineations. Each cluster of events contains a mainshock and subsequent aftershock activity that decays according to the Omori law. The seismicity and the b-value temporal and spatial patterns reflect the evolution of the static stress changes during the earthquake swarm. About 80% of the swarm's best-relocated events occur in regions of increased ΔCFF. The smaller value of b found in the northern part of the swarm region and a larger b-value observed to the south, for the same period of time, could be well explained by the static stress changes caused by the larger events of the sequence. We argue that the state of stress in the crust is the main factor that controls the variation of b-value.  相似文献   

15.
Northeastern Brazil is, within the present knowledge of historical and instrumental seismicity, one the most seismic active areas in intraplate South America. Seismic activity in the region has occurred mainly around the Potiguar basin. This seismicity includes earthquake swarms characterized by instrumentally-recorded events ≤ 5.2 mb and paleoseismic events ≥ 7.0. Our study concentrates in the João Câmara (JC) epicentral area, where an earthquake swarm composed of more than 40,000 aftershocks occurred mainly from 1986 to 1990 along the Samambaia fault; 14 of which had mb > 4.0 and two of which had 5.1 and 5.0 mb. We describe and compare this aftershock sequence with the present-day stress field and the tectonic fabric in an attempt to understand fault geometry and local control of seismogenic faulting. Earthquake data indicate that seismicity decreased steadily from 1986 to 1998. We selected 2,746 epicenters, which provided a high-quality and precise dataset. It indicates that the fault trends 37° azimuth, dips 76°–80° to NW, and forms an alignment  27 km long that cuts across the NNE–SSW-trending ductile Precambrian fabric. The depth of these events ranged from  1 km to  9 km. The fault forms an echelon array of three main left-bend segments: one in the northern and two in the southern part of the fault. A low-seismicity zone, which marks a contractional bend, occurs between the northern and southern segments. Focal mechanisms indicate that the area is under an E–W-oriented compression, which led to strike–slip shear along the Samambaia fault with a small normal component. The fault is at 53° to the maximum compression and is severely misoriented for reactivation under the present-day stress field. The seismicity, however, spatially coincides with a brittle fabric composed of quartz veins and silicified-fault zones. We conclude that the Samambaia fault is a discontinuous and reactivated structure marked at the surface by a well-defined brittle fabric, which is associated with silica-rich fluids.  相似文献   

16.
Short-term earthquake prediction, months in advance, is an elusive goal of earth sciences, of great importance for fundamental science and for disaster preparedness. Here, we describe a methodology for short-term prediction named RTP (Reverse Tracing of Precursors). Using this methodology the San Simeon earthquake in Central California (magnitude 6.5, Dec. 22, 2003) and the Tokachi-Oki earthquake in Northern Japan (magnitude 8.1, Sept. 25, 2003) were predicted 6 and 7 months in advance, respectively. The physical basis of RTP can be summed up as follows: An earthquake is generated by two interacting processes in a fault network: an accumulation of energy that the earthquake will release and a rise of instability triggering this release. Energy is carried by the stress field, instability is carried by the difference between the stress and strength fields. Both processes can be detected and characterized by “premonitory” patterns of seismicity or other relevant fields. Here, we consider an ensemble of premonitory seismicity patterns. RTP methodology is able to reconstruct these patterns by tracing their sequence backwards in time. The principles of RTP are not specific to earthquakes and may be applicable to critical transitions in a wide class of hierarchical non-linear systems.  相似文献   

17.
Quantification of seismic activity is one of the most challenging problems faced by earthquake engineers in probabilistic seismic hazard analysis. Currently, this problem has been attempted using empirical approaches which are based on the regional earthquake recurrence relations from the available earthquake catalogue. However, at a specified site of engineering interest, these empirical models are associated with large number of uncertainties due to lack of sufficient data. Due to these uncertainties, engineers need to develop mechanistic models to quantify seismic activity. A wide range of techniques for modeling continental plates provides useful insights on the mechanics of plates and their seismic activity. Among the different continental plates, the Indian plate experiences diffused seismicity. In India, although Himalaya is regarded as a plate boundary and active region, the seismicity database indicates that there are other regions in the Indian shield reporting sporadic seismic activity. It is expected that mechanistic models of Indian plate, based on finite element method, simulate stress fields that quantify the seismic potential of active regions in India. This article explores the development of a finite element model for Indian plate by observing the simulated stress field for various boundary conditions, geological and rheological conditions. The study observes that the magnitude and direction of stresses in the plate is sensitive to these conditions. The numerical analysis of the models shows that the simulated stress field represents the active seismic zones in India.  相似文献   

18.
Prior to the 7/9/1999 MS = 5.9 Athens earthquake, regional seismicity has exhibited a power-law increase, of the form = K+A(tc - t)n, where is estimated using an expression log = cM + d and tc is the time of the culminating event. Such changes appeared after the 17/8/1999 M7.4 Izmit event. We quantified the performance of the power law vs. the null hypothesis of constant seismic release rates, by defining the curvature C as the ratio of the power law fit RMS/linear fit RMS, so that the smaller C is, the better the power law behaviour. By mapping C, we have established a critical radius of 110 km and observed that the region of correlated accelerating seismic release extended from the N. Aegean, through Euboea and Attica to the SW Peloponnese. A few days prior to the Athens event, min(C) was centred at the epicentral area and numerical simulation yielded tc = 1999.676 and predicted MS = 5.77. Seismicity rates returned to normal (quasi-constant) after the Athens event. We interpret this effect as critical point behaviour, following remote excitation of a broad area by stress redistribution due to the Izmit event which, at Athens, has triggered `premature' failure of a fault nearing its load bearing capacity. If this is correct, we have documented a case of remote earthquake triggering by another earthquake, as well as insight into the mechanisms producing it. As a corollary, we note that a large event may beget another large event in its broader region of interaction, which may be preceded by characteristic precursory seismicity changes.  相似文献   

19.
The frequency–magnitude distributions of earthquakes are used in this study to estimate the earthquake hazard parameters for individual earthquake source zones within the Mainland Southeast Asia. For this purpose, 13 earthquake source zones are newly defined based on the most recent geological, tectonic, and seismicity data. A homogeneous and complete seismicity database covering the period from 1964 to 2010 is prepared for this region and then used for the estimation of the constants, a and b, of the frequency–magnitude distributions. These constants are then applied to evaluate the most probable largest magnitude, the mean return period, and the probability of earthquake of different magnitudes in different time spans. The results clearly show that zones A, B, and E have the high probability for the earthquake occurrence comparing with the other seismic zones. All seismic source zones have 100 % probability that the earthquake with magnitude ≤6.0 generates in the next 25 years. For the Sagaing Fault Zone (zones C), the next Mw 7.2–7.5 earthquake may generate in this zone within the next two decades and should be aware of the prospective Mw 8.0 earthquake. Meanwhile, in Sumatra-Andaman Interplate (zone A), an earthquake with a magnitude of Mw 9.0 can possibly occur in every 50 years. Since an earthquake of magnitude Mw 9.0 was recorded in this region in 2004, there is a possibility of another Mw 9.0 earthquake within the next 50 years.  相似文献   

20.
The Pamir-Hindu Kush region at the western end of the Himalayan-Tibet orogen is one of the most active regions on the globe with strong seismicity and deformation and provides a window to evaluate continental collision linked to two intra-continental subduction zones with different polarities. The seismicity and seismic tomography data show a steep northward subducting slab beneath the Hindu Kush and southward subducting slab under the Pamir. Here, we collect seismic catalogue with 3988 earthquake events to compute seismicity images and waveform data from 926 earthquake events to invert focal mechanism solutions and stress field with a view to characterize the subducting slabs under the Pamir-Hindu Kush region. Our results define two distinct seismic zones: a steep one beneath the Hindu Kush and a broad one beneath the Pamir. Deep and intermediate-depth earthquakes are mainly distributed in the Hindu Kush region which is controlled by thrust faulting, whereas the Pamir is dominated by strike-slip stress regime with shallow and intermediate-depth earthquakes. The area where the maximum principal stress axis is vertical in the southern Pamir corresponds to the location of a high-conductivity low-velocity region that contributes to the seismogenic processes in this region. We interpret the two distinct seismic zones to represent a double-sided subduction system where the Hindu Kush zone represents the northward subduction of the Indian plate, and the Pamir zone shows southward subduction of the Eurasian plate. A transition fault is inferred in the region between the Hindu Kush and the Pamir which regulates the opposing directions of motion of the Indian and Eurasian plates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号