首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 140 毫秒
1.
综合多源遥感数据识别提取月球正面南北纬50°之间的线性构造,重点分析月岭和月溪的影像特征、分布规律和时空关系,结合月海沉降模型分析两者的成因机制,结合地形和重力场数据预测影响月岭类型的因素。研究表明,在质量瘤盆地,月岭和月溪存在明显的时空关系和构造成因联系,两者主要由月海沉降产生的局部应力引起,前月海时期盆地的均衡状态和月海充填的几何形状可能影响了月岭的分布类型。  相似文献   

2.
月球南极艾特肯盆地的地质特征:探索月球深部的窗口   总被引:4,自引:0,他引:4  
月球南极艾特肯盆地(South Pole-Aitken Basin,简称SPA盆地)是月球上规模最大、最古老的撞击盆地,形成于43~39亿年前的前酒海纪。巨大的撞击可能挖掘出下月壳甚至月幔的物质,因此,它是探索月球深部物质组成的重要窗口。本文通过对SPA盆地形貌和构造特征、物质组成及其分布特征,以及形成机制等方面的分析,综述了艾特肯盆地的地质特征,探讨了SPA盆地对探索早期月球形成演化历史的意义。  相似文献   

3.
月球雨海北部陆地区域构造及其含义   总被引:1,自引:0,他引:1  
王敏沛  陈建平 《现代地质》2012,26(1):191-197
月球雨海北部陆地是雨海多环盆地的第二层,平均高程约-1 km。DEM图像显示,大量来自虹湾与柏拉图月坑的掘积物使本地区高程变得非常不均一。统计了研究区内的月坑,并根据其深度与宽度之比(深宽比)将它们划分为4组。深宽比较小而扁率较大的月坑被认为是较古老的月坑。这些古老月坑分布于比较接近月海的位置。对研究区内线性构造的制图研究揭示了3个优选方位,分别是E—W、NEE—SWW和NW—SE向。这种分布样式与月球格子构造系统大致匹配,因而它们很可能形成于雨海事件之前。这些线性构造,包括断裂与月溪,在月海玄武岩泛滥时期为玄武质岩浆的侵入提供了大量通道。在研究区内一些地形较低的地点,玄武岩上侵并出露在月表,它们的FeO平均含量接近但是略低于月海玄武岩。总结了本地区的地质构造演化历史,并且推论月球上的确存在类月海的陆地。  相似文献   

4.
王楠  陈建平  王翔  李婧  何姝珺 《地学前缘》2014,21(6):229-242
线性构造是月球表面除环形构造外另一种重要的构造样式,呈线状延伸。月表线性构造种类繁多,其成因也具有多样性。它能反映全月球或者区域性的构造特征与应力状态,在某种程度上反应月球内部的地质信息,对研究月球的构造演化有重要的意义。文中以静海地区为例,经过对“嫦娥二号”CCD的影像数据及从中提取的DEM数据进行解译,提取出了284条月岭和71条月溪,并对月岭月溪进行分类和统计分析,然后结合静海地区线性构造的分布特征及坡度图、等值线图,分析其演化过程。结果表明,静海地区的月溪月岭大部分分部在西部高程较低的区域;静海盆地月溪的形成时间与盆地形成及玄武岩的填充时间大致相同,月岭的形成时间大致与撞击坑的形成时间相同;静海盆地中一端延伸至撞击坑的月岭形成模型属于火山成因模型中的堤坝模型。  相似文献   

5.
雨海盆地是月球正面最大、月球上研究程度最高的多环结构撞击盆地,已有很多学者对其多环结构的边界进行恢复研究,但在多环结构最初始形状、多环位置/数量、盆地大小等方面,至今未能达成共识。本文利用GRAIL自由空气重力异常数据、LOLA激光测高数据进行了多源数据的融合,结果表明,雨海盆地是具有偏心圆的三环结构特点,其直径从外到内分别为1 500 km、1 100 km、665 km。基于欧拉反演结果研究表明,在雨海撞击盆地中部存在两种不同深度、构造运动性质及方向的断裂构造,即:(1)深度大于40 km,向下逐渐向内倾斜、延伸的深部断裂构造;(2)深度在40 km以内,由月表向下逐渐向外倾斜、延伸的浅部断裂构造。结合物质成分及地球物理特征的研究,雨海地区的地质构造演化过程可分为两个阶段:(1)在月球早期阶段(45~38.5亿年),主要以内动力地质作用即岩浆洋冷凝过程为主,形成了雨海盆地深度在40 km以下逐渐向内倾斜、延伸的构造断裂,其为本区在月球早期深部岩浆洋产生、分异及运移提供了通道,该构造断裂代表了雨海盆地撞击前的月球早期深部岩浆洋的构造地质演化阶段;(2)在月球晚期阶段(≤38.5亿年),主要以内、外动力地质作用并重,形成了雨海盆地深度在40 km以内逐渐向外倾斜、延伸的构造断裂,其应为本区不同期次的玄武质岩浆喷出或溢流到月表提供了运移通道,该构造断裂代表了雨海盆地撞击后的月球晚期不同期次玄武质岩浆喷发、充填溢流的月海岩浆活动作用的构造地质演化阶段。  相似文献   

6.
月球“质量瘤”盆地的深部结构与撞击演化   总被引:1,自引:0,他引:1  
月球"质量瘤"是指具有等轴状、高幅值重力异常的撞击盆地区域,重力异常是高密度月幔物质隆起与月海玄武岩充填共同作用的结果。研究这种高密度物质异常成因、来源、空间展布特征以及"质量瘤"盆地的深部结构,可以推测其形成与演化历史。利用嫦娥一号激光测高数据与LP165P月球重力场模型计算获得月球布格重力异常,采用新的垂直圆柱体重力异常计算公式,模拟月海充填玄武岩与月幔隆起,使其模拟计算的重力异常与测量的相对布格重力异常相吻合。计算结果表明,月球正面月海区域"质量瘤"盆地充填的玄武岩较高地区域的厚,在典型"质量瘤"盆地的布格重力异常中,月幔隆起是主要因素。计算还发现雨海与澄海下部月壳厚度比正面其他盆地的厚,而且澄海区域的地形表现为中心突起,下部月幔呈一定凹形,推测由于风暴洋区克里普岩的存在使得该区域月壳内部温度高,物质流动性增强,演化后期月壳物质横向压力均衡调整导致月壳物质向盆地中心回流,使得盆地下部月壳增厚,月幔凹陷,盆地地表出现一定程度的抬升。  相似文献   

7.
研究月海撞击盆地,尤其是古老的月海撞击盆地,有助于深入认识月球乃至太阳系中两种动力学即内动力和外动力地质作用的演化过程,也是研究月球早期演化和现今状态的重要纽带。云海撞击盆地为古老的撞击盆地之一,形成于前酒海纪,在后期的内外动力地质作用下,盆地有很大程度的改造。为了恢复云海撞击盆地原貌,深入认识该地区的地质演化过程,本文利用了LRO宽角相机影像数据、LOLA地形数据和GRAIL重力数据等多种类型的遥感数据,开展了云海撞击盆地演化的研究。结果显示,云海盆地是由一次撞击事件形成,具中央隆起的三环结构的撞击盆地,三环直径分别约为740km、500km、340km,盆地中心约为16°W,21°S。云海撞击盆地事件破坏了该地区原始月壳结构,随后岩浆喷出或溢流充填在撞击盆地中形成云海,塑造了现今观察到的云海地形特征和重力异常特征。  相似文献   

8.
月海盆地作为月球表面重要的地貌单元,分析其玄武岩喷发历史和构造作用,对于了解月球演化有着重要的意义。文中以澄海和静海两个相连通盆地为研究区,通过对LRO的DEM数据进行处理,获得两个月海的地形特征。基于Clementine多光谱数据处理,提取TiO2、FeO含量和成熟度分布图。经过对嫦娥一号CCD影像数据并结合LRO和LO全色波段影像的解译,提取了研究区126条月岭和114条月溪,并对比Cle-mentine提取的重力分布图,对其展布形式进行研究。综合分析结果表明,两个盆地虽然相邻连通,但岩性和构造分布有着明显的差别,玄武岩喷发不同期次界限明显,且澄海玄武岩年龄普遍晚于静海,相通处玄武岩与静海北部玄武岩同源。澄海中的线状构造展布形式与静海中的明显不同,呈现出一定规律,与质量瘤的有无及重力展布形式有关。  相似文献   

9.
佩塔维厄斯幅月球地质图(LQ-21)位于近月面与远月面交接位置,又处于月海和月陆的过渡区,周边邻近酒海、丰富海、史密斯海等大型撞击盆地,是月球数字地质填图工作中的一个典型区域。研究该地区的地质发育概况有助于了解月球的发展演化历史。本文利用中国探月工程所获得的“嫦娥一号”(CE-1)CCD影像数据、干涉成像光谱仪(IIM)数据、激光高度计(LAM)数据和“嫦娥二号”(CE-2)CCD影像数据以及其他已有的月球地质资料,应用ArcGIS平台,开展月表物质成分、构造要素、地质时代信息的研究和数字填图工作,编制了1: 2 500 000佩塔维厄斯幅(LQ-21)数字月球地质图,总结了该地区区域地质演化历史并建立地质图空间数据库。  相似文献   

10.
北黄海盆地构造演化特征分析   总被引:8,自引:0,他引:8  
依据最新油气资源调查资料,在简述北黄海盆地区域构造特征的基础上,重点分析了盆地的沉降史与构造演化特征。研究表明:(1)北黄海盆地的基本沉降曲线型式为7段折线状,其中晚侏罗世、早白垩世、始新世、渐新世、新近纪为曲线下降段,代表盆地5幕较明显的沉降;晚白垩世—古新世以及中新世早期为曲线上升段,反映盆地的抬升剥蚀。(2)盆地沉降作用自中生代至新生代总体由东向西迁移,东部坳陷以中生代沉降作用最为显著,中部坳陷主沉降期为始新世,而西部坳陷的快速沉降主要发生在始新世,并一直持续到渐新世。(3)盆地构造演化大致可划分为中生代断陷盆地、古近纪叠加断陷盆地以及新近纪坳陷盆地等3大发展阶段,其中,中生代断陷盆地发育阶段是北黄海盆地油气勘探研究的重点。  相似文献   

11.
月岭形成机制及其与潮汐力的相关性分析   总被引:1,自引:0,他引:1  
月岭作为月表常见的线性构造类型之一,具有一定的分布规律。利用LRO(Lunar Reconnaissance Orbiter)的DEM数据提取月岭剖面并进行了构造分析,认为月岭主体为逆冲断层叠加牵引褶皱的挤压构造形成机制。前人多用月海盆地沉降叠加月球热能收缩解释月岭的成因,但它无法解释盆地中央月岭呈近南北向的优选方位,这种现象可能是受到近东西向区域性挤压应力的影响,与潮汐力对月球中低纬度区域的应力作用状态相符,推测潮汐力可能是盆地中央月岭形成的主因。综合利用嫦娥一号CCD影像数据、Lunar Orbiter和LRO全色波段影像数据,解译识别出月球正面中低纬度1 464条月岭。对其进行方向统计,结果表明,月岭整体走向也与Melosh预测的在潮汐力作用下形成的构造样式相似。由此推测,月岭的展布与潮汐力具有很强的相关性,进一步论证了月岭的形成与潮汐力有关。  相似文献   

12.
月海玄武岩与月球演化   总被引:6,自引:0,他引:6  
徐义刚 《地球化学》2010,39(1):50-62
月海玄武岩主要产于月球近边的盆地中,覆盖面积为月球表面的l%,其形成年龄多在39~31亿年之间,是各类月岩中最年轻的。与地球玄武岩相似,月海玄武岩由斜长石、辉石和橄榄石组成,但它们比地球玄武岩具有更低的Mg#、A1:0,、K和Na含量.高的FeO含量(大于16%)和变化范围大的TiO2含量(小于l%到大于13%)。根据TiO2含量的变化,月海玄武岩分成高Ti(〉6%),低Ti(1.5%〈TiO:〈6%)以及极低Ti(〈1.5%)三类。所有月海玄武岩都具有Eu负异常,并亏损挥发性元素和亲铁元素。月海玄武岩的同位素特征指示其至少为三个组分混合的产物:(1)高:238U/204Pb、高87Sr/86Sr和负εNd组分,可能是岩浆海分异的残余岩浆即KREEP;(2)低:238U/204Pb、低87Sr/86sr和正εNd组分,来源于原始月幔,其熔融产物为低Ⅱ玄武岩;(3)中等87Sr/86Sr和εNd组分,位于月幔的顶部,经历了岩浆海(洋)过程中形成的堆晶物质的再熔融,还可能受到了陨击事件的影响,其熔融产物是高Ti玄武岩。月海玄武岩的元素和同位素地球化学性质支持岩浆海的假说,其源区的形成与岩浆海的分异密切相关,并经历了三个阶段:(a)岩浆海阶段,通过岩浆海的结晶分异形成顶部为斜长岩月壳,中间为高Ⅱ、富钛铁矿层,底部为巨厚的硅酸盐低Ti层的三层壳幔结构;(b)富钛铁矿堆晶岩(携带少量残余熔体)因密度大而下沉至下部的硅酸盐月幔(400km以下);(C)月幔中这些不同源区的岩石发生减压熔融。早期由较浅的低熔点组分熔融形成低K高Ti玄武岩,之后形成来源较深的高Ti玄武岩和低Ti玄武岩。  相似文献   

13.
燕山构造带滦平早白垩世盆地沉积过程和演化   总被引:2,自引:1,他引:2  
滦平盆地是燕山构造带内一个具有代表性的早白垩世伸展盆地。对盆地内沉积岩相和相组合的详细分析结果显示,盆地内部发育不同的沉积相带并显示明显的空间变化。盆地北部和西部边缘以冲积扇砾岩和扇三角洲砂岩、砾岩沉积为主,盆地中心为湖泊细粒沉积。河流相砂岩和砾岩主要分布于盆地的东南部。古流向和物源恢复结果证明,盆地沉积物主体来自于北部和西部老变质岩基底,仅少部分沉积物来自盆地的东南缘。盆地构造沉降和沉积充填过程主要受北缘和西缘张性断层的控制,断层下盘基底岩石的抬升与盆地边界正断层活动相关,从而成为盆地主要的物源区。滦平盆地的演化可划分为三个阶段:即早期火山喷发阶段、中期强烈断陷阶段和晚期填平阶段。滦平盆地代表了早白垩世燕山构造带其它同类盆地的发展过程,它们皆以小型独立的盆地发育为特征。  相似文献   

14.
煤层赋存的条件取决于煤系地层沉积时的古地理景观、古气候及构造条件。根据下辽河西斜坡带区以往地质资料,本区发育一套含煤地层,由黑灰色泥岩、粉砂岩与灰白色砂岩、砂砾岩互层,含十余煤层,动植物化石丰富,属晚侏罗世—早白垩世的沙海组、阜新组。本区与赤峰—铁岭盆地群的其它煤盆地皆分布在辽宁省中西部,位于新华夏系第二巨型沉降带与阴山巨型纬向构造带复合部位,都是伴随新华夏系主干断裂而产生的断陷型盆地,无论在煤系沉积特征,还是后期所受构造改造等方面都有很多共同之处,因此认为本区可能有储量丰富的煤炭资源。  相似文献   

15.
There is evidence that during 4.3-3.9 Ga the Earth experienced a period of intense bombardment similar to that recorded on the moon. From cratering mechanics and by comparison with more recent terrestrial impact structures the effects of large impact structures, D 100 km, have been modelled for an early terrestrial proto-crust with an assumed thickness of 15 km. The direct effects were analogous to those on the Moon: the formation of multi-ring basins with a topography of 3 km, the uplift of deep-seated material to the surface, the fracturing of the crustal column and the generation of surface impact lithologies. However, unlike the Moon, the highly active nature of the Earth resulted in more long-lived indirect effects: impact-induced volcanism due to distortion of the geothermal gradient by uplift and the addition of post-shock heat, intra-basin sedimentation by volcaniclastics and reworked impact lithologies and ultimately subsidence of the basin due to loading by volcanic and sedimentary products. Very large basins, D > 1000 km, excavated the local lithosphere and produced the equivalent of mantle plumes below the impact sites.These conclusions are incorporated into a model of early crustal evolution of the Earth in which the net effect of large impact events was to localize and accelerate endogenic activity. In this scenario, the intense bombardment culminated at 3.9 ± 0.1 Ga with a period of heavy bombardment by a residual population of 10–100-km-sized bodies. The impact of these bodies represented a first-order event in the progressive evolution of the proto-crust. The resultant mare basin-sized structures overlapped in space and their effects overlapped in time to give rise to large areas, 105–104 km2, of vigorous endogenic activity and thermally and geologically anomalous crust. Subsidence of these major basins resulted in the reprocessing of large volumes of basaltic volcanics and impact melt leading to the production of sialic partial melts. Large impacts thus may have been a triggering mechanism for the generation of extensive concentrations of differentiated crust and for a proto-crust of basaltic composition would have been the loci of protocontinental nuclei production. Further reworking of these nuclei and subsequent cratonization by strictly internal mechanisms would have produced the stable shield areas during the Late Archean.  相似文献   

16.
Impact cratering was an important — even dominant — process affecting the crustal evolution of the small terrestrial planets. The fundamental highlands/maria dichotomy of the Moon's surface can be traced to a late heavy bombardment by basin-forming, asteroid-sized bodies which produced not only a topographic division in the lunar crust but also localized the later eruptions of mare basalts. Major impact basins with diameters in excess of 200 km are recognized throughout the inner solar system from Mars to Mercury. Similar craters must have formed on the Earth prior to 4 Ga ago, and the minimum number of such basin-forming impacts can be calculated by scaling from the observed (minimum) number preserved on the Moon. When allowance is made for differences in impact velocity, gravitational cross-section and the effects of gravity on crater diameter, it is found that at least 50% of a presumed global sialic crust would have been converted into impact basins by 4 Ga ago. Among the effects resulting from the impact of an asteroidal object on the early crust were: (a) establishment of a topographic dichotmy of 3–4 km (after isostatic adjustment), (b) pressure-release partial melting of the upper mantle and rapid flooding of the basin floor by basalt, and (c) enhancement of thermal gradients in the sub-basin lithosphere and upper asthenosphere. Comparative planetary data such as impact scaling can be used as important constraints on models of the early terrestrial crust. For example, the topography resulting from impact bombardment produced discrete oceans and dry land by 4 Ga ago, making unreasonable models of a globe-encircling ocean on the Earth after that time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号