首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到5条相似文献,搜索用时 0 毫秒
1.
Recent advances in paleolimnology have enabled reconstructions of past sockeye salmon (Oncorhynchus nerka) dynamics using a number of proxy-indicators, including diatoms and stable isotopes. Thus far, studies have focused on nursery lakes with high escapement densities and low flushing rates, ensuring that levels of salmon-derived nutrients (SDN) are high and are incorporated into the food chain. This study examines three oligotrophic sockeye salmon nursery lakes in Alaska (Afognak and Saltery lakes) and British Columbia (Hobiton Lake) to determine if sockeye salmon populations can be tracked in nursery systems with lower salmon escapement densities, higher flushing rates and/or higher terrestrial input. We adopted a multi-proxy approach using diatoms, stable isotopes (15N), organic carbon to nitrogen (C/N) ratios and pollen to draw inferences from 210Pb-dated sediment cores. 15N showed little response to historic variation in sockeye salmon populations, even in Saltery Lake, which has a very high escapement density, and in Afognak Lake, in which average escapement is known to have increased. Dilution effects due to high flushing rates were likely partly responsible for the low 15N and minimal variation throughout the cores, although very high terrestrial input in Hobiton Lake also dampened the salmon signal. Small changes in diatom species assemblages, however, were evident in all three lakes and may be in response to fluctuating loads of salmon-derived nutrients. Most notably, increases of mesotrophic diatom taxa, such as Asterionella formosa and Aulacoseira subarctica, corresponded to increased salmon production in Alaskan lakes as a result of enhancement (fertilization) activities and climatic changes. Changes in the relative abundance of Cyclotella pseudostelligera in Hobiton Lake may also be in response to a significant decline in sockeye salmon populations off the west coast of Vancouver Island in the 1970s. Other factors, however, such as logging and lake fertilization may also have influenced diatom species composition. These results confirm that, while salmon-derived nutrients may be of key importance in juvenile salmonid development in some lakes, this may not be the case in all systems, especially those in which flushing rates are high. Further, in these systems, diatom communities appear to respond more sensitively to fluctuations in salmon populations (and therefore nutrients) than stable isotope methods, provided that other changes in trophic status are minor.  相似文献   

2.
Stratigraphic changes in the remains of Bosmina longirostris from a lake with an introduced sockeye salmon population and a lake with a natural salmon run on Kodiak Island demonstrated markedly different responses to past fluctuations in salmon populations. In both lakes, there was a positive correlation between the density of Bosmina microfossils and the abundance of sockeye salmon. However, opposite size trends were observed in the two lakes. In Karluk Lake, which has a native sockeye salmon population, Bosmina mean carapace lengths were largest at high salmon densities, and mean mucro and antennule lengths were also large, suggesting strong predation pressure from cyclopoid copepods, and less intense pressure from juvenile sockeye salmon. As salmon-derived nutrients are important in driving primary productivity in this system, changes in zooplankton productivity track salmon escapement, but grazing pressure on Bosmina from juvenile salmon is less important than that from cyclopoid copepods. In Frazer Lake, a lake with an introduced salmon population, Bosmina morphologies were smallest during periods of high sockeye salmon in the lake, suggesting much stronger predation effects from sockeye salmon due to the suppression of Cyclops columbianus. Latent development of compensatory mechanisms and the delayed recovery of copepod populations to salmon introductions has resulted in zooplankton populations that are still recovering from shifts in fish populations that occurred decades earlier. The differential response of Bosmina populations between the natural and manipulated lakes suggests that care must be taken when attempting to extrapolate results from whole-lake manipulations and short-term experiments to natural systems.  相似文献   

3.
The use of paleolimnology to reconstruct the collapse of the Fraser River sockeye salmon (Oncorhynchus nerka) populations following the landslides at the Hells Gate section of the Fraser canyon (British Columbia, Canada) is explicitly tested. Construction of the Canadian Pacific Railway caused a series of landslides in 1913–1914, partially blocking the Fraser River, preventing spawning salmon migration, and causing a near-complete collapse of upstream salmon stocks. We selected three sockeye nursery lakes upstream of Hells Gate, which varied in spawner density, migration length, and lake catchment characteristics. In each of the lakes, geochemical (stable nitrogen isotopes and C:N) and biological (diatoms) proxies failed to register the impact of a dramatic decrease in marine-derived nutrients (MDN). Additional variations in sockeye abundance, documented by the onset of commercial fishing and modern escapement records, were also not imprinted on the sediment record. Changes in diatom assemblages are coincident with 20th century climate warming and local catchment disturbances and are not attributable to variability in MDN subsidies. These results suggest that MDN do not remain within lakes in the Fraser River drainage long enough to become faithfully archived in the sediment record or that the lakes do not receive sufficient MDN to produce a recognizable sedimentary signature.  相似文献   

4.
The consequences of fire on water chemistry are important considering that major changes in the frequency and intensity of forest fires are anticipated as a result of global warming. Due to the important differences in succesionnal vegetative trends after fire between mixed-wood and coniferous-dominated forests in Quebec (Canada), we undertook a long-term paleoecological study of the impact of fires on the biogeochemistry of Lac à la Pessière, a small lake located in a conifer-dominated boreal forest ecoregion (Picea mariana-moss domain). The paleolimnological study was carried out using diatom assemblages (class:Bacillariophyceae) to reconstruct changes in environmental variables of limnological interest [pH, total phosphorus (TP), total nitrogen (TN), dissolved organic carbon (DOC) and, epilimnetic carbon dioxide (CO2)] potentially associated with fire over the last 1200 calendar years. Diatom composition and related reconstructed limnological variables were compared before and after fire events. No significant changes were systematically observed in lake chemistry associated with fire events. However, diatom-inferred epilimnetic CO2showed a clear decreasing trend over the last 400 cal. yrs BP. The results suggest that fire-induced changes in lake chemistry are limited in catchments dominated by black spruce (Picea mariana). We hypothesize that this fact result of excess moisture associated to the thick humus layer, which likely limits the mobilization of nutrients and major ions even during a fire event.  相似文献   

5.
Cysts of two parthenogeneticArtemia strains from the Kalloni and Polychnitos saltworks on Lesbos Island were evaluated for their potential use in aquaculture. The characterizations performed were: cyst and naupliar biometrics, cyst hatching characteristics, and fatty acid profile of instar-I nauplii. Deactivation of diapause after treatment with H2O2 and/or decapsulation were applied in order to improve cyst hatchability. The evaluation revealed that the strains studied exhibit acceptable hatching characteristics for parthenogeneticArtemia and that the fatty acid profile of the Kalloni strain is excellent for use in culturing marine fishes and crustaceans. Statistical analyses on cyst and naupliar biometrics showed that the two populations characterized are almost identical and very similar to other Greek parthenogenetic strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号