共查询到19条相似文献,搜索用时 46 毫秒
1.
2.
塔里木地块库车坳陷早日垩世古地磁结果及磁倾角偏低的成因探讨 总被引:1,自引:0,他引:1
运用主成分分离及线性区段等方法,使早白垩世样品明显分离出二线磁组分。叠加剩磁为喜山期重磁化,特征乘磁明显偏离现代地磁场方向,经倾斜校正后,有很好的一致性并通过了倒转换检验,给出塔里木地块库车坳陷早白垩世巴西盖组古地磁亲数据。综合已有的古地磁结果,获得了塔里木地块早白垩世平均剩磁方向及平均古地磁极,阐明了塔里木地块早白垩世磁倾角偏低这一现象,分析导致磁倾角偏低的诸多因素,认为压实作用可能是导致磁倾角偏低的重要因素之一。 相似文献
3.
对四川盆地东北部巴中地区和西部雅安地区早白垩世红层分别采集9块手标本,进行了详细的古地磁学研究.系统退磁获得两地的特征剩磁,其中巴中地区平均方向为,倾斜校正之前:Dg/Ig=25.3°/19.0°,k=18.6,α95=8.8°;倾斜校正之后:Ds/Is=25.8°/18.9°,k=24.3,α95=7.6°.雅安地区平均方向为,倾斜校正之前:Dg/Ig=24.5°/45.0°,k=15.7,α95=9.0°;倾斜校正之后:Ds/Is=356.7°/35.6°,k=28.5,α95=6.6°.磁化率各向异性实验结果显示两地均未受到显著的构造应力影响.等温剩磁各向异性(AIR)实验结果,巴中地区IRMz/IRMx平均值为0.8194,表明18%的压实率;雅安地区IRMz/IRMx平均值为0.8909,表明11%的压实率,计算得到巴中和雅安地区校正后的磁倾角分别为22.7°和38.8°.根据等温剩磁各向异性(AIR)实验和Tauxe and Kent(2004)提出的EI校正法得到的结果表明,四川盆地早白垩世陆相碎屑岩层中存在沉积压实作用造成的磁倾角偏低现象,而且川东北巴中地区的偏低程度强于川西雅安地区.
相似文献4.
5.
通过海原地区早白垩世13个采点的古地磁研究,揭示了一组高温特征剩磁分量.在5%置信度下通过倒转检验,采样剖面获得的下白垩统李洼峡组和和尚铺组的磁性地层结果,显示多个正、反极性带,与早白垩世早期的极性特征相似,说明这组高温分量很可能代表岩石形成时的原生剩磁,其特征剩磁方向为:偏角D=12.7°,倾角I=50.2°,α5=6.3°;相应的极位置为:经度φ=218.0°E,纬度λ=78.2°N,dp=5.7°,dm=8.4°,古纬度ρ=31.0°.通过对比华北地块鄂尔多斯盆地的早白垩世古地磁结果,表明采样地区自早白垩世以来相对于华北鄂尔多斯盆地未发生明显的构造旋转和纬度方向上的位移.这说明海原断裂东南段并未发生大规模的左旋走滑运动,印度—欧亚板块碰撞挤压作用对青藏高原东北部海原地区的影响已经很小. 相似文献
6.
塔里木地块新生代古地磁结果及显生宙视极移曲线 总被引:9,自引:3,他引:9
发表了塔里木盆地新生代古地磁新结果,并综合前人工作成果编制了塔里木地块显生宙古地磁视极移曲线,探讨了塔里木地块各个地质时期运动规律. 相似文献
7.
通过海原地区早白垩世13个采点的古地磁研究,揭示了一组高温特征剩磁分量.在5%置信度下通过倒转检验,采样剖面获得的下白垩统李洼峡组和和尚铺组的磁性地层结果,显示多个正、反极性带,与早白垩世早期的极性特征相似,说明这组高温分量很可能代表岩石形成时的原生剩磁,其特征剩磁方向为:偏角D=12.7°,倾角I=50.2°,α5=6.3°;相应的极位置为:经度φ=218.0°E,纬度λ=78.2°N,dp=5.7°,dm=8.4°,古纬度ρ=31.0°.通过对比华北地块鄂尔多斯盆地的早白垩世古地磁结果,表明采样地区自早白垩世以来相对于华北鄂尔多斯盆地未发生明显的构造旋转和纬度方向上的位移.这说明海原断裂东南段并未发生大规模的左旋走滑运动,印度-欧亚板块碰撞挤压作用对青藏高原东北部海原地区的影响已经很小. 相似文献
8.
本文报道塔里木地块阿克苏—柯坪—巴楚地区奥陶纪古地磁研究新结果.对采自44个采点的灰岩、泥灰岩及泥质砂岩样品的系统岩石磁学和古地磁学研究表明,所有样品可分成两组:第一类样品以赤铁矿和少量磁铁矿为主要载磁矿物,该类样品通常可分离出特征剩磁组分A;第二类样品以磁铁矿为主要载磁矿物,系统退磁揭示出这类样品中存在特征剩磁组分B.特征剩磁组分A分布于绝大多数奥陶纪样品中,具有双极性,但褶皱检验结果为负,推测其可能为新生代重磁化.特征剩磁组分B仅能从少部分中晚奥陶世样品中分离出,但褶皱检验结果为正,且其所对应古地磁极位置(40.7°S,183.3°E,dp/dm=4.8°/6.9°)与塔里木地块古生代中期以来的古地磁极位置显著差别,表明其很可能为岩石形成时期所获得的原生剩磁.古地磁结果表明塔里木地块中晚奥陶世位于南半球中低纬度地区,很可能与扬子地块一起位于冈瓦纳古大陆的边缘;中晚奥陶世之后,塔里木地块通过大幅度北向漂移和顺时针旋转,逐步与冈瓦纳大陆分离、并越过古赤道;至晚石炭世,塔里木地块已到达古亚洲洋构造域的南缘. 相似文献
9.
海南岛白垩纪红层是迄今产出古地磁结果最多的地层,但古地磁结果难以在海南岛周边古地磁结果和地质限制条件下作出合理解释.为了更好地认识海南岛白垩纪红层古地磁方向的可靠性,我们对采自前人工作地区的14个采点132个样品开展了古地磁和磁组构的综合研究.磁化率各向异性测试显示14个采点样品平均各向异性度为1.018,线理度为1.014,面理度为1.004.各采点磁化率椭球体最小轴显著偏离地层法线,没有反映出沉积或压实特征.野外调查发现采点区域的节理组交线(代表中间应力轴)与磁化率椭球体中间轴一致,意味着采点磁性矿物的排列方位很可能因构造应力影响发生改变.逐步热退磁显示14个采点分离出的特征剩磁解阻温度高于660℃,方向区别于现代地磁场方向;褶皱检验表明在褶皱展平度为80.4%(95%置信范围内褶皱展平度为77%±12.2%)时精度参数达最大,对应方向为D=359.9°, I=43.4°,κ=70.2,α95=4.8°,与前人的古地磁方向一致.通过与华南地块参考极对比,以及综合分析海南岛围区古地磁和地质限制条件,表明该古地磁方向是不协调的.我们认为前人和本文采样红层剩磁很可能在沉积时获得,但在沉积后受到区域构造应力的影响,致使磁性矿物排列改变,从而导致古地磁方向也发生变化.因此,我们认为这些样品所记录的古地磁方向不能准确反映海南岛白垩纪古纬度. 相似文献
10.
东祁连造山带陆相盆地早白垩世古地磁新结果及其构造意义 总被引:6,自引:0,他引:6
对东祁连造山带早白垩世红层进行详细的古地磁学及岩石磁学研究, 系统热退磁研究结果表明: 紫红色砂岩的剩磁方向可分离出2~3个磁性分量, 其低温分量在地理坐标下与现今地磁场方向一致; 高温特征方向主要由赤铁矿携带, 19个采点的平均极位置为: λ=62.2°N, Φ =193.4°E, A95=3.2°, 其在99%置信水平下通过了褶皱检验, 且在95%的置信水平通过了倒转检验; 该极位置在95%置信水平下与Halim等人在该地区的研究结果是一致的; 对比同时代华北、华南、欧亚的古地磁结果表明: 兰州地区相对于华北、华南及欧亚白垩纪后不存在明显的南北向地壳缩短, 但却发生了20°左右的顺时针旋转, 造成这一旋转的原因很可能是印度/欧亚的碰撞挤压造成青藏高原北缘阿尔金断裂发生了大规模的左旋走滑所致. 相似文献
11.
选择伊朗中部、南部及西北部地区的近20条晚元古代-早古生代完整地层剖面,系统采集Soltanieh组、Barut组、Zaigun组、Lalun组及Mila组古地磁样品960件.经测试和对比获得结论:Soltanieh组记录的地磁极性带为反向,Barut组-Lalun组为正向,Mila组又为反向.此成果完全可与国际地质科学联合会(IUOS)1989年建立的全球地层极性柱中相应时代的极性带对比.计算得出5个地层组的古地磁南极位置.古地磁研究表明,晚元古代-早古生代伊朗全境均属稳定地块,处于赤道南侧约16°的低纬度区.此期间似无大幅度转动和纬度变化. 相似文献
12.
13.
14.
山西吉县沃曲桃园下三叠统刘家沟组红层的古地磁研究 总被引:5,自引:1,他引:5
本文对鄂尔多斯盆地东南缘一个背斜剖面的早三叠世红层样品进行了古地磁研究.对逐步热退磁矢量序列进行主成分分析以及各磁组分的解阻温度谱分析,估计了携磁矿物.分离出4种磁成分:镜铁矿携带的沉积或沉积后剩磁;赤铁矿携带的化学剩磁;等温剩磁和粘滞剩磁.特征剩磁(最高解阻温度Tu≥670℃)通过倒转检验、(递增)褶皱检验,平均方向为偏角D=-25°,倾角I=41°,相应的极位置为65°N、356°E. 相似文献
15.
16.
17.
18.
为研究四川攀西(攀枝花-西昌)地区大陆演化,在该区及邻区采集了中生代岩石标本。用热退磁和交变场退磁方法对59个采点的619块样品做了磁清洗处理。古地磁结果满足褶皱检验,对精度参数K小于10的采点或有后期重磁化的样品未纳入统计处理。 古地磁结果表明,攀西断隆、凉山断陷、断凹属扬子地块的西缘,早三叠世时位于北纬13°左右,至今北移了千余公里,上三叠纪后北移速度明显减慢;其西邻盐源断陷自早三叠世以来南移数百公里,无论古纬度或古方位与东邻地块的结果有较明显差异。 相似文献
19.
A STUDY REVIEW ON CHARACTERISTICS OF SEISMIC ACTIVITY OF ACTIVE-TECTONIC BLOCK BOUNDARIES IN MAINLAND CHINA 下载免费PDF全文
More than 80 percent of strong earthquakes(M≥7.0)occur in active-tectonic block boundaries in mainland China, and 95 percent of strong earthquake disasters also occur in these boundaries. In recent years, all strong earthquakes(M≥7.0)happened in active-tectonic block boundaries. For instance, 8 strong earthquakes(M≥7.0)occurred on the eastern, western, southern and northern boundaries of the Bayan Har block since 1997. In order to carry out the earthquake prediction research better, especially for the long-term earthquake prediction, the active-tectonic block boundaries have gradually become the key research objects of seismo-geology, geophysics, geodesy and other disciplines. This paper reviews the research results related to seismic activities in mainland China, as well as the main existing recognitions and problems as follows: 1)Most studies on seismic activities in active-tectonic block boundaries still remain at the statistical analysis level at present. However, the analysis of their working foundations or actual working conditions can help investigate deeply the seismic activities in the active-tectonic block boundaries; 2)Seismic strain release rates are determined by tectonic movement rates in active-tectonic block boundaries. Analysis of relations between seismic strain release rates and tectonic movement rates in mainland China shows that the tectonic movement rates in active-tectonic block boundaries of the eastern region are relatively slow, and the seismic strain release rates are with the smaller values too; the tectonic movement rates in active-tectonic block boundaries of the western region reveal higher values, and their seismic strain rates are larger than that of the eastern region. Earthquake recurrence periods of all 26 active-tectonic block boundaries are presented, and the reciprocals of recurrence periods represent high and low frequency of seismic activities. The research results point out that the tectonic movement rates and the reciprocals of recurrence periods for most faults in active-tectonic block boundaries exhibit linear relations. But due to the complexities of fault systems in active tectonic block boundaries, several faults obviously deviate from the linear relationship, and the relations between average earthquake recurrence periods and tectonic movement rates show larger uncertainties. The major reason is attributed to the differences existing in the results of the current earthquake recurrence studies. Furthermore, faults in active-tectonic boundaries exhibit complexities in many aspects, including different movement rates among various segments of the same fault and a certain active-tectonic block boundary contains some parallel faults with the same earthquake magnitude level. Consequently, complexities of these fault systems need to be further explored; 3)seismic activity processes in active-tectonic block boundaries present obvious regional characteristics. Active-tectonic block boundaries of the eastern mainland China except the western edge of Ordos block possess clustering features which indicate that due to the relatively low rate of crustal deformation in these areas, a long-time span is needed for fault stress-strain accumulation to show earthquake cluster activities. In addition, active-tectonic block boundaries in specific areas with low fault stress-strain accumulation rates also show seismic clustering properties, such as the clustering characteristics of strong seismic activities in Longmenshan fault zone, where a series of strong earthquakes have occurred successively, including the 2008 M8.0 Wenchuan, the 2013 M7.0 Lushan and the 2017 M7.0 Jiuzhaigou earthquakes. The north central regions of Qinghai-Tibet Plateau, regarded as the second-grade active-tectonic block boundaries, are the concentration areas of large-scale strike-slip faults in mainland China, and most of seismicity sequences show quasi-period features. Besides, most regions around the first-grade active-tectonic block boundary of Qinghai-Tibet Plateau display Poisson seismic processes. On one hand, it is still necessary to investigate the physical mechanisms and dynamics of regional structures, on the other hand, most of the active-tectonic block boundaries can be considered as fault systems. However, seismic activities involved in fault systems have the characteristic of in situ recurrence of strong earthquakes in main fault segments, the possibilities of cascading rupturing for adjacent fault segments, and space-time evolution characteristics of strong earthquakes in fault systems. 4)The dynamic environment of strong earthquakes in mainland China is characterized by “layering vertically and blocking horizontally”. With the progresses in the studies of geophysics, geochemistry, geodesy, seismology and geology, the physical models of different time/space scales have guiding significance for the interpretations of preparation and occurrence of continental strong earthquakes under the active-tectonic block frame. However, since the movement and deformation of the active-tectonic blocks contain not only the rigid motion and the horizontal differences of physical properties of crust-mantle medium are universal, there is still need for improving the understanding of the dynamic processes of continental strong earthquakes. So it is necessary to conduct in-depth studies on the physical mechanism of strong earthquake preparation process under the framework of active-tectonic block theory and establish various foundation models which are similar to seismic source physical models in California of the United States, and then provide technological scientific support for earthquake prevention and disaster mitigation. Through all kinds of studies of the physical mechanisms for space-time evolution of continental strong earthquakes, it can not only promote the transition of the study of seismic activities from statistics to physics, but also persistently push the development of active-tectonic block theory. 相似文献