首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Sm–Nd ages from the Harts Range in the south-eastern Arunta Inlier in central Australia indicate that regional metamorphism up to granulite facies occurred in the Early Ordovician (c. 475 Ma). This represents a radical departure from previous tectonic models for the region and identifies a previously unrecognized intraplate event in central Australia. Peak metamorphic assemblages (800 °C and 10.5 kbar) formed at around 476±14 Ma and underwent approximately 4 kbar of near-isothermal decompression at 475±4 Ma. A coarse-grained unfoliated garnet–clinopyroxene-bearing marble inferred to have recrystallized late in the decompressional evolution, gives an age of 469±7 Ma. Two lines of evidence suggest the Early Ordovician tectonism occurred in an extensional setting. First, the timing of the high-grade lower crustal deformation coincides with a period of marine sedimentation in the Amadeus and Georgina basins that was associated with a seaway that developed across central Australia. Second, isothermal decompression of lower crustal rocks was associated with the formation of a regional, sub-horizontal mid-crustal foliation. In the Entia Gneiss Complex, which forms the structurally lowest part of the Harts Range, upper-amphibolite facies metamorphism (c. 700 °C, 8–9 kbar) occurred at 479±15 Ma. There is no evidence that P–T conditions in the Entia Gneiss Complex were as high as in the overlying units. This implies that the extensional system was reworked during a later compressional event. Sm–Nd data from the mid-amphibolite facies (c. 650 °C and 6 kbar) detachment zone that separates the Irindina Supracrustal Assemblage and Entia Gneiss Complex give an age of 449±10 Ma. This age corresponds to the timing of a change in the pattern and style of sedimentation in the Amadeus and Georgina basins, and indicates that the change in basin dynamics was associated with mid-crustal deformation. It also suggests that compressional deformation culminating in the Devonian to Carboniferous (400–300 Ma) Alice Springs Orogeny may have begun as early as c. 450 Ma. At present, the extent of Early Ordovician tectonism in central Australia is unknown. However, granulite facies metamorphism and associated intense deformation imply an event of regional extent. An implication of this work is that high-grade lower crustal metamorphism and intense deformation occurred during the development of a broad, shallow, slowly subsiding intraplate basin.  相似文献   

2.
The Mallee Bore area in the northern Harts Range of central Australia underwent high-temperature, medium- to high-pressure granulite facies metamorphism. Individual geothermometers and geobarometers and average P–T  calculations using the program Thermocalc suggest that peak metamorphic conditions were 705–810 °C and 8–12 kbar. Partial melting of both metasedimentary and meta-igneous rocks, forming garnet-bearing restites, occurred under peak metamorphic conditions. Comparison with partial melting experiments suggests that vapour-absent melting in metabasic and metapelitic rocks with compositions close to those of rocks in the Mallee Bore area occurs at 800–875 °C and >9–10 kbar. The lower temperatures obtained from geothermometry imply that mineral compositions were reset during cooling. Following the metamorphic peak, the rocks underwent local mylonitization at 680–730 °C and 5.8–7.7 kbar. After mylonitization ceased, garnet retrogressed locally to biotite, which was probably caused by fluids exsolving from crystallizing melts. These three events are interpreted as different stages of a single, continuous, clockwise P–T  path. The metamorphism at Mallee Bore probably occurred during the 1745–1730 Ma Late Strangways Orogeny, and the area escaped significant crustal reworking during the Anmatjira and Alice Springs events that locally reached amphibolite facies conditions elsewhere in the Harts Ranges.  相似文献   

3.
The Lander Rock Beds form the local basement of the Reynolds Range in the Arunta Inlier of central Australia. These dominantly quartzose and pelitic lithologies underwent low-grade ( c.   400  °C) regional metamorphism prior to contact metamorphism ( c.   2.5  kbar) around S-type megacrystic granitoids at 1820–1800  Ma. The Lander Rock Beds are overlain by metasediments of the Reynolds Range Group, which were subsequently intruded by granitoids at c. 1780  Ma. Regional metamorphism at 1590–1580  Ma produced grades varying from greenschist (400  °C at 4–5  kbar) to granulite (750–800  °C at 4–5  kbar) from north-west to south-east along the length of the Reynolds Range. Oxygen isotope ratios of the Lander Rock Beds were reset from 13.4±0.8 to as low as 6.7 adjacent to the contacts of the larger plutons, and to 10.3±1.1 around the smaller plutons. Biotite in all the major rock types found in the aureoles has δD values between −52 and −69, probably reflecting resetting by a cooling igneous+metamorphic fluid near the plutons. Sapphirine-bearing and other Mg- and Al-rich rock types have low δ18O values (4.0±0.7). The precursors to these rocks were probably low-temperature ( c. 200  °C) diagenetic–hydrothermal deposits of Mg-rich chlorite, analogous to those in Proterozoic stratiform precious metal and uranium deposits that form by the infiltration of basin brines or seawater. As in the overlying Reynolds Range Group, regional metamorphism involved little fluid–rock interaction and isotopic resetting.  相似文献   

4.
A sequence of psammitic and pelitic metasedimentary rocks from the Mopunga Range region of the Arunta Inlier, central Australia, preserves evidence for unusually low pressure (c. 3 kbar), regional‐scale, upper amphibolite and granulite facies metamorphism and partial melting. Upper amphibolite facies metapelites of the Cackleberry Metamorphics are characterised by cordierite‐andalusite‐K‐feldspar assemblages and cordierite‐bearing leucosomes with biotite‐andalusite selvages, reflecting P–T conditions of c. 3 kbar and c. 650–680 °C. Late development of a sillimanite fabric is interpreted to reflect either an anticlockwise P–T evolution, or a later independent higher‐P thermal event. Coexistence of andalusite with sillimanite in these rocks appears to reflect the sluggish kinematics of the Al2SiO5 polymorphic inversion. In the Deep Bore Metamorphics, 20 km to the east, dehydration melting reactions in granulite facies metapelites have produced migmatites with quartz‐absent sillimanite‐spinel‐cordierite melanosomes, whilst in semipelitic migmatites, discontinuous leucosomes enclose cordierite‐spinel intergrowths. Metapsammitic rocks are not migmatised, and contain garnet–orthopyroxene–cordierite–biotite–quartz assemblages. Reaction textures in the Deep Bore Metamorphics are consistent with a near‐isobaric heating‐cooling path, with peak metamorphism occurring at 2.6–4.0 kbar and c. 750800 °C. SHRIMP U–Pb dating of metamorphic zircon rims in a cordierite‐orthopyroxene migmatite from the Deep Bore Metamorphics yielded an age of 1730 ± 7 Ma, whilst detrital zircon cores define a homogeneous population at 1805 ± 7 Ma. The 1730 Ma age is interpreted to reflect the timing of high‐T, low‐P metamorphism, synchronous with the regional Late Strangways Event, whereas the 1805 Ma age provides a maximum age of deposition for the sedimentary precursor. The Mopunga Range region forms part of a more extensive low‐pressure metamorphic terrane in which lateral temperature gradients are likely to have been induced by localised advection of heat by granitic and mafic intrusions. The near‐isobaric Palaeoproterozoic P–T–t evolution of the Mopunga Range region is consistent with a relatively transient thermal event, due to advective processes that occurred synchronous with the regional Late Strangways tectonothermal event.  相似文献   

5.
The Palaeozoic Alice Springs Orogeny was a major intraplate tectonic event in central and northern Australia. The sedimentological, structural and isotopic effects of the Alice Springs Orogeny have been well documented in the northern Amadeus Basin and adjacent exhumed Arunta Inlier, although the full regional extent of the event, as well as lateral variations in timing and intensity are less well known. Because of the lack of regional isotopic data, we take a sedimentological approach towards constraining these parameters, compiling the location and age constraints of inferred synorogenic sedimentation across a number of central and northern Australian basins. Such deposits are recorded from the Amadeus, Ngalia, Georgina, Wiso, eastern Officer and, possibly, Warburton Basins. Deposits are commonly located adjacent to areas of significant basement uplift related to north‐south shortening. In addition, similar aged orogenic deposits occur in association with strike‐slip tectonism in the Ord and southern Bonaparte Basins of northwest Australia. From a combination of sedimentological and isotopic evidence it appears that localised convergent deformation started in the Late Ordovician in the eastern Arunta Inlier and adjacent Amadeus Basin. Synorogenic style sedimentation becomes synchronously widespread in the late Early Devonian and in most areas the record terminates abruptly close to the end of the Devonian. A notable exception is the Ngalia Basin in which such sedimentation continued until the mid‐Carboniferous. In the Ord and Bonaparte Basins there is evidence of two discrete pulses of transcurrent activity in the Late Devonian and Carboniferous. The sedimentological story contrasts with the isotopic record from the southern Arunta Inlier, which has generally been interpreted in terms of continuous convergent orogenic activity spanning most of the Devonian and Carboniferous, with a suggestion that rates of deformation increased in the mid‐Carboniferous. Either Carboniferous sediments have been stripped off by subsequent erosion, or sedimentation outpaced accommodation space and detritus was transported elsewhere.  相似文献   

6.
ABSTRACT Key insights into the timing of tectonometamorphic events in a complex high-grade metamorphic terrane can be obtained by combining results from SHRIMP II ion microprobe studies of individual monazite grains with SHRIMP II studies and scanning electron microscope (SEM)-based cathodoluminescence (CL) imaging of zircons. Results from the Reynolds Range region, Arunta Block, Northern Territory, Australia, show that the final episode of regional metamorphism to high-T and low-P granulite facies conditions is most likely to have occurred at c. 1580 Ma, not at 1785–1775 Ma, as previously accepted. The previous interpretation was based on zircon studies of structurally controlled granitoids, without SEM-based CL imaging. Monazites in a 1806± 6 Ma megacrystic granitoid preserve rare cores that are interpreted to be inherited magmatic monazite, but record no evidence of another high-T event prior to 1580 Ma. Most monazites from the region record only a single high-T metamorphic event at c. 1580 Ma. Zircon inheritance is very common. Zircons or narrow overgrowths of zircon dated at c. 1580 Ma have only been found in two types of rocks: rocks produced by metasomatic fluid flow at high temperatures (≤750°C), and rocks that have undergone local partial melting. Previous explanations that attributed these 1580 Ma zircon ages to widespread hydrothermal fluid fluxing associated with post-tectonic pegmatite emplacement at amphibolite facies conditions are not supported by the available evidence including oxygen isotope data. The observed high regional metamorphic temperatures require the involvement of advective heating. However, contrary to a previous tectonic model for the formation of this and other low-P, high-T metamorphic belts, the granites that are exposed at the present structural level do not appear to be the source of that heat, unless some of the granites were emplaced at c. 1580 Ma.  相似文献   

7.
The Menderes Massif is a major polymetamorphic complex in Western Turkey. The late Neoproterozoic basement consists of partially migmatized paragneisses and metapelites in association with orthogneiss intrusions. Pelitic granulite, paragneiss and orthopyroxene-bearing orthogneiss (charnockite) of the basement series form the main granulite-facies lithologies. Charnockitic metagranodiorite and metatonalite are magnesian in composition and show calc-alkalic to alkali-calcic affinities. Nd and Sr isotope systematics indicate homogeneous crustal contamination. The zircons in charnockites contain featureless overgrowth and rim textures representing metamorphic growth on magmatic cores and inherited grains. Charnockites yield crytallization age of ~590 Ma for protoliths and they record granulite-facies overprint at ~ 580 Ma. These data indicate that the Menderes Massif records late Neoproterozoic magmatic and granulite-facies metamorphic events. Furthermore, the basement rocks have been overprinted by Eocene Barrovian-type Alpine metamorphism at ~42 Ma. The geochronological data and inferred latest Neoproterozoic–early Cambrian palaeogeographic setting for the Menderes Massif to the north of present-day Arabia indicate that the granulite-facies metamorphism in the Menderes Massif can be attributed to the Kuunga Orogen (600–500 Ma) causing the final amalgamation processes for northern part of the Gondwana.  相似文献   

8.
ABSTRACT The products of metamorphic fluid flow are preserved in zones within the marbles and metamorphosed semipelites of the Upper Calcsilicate Unit in the granulite portion of the Late Palaeoproterozoic Reynolds Range Group, northern Arunta Block, central Australia. The zones of retrogression, characterized by minerals such as wollastonite, grossular and clinohumite, local resetting of oxygen isotopic compositions and local major element metasomatism, were channelways for water-rich fluids derived from granulite facies metapelites. U–Th–Pb isotopic ages measured by the SHRIMP ion microprobe on zircon and monazite from a granulite facies semipelite, an early semiconcordant aluminous quartz-rich fluid-flow segregation and a late discordant quartz-rich segregation record some of the extended thermal history of the area. Zircon cores from the semipelite show its likely protolith to be an igneous rock 1812 ± 11 Ma old, itself derived from a source containing zircon as old as 2.2 Ga. Low-Th/U overgrowths on the zircon grew during granulite facies metamorphism at 1594 ± 6 Ma. Monazite cooled to its blocking temperature at 1576 ± 8 Ma. Zircon cores from the semiconcordant segregation are dominantly >2.3 Ga old, indicating that the source of the fluids was not the particular metamorphosed semipelite studied. Two generations of low-Th/U overgrowths on the zircon give indistinguishable ages for the older and younger of 1589 ± 8 and 1582 ± 8 Ma, respectively. The monazite age is the same, 1576 ± 12 Ma. Zircon from the late discordant segregation gave 1568 ± 4 Ma. Fluid flow occurred for at least 18 ± 3 (σ) Ma and ended 26 ± 3 (σ) Ma after the peak of metamorphism, suggesting a very slow cooling rate of ~3°C Ma–1. The last regional high-grade metamorphism in the Reynolds Range occurred at ~1.6 Ga, not ~1.78 Ga as previously thought. The high-grade event at ~1.78 Ga is a separate event that affected only the basement to the Reynolds Range Group.  相似文献   

9.
LAICPMS in situ U–Pb monazite geochronology and P–T pseudosections are combined to evaluate the timing and physical conditions of metamorphism in the SE Anmatjira Range in the Aileron Province, central Australia. All samples show age peaks at c. 15801555 Ma, with three of five samples showing additional discrete age peaks between c. 1700 and 1630 Ma. P–T phase diagrams calculated for garnetsillimanitecordieriteK‐feldsparilmenite–melt bearing metapelitic rocks have overlapping peak mineral assemblage stability fields at ~870920 °C and ~6.57.2 kbar. P–T modelling of a fine‐grained spinelcordieritegarnetbiotite reaction microstructure suggests retrograde P–T conditions evolved down pressure and temperature to ~3–5.5 kbar and ~610–850 °C. The combined geochronological and P–T results indicate the SE Anmatjira Range underwent high‐temperature, low‐pressure metamorphism at c. 15801555 Ma, and followed an apparently clockwise retrograde path. The high apparent thermal gradient necessary to produce the estimated P–T conditions does not appear to reflect decompression of high‐P assemblages, nor is there syn‐metamorphic magmatism or structural evidence for extension. Similar to previous workers, we suggest the high‐thermal gradient P–T conditions could have been achieved by heating, largely driven by high heat production from older granites in the region.  相似文献   

10.
Abstract The Proterozoic low-pressure, high-temperature (LPHT) terrane of the Reynolds Range occurs in a 130-km-long, NW-trending belt in the central part of the Arunta Block, central Australia. The Reynolds Range has been affected by two mid-Proterozoic tectonic cycles, DI and DII, associated with two metamorphic events, MI and MII. DI–MI effects are restricted to the older of two sedimentary successions, the Lander Rock beds, which are separated from the younger Reynolds Range Group by an angular unconformity. The dominant structural–metamorphic features formed during DII–MII affected both sedimentary successions and the various granites that intruded them, and reworked most DI–MI effects. The DII deformation history can be subdivided into one prograde, two peak, and one retrograde stage. Average P–T calculations in the southeastern half of the range indicate a peak-metamorphic pressure of 4.1 ± 0.3 kbar. Because the calculated values are derived from the same stratigraphic level corresponding to the base of the Reynolds Range Group, which is exposed throughout the area, it is likely that pressures were similar in the entire range. In fact, however, the peak-metamorphic temperature shows a dramatic increase from greenschist facies (c. 400° C) in the northwest to granulite facies (740 ± 60° C) in the southeast, indicating that MII was associated with anomalously high heat flows. The P–T path is anticlockwise, with isobaric cooling from the metamorphic peak indicated by corona textures. However, the evidence of a prograde increase in pressure is indirect and based on the compressional nature of the structures. Peak-metamorphic mineral assemblages and retrograde mineral assemblages in amphibolite facies shear zones show the same metamorphic zonation, suggesting they formed in response to the same thermal event. If this is true, the implication is that a thermal perturbation external to the crust was maintained for a considerable period of time (110 Ma, based on zircon dating). As it is not clear whether Proterozoic, asthenosphere-active, thermal perturbations operated for this long, the alternative interpretation must be considered, namely that the peak-metamorphic events are separate from the shear zone event associated with reheating of the area.  相似文献   

11.
The southeast Reynolds Range, central Australia, is cut by steep northwest‐trending shear zones that are up to hundreds of metres wide and several kilometres long. Amphibolite‐facies shear zones cut metapelites, while greenschist‐facies shear zones cut metagranites. Rb–Sr and 40Ar–39Ar data suggest that both sets of shear zones formed in the 400–300 Ma Alice Springs Orogeny, with the sheared granites yielding well‐constrained 40Ar–39Ar ages of ca 334 Ma. These data imply that the shear zones represent a distinct tectonic episode in this terrain, and were not formed during cooling from the ca 1.6 Ga regional metamorphism. A general correlation between regional metamorphic grade and the grade of Alice Springs structures implies a similar distribution of heat sources for the two events. This may be most consistent with both phases of metamorphism being caused by the burial of anomalously radiogenic heat‐producing granites. The sheared rocks commonly have undergone metasomatism implying that the shear zones were conduits of fluid flow during Alice Springs times.  相似文献   

12.
Abstract Small unexploited copper-lead-zinc deposits, characterized by a distinctive wall-rock association of cordierite quartzite, silica-undersaturated rocks, calc-silicate rocks and impure marbles, occur in quartzofeldspathic gneisses and mafic granulites of the Strangways Metamorphic Complex, central Arunta Block, central Australia. Available data support the hypothesis that these are metamorphosed volcanogenic ore bodies. The chemical compositions of the quartzofeldspathic gneisses are comparable with those of less metamorphosed felsic igneous rocks, particularly the felsic igneous rocks emplaced in the North Australian Orogenic Province in the interval 1880–1800 Ma; and the mafic granulites are chemically similar to basalts (olivine-normative tholeiites). The wall-rock suite can be correlated from chemistry and lithological association with the suites of wall rocks found in unmetamorphosed volcanogenic ore deposits. That the protolith of the cordierite quartzites may well have been leached tuff, similar to the illite-chlorite-quartz tuff found in volcanogenic ore deposits, is also shown by retrogression of the granulitefacies assemblage: cordierite-garnet-ortho-pyroxene-biotite-quartz in the cordierite quartzites to cordierite-anthophyllite-bearing assemblages and thence to chlorite-muscovite-quartz assemblages. Lenses of silica-undersaturated rocks with spinel and, less commonly, sapphirine are interpreted as the metamorphosed equivalents of chlorite-rich pods found within leached tuffs in volcanogenic ore deposits. The wall rocks form sheet-like bodies; this suggests that they were deposited in relatively shallow water, thus precluding the formation of massive sulphides.  相似文献   

13.
Several aspects of the petrogenesis of low-pressure granulite facies rocks from the Reynolds Range (central Australia) are contentious, including: (a) the shape of the retrograde P–T –time path, and whether it is an artefact of repeated thermal events at different P–T conditions; (b) the type of regional metamorphism; and (c) the causes of metamorphism. Granulite facies rocks from the Reynolds Range Group experienced three major periods of mineralogical equilibration. Metapelitic rocks underwent dehydration-melting reactions to form migmatites under peak M2 P–T conditions of c. 5.0–5.3 kbar and c. 750–800 °C. Metapsammitic rocks that did not melt during M2 show spectacular garnet–orthopyroxene intergrowths that developed at c. 3.5–3.7 kbar and c. 700–750 °C after penetrative regional deformation, but prior to amphibolite facies rehydration in discrete strike-parallel zones. Rehydration occurred within the sillimanite stability field at P–T conditions close to the granite solidus (c. 3.2–3.4 kbar and 650–700 °C). Subsequently the terrane cooled into the andalusite stability field. Geochronological constraints suggest that: (a) peak-M2 conditions were reached at c. 1594 Ma; (b) the garnet–orthopyroxene intergrowths in unmelted metapsammites probably developed between c. 1594 Ma and c. 1586 Ma; and (c) upper amphibolite facies rehydration occurred between c. 1586 Ma and 1568 Ma. The lack of petrological evidence for multiple dehydration and rehydration of the rocks suggests that the three episodes of mineralogical recrystallization can be linked to yield a single continuous retrograde P–T–t path of minor initial decompression (c. 1.5 kbar) from the M2 peak, followed by cooling (c. 100 °C) to the granite solidus over a period of c. 26 Ma. Late kyanite-bearing shear zones that dissect the terrane are unrelated to this event and formed during the c. 300–400 Ma Alice Springs Orogeny. The shape of the P–T–t path and the duration of M2 metamorphism suggests that advective heating was not the major cause of high-grade metamorphism, and that some other, longer lived heat source, such as the burial of anomalously radiogenic, pre-tectonic granites, is required.  相似文献   

14.

We present new data on the field geology and late thermal evolution of the Redbank Thrust system in the Arunta Block of central Australia. Geochronological and field data from the Speares Metamorphics are also used to relate the thermal evolution of the Redbank Thrust system to the structural evolution of the region. We show that several stages in the evolution might be discerned. An originally sedimentary sequence was intruded by mafic intrusions and then deformed during partial melting to form the principal foliation observed in the region (D1). This sequence was then folded during D2 into upright folds with north‐ to northeast‐plunging fold axes. These events are likely to correlate with the Strangways and/or Argilke and Chewings Orogenies known from previous studies. Subsequently, the Redbank Thrust was initiated during D3. This event is recognised by deflection of the host rocks into the shear zone and might therefore have been associated with a component of strike‐slip motion. It occurred probably at or before 1500–1400 Ma. Subsequent north‐over‐south thrust motion in the Redbank Thrust formed the intense mylonitic fabric and folded the mylonitic fabric during D4 into asymmetric folds with shallow fold axes. New 40Ar/39Ar K‐feldspar ages from three samples collected from variably deformed branches of the Redbank Thrust and undeformed rocks in the Speares Metamorphics suggest that most parts of the Redbank Thrust system cooled relatively slowly after metamorphism and deformation in the Mesoproterozoic so that the D4 thrusting might have been very long‐lived. Minimum ages of the K‐feldspar age spectra show that the entire region cooled below 200°C by approximately 300 Ma. Apatite fission track ages from nine samples show that cooling through the apatite partial annealing zone occurred during Cretaceous time (ca 150–70 Ma) and modelled cooling histories are consistent with the cooling rates obtained from the K‐feldspar data. They indicate that final exhumation of the Redbank Thrust system occurred probably in response to erosion, possibly driven by rifting around the margins of Australia.  相似文献   

15.
The Arunta Inlier is a 200 000 km2 region of mainly Precambrian metamorphosed sedimentary and igneous rock in central Australia. To the N it merges with similar rocks of lower metamorphic grade in the Tennant Creek Inlier, and to the NW it merges with schist and gneiss of The Granites‐Tanami Province. It is characterized by mafic and felsic meta‐igneous rocks, abundant silicic and aluminous metasediments and carbonate, and low‐ to medium‐pressure metamorphism. Hence, the Arunta Inlier is interpreted as a Proterozoic ensialic mobile belt floored by continental crust. The belt evolved over about 1500 Ma, and began with mafic and felsic volcanism and mafic intrusion in a latitudinal rift, followed by shale and limestone deposition, deformation, metamorphism and emergence. Flysch sedimentation and volcanism then continued in geosynclinal troughs flanking the ridge of meta‐igneous rocks, and were followed by platform deposition of thin shallow‐marine sediments, further deformation, and episodes of metamorphism and granite intrusion.  相似文献   

16.
中-新元古代四堡造山运动将扬子地块和华夏地块拼合成一个完整的华南板块。四堡造山运动结束后,位于华南板块东北部的浙北分区沉积了一套新元古代骆家门组地层,其底部以砾岩和砂质砾岩为特色,且以角度不整合直接覆盖于四堡造山单元双溪坞群之上。骆家门组地层的精确沉积时限对了解四堡造山结束后华南板块新一轮沉积盆地的形成和发展具有重要意义。本文对采自浙北富阳地区骆家门组底和顶部的两件沉凝灰岩样品进行SIMS锆石U-Pb定年工作,并据此分析骆家门组的起始沉积时间略早于845Ma,终止沉积时间略晚于830Ma。综合前人研究,我们认为浙北分区保存了华南板块新一轮沉积盆地(南华盆地)的早期沉积活动信息,骆家门组的初始沉积时限指示了南华盆地的开启时间略早于845Ma。  相似文献   

17.
In the southeastern Reynolds Range, central Australia, a low- P granulite facies metamorphism affected two sedimentary sequences: the Lander Rock Beds and the Reynolds Range Group. In the context of the whole of the Reynolds Range and the adjacent Anmatjira Range, this metamorphism is M3 in a sequence M1–4 that occurred over a period of 250 Ma. In particular, M1 affected the Lander Rock Beds prior to the deposition of the Reynolds Group. M3 has an areally restricted, high-grade area in the southeastern Reynolds Range, affecting both the Reynolds Range Group and the underlying Lander Rock Beds. The effects of M3 are characterized by spinel + quartz-bearing peak metamorphic assemblages in metapelites, which imply peak conditions of ≥750°C and 4.5 ± 1 kbar, and involved isobaric cooling or compression with cooling. It is concluded that one of a series of thermal perturbations caused by thinning of mantle lithosphere contemporaneous with crustal thickening was responsible for M3. In the southeastern Reynolds Range, evidence of both the unconformity between the two rock groups and previous metamorphism/deformation has been completely erased by recrystallization during M3–D3.  相似文献   

18.
Abstract: High-quality zircon U-Pb ages acquired from Meso- and Neoproterozoic strata in North China in recent years has provided a high-resolution chronostratigraphic framework for dating. A basis of this high-level chronostratigraphic system provides the foundation for a global Precambrian study and stratigraphic correlation and so recent geological studies have focused attention on systemic SHRIMP zircon dating. A chronology of Meso- and Neoproterozoic strata and the time of origin of the overlying Changcheng System is given on the basis of new SHRIMP zircon dating from the Qianxi Complex and diabase of the Chuanlinggou Formation. A new tectonostratigraphy for a Neoproterozoic chronostratigraphic framework in the southeastern margin of the North China continent is underpinned by the new SHRIMP zircon dating of a Neoproterozoic mafic magma diabase in the Jiao-Liao-Xu-Huai Sub-Province.  相似文献   

19.
We have carried out zircon U-Pb SHRIMP dating and Hf isotope determinations on a biotite paraschist and on a tonalitic orthogneiss of the Yaminue Complex,and re-evaluate this complex in the broader context of the tectonic evolution of the Patagonia composite terrane.In the metasedimentary unit (msuYC),the youngest detrital zircon dated at 318±5 Ma(Mississippian/Pennsylvanian boundary) indicates a Pennsylvanian(or younger) depositional age.The three main age populations peak at 474,454 and 374 Ma.Preliminary Hf isotope data for two detrital zircons(447 and 655 Ma) yieldedε(Hf) values of -0.32 and 0.48,indicating that their primary sources contained small amounts of recycled crustal components(of Calymmian age;TDM 1.56 Ga).Zircons from the orthogneiss(miuYC;intrusive into msuYC) show a crystallization age of 261.3±2.7 Ma(Capitanian;late middle Permian) which is broadly coeval with deformation,and Neoarchean-Paleoproterozoic inheritance.Meaningful core-rim relationship between Neoarchean zircon cores and late Permian rims is well defined,indicating the occurrence of Archean crust in this sector of Patagonia.Hf TDM of Permian zircons is mainly Meso-Paleoarchean(2.97-3.35 Ga),with highly negativeε(Hf) values(ca.-33).Hf TDM of inherited Neoarchean zircon cores is also Meso-Paleoarchean(3.14-3.45 Ga) but more juvenile(ε(Hf) = -0.3).Hf isotopes reinforce the presence of unexposed ancient crust in this area. Combining geological and isotope data,as well as geophysical models,we identify the Yaminue Complex within the La Esperanza-Yaminue crustal block flanked by two other,distinct crustal blocks:the Eastern block which forms part of the Patagonia terrane sensu stricto,located in the eastern Patagonian region,and the Western block forming part of the Southern Patagonia terrane.Their origins and timing of amalgamation to form the Patagonia composite terrane are also discussed.  相似文献   

20.
林彦蒿  张泽明  董昕 《岩石学报》2013,29(6):1962-1976
本文对位于青藏高原拉萨地体东南缘林芝杂岩中的片麻岩进行了岩石学和锆石U-Pb年代学研究.所研究的样品包括正片麻岩和副片麻岩,它们经历了中压角闪岩相变质作用.岩石地球化学分析结果表明,所研究的正片麻岩的原岩具有钙碱性岛弧岩浆岩的特征.锆石U-Pb年代学分析结果表明,副片麻岩中的碎屑锆石核部为岩浆成因,它们给出的206Pb/238U年龄范围为3012~ 522Ma,其锆石的增生边给出了~51Ma的变质年龄.在正片麻岩中,黑云母片麻岩给出了~67Ma的原岩结晶年龄和~ 55 Ma的变质年龄;石榴石角闪黑云斜长片麻岩给出了~58Ma的原岩结晶年龄和~54Ma的变质年龄.因此,所研究的林芝杂岩并不能代表拉萨地体中的前寒武纪变质基底,而是古生代的沉积岩和晚白垩纪至早新生代的岩浆岩在始新世早期变质而成.这一时期,表壳岩和侵入岩一起经历的中压角闪岩相变质作用很可能跟新特提斯洋俯冲导致的地壳增生、加厚有关.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号