首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
Coherency spectra derived from time series of stratospheric quantities indicate oscillations in the frequency range below 0.5 d–1 which are correlated on a global scale. Satellite observations of total ozone and stratospheric radiance (BUV and SIRS, Nimbus4, April–November 1970) have been used to derive phase relationships of such oscillations. As an example, an oscillation of total ozone with a period of 7.5 d and zonal wave number zero is analyzed in detail. The basic assumption is made and tested, that the oscillation reflects stratospheric planetary waves as obtained from Laplace's tidal equations. The observed latitudinal phase shifts for the total ozone oscillation are in good agreement with theoretical predictions. It is concluded from the observations of ozone and radiance that mainly divergence effects related to global-scale waves are responsible for the 7.5 d oscillations of total ozone at high and middle latitudes and at the equator whereas in the latitude range 10°S–20°S predominantly temperature effects are important. Meridional wind amplitudes of some 10 cm/s are sufficient to explain the high and mid-latitude ozone oscillations. At low latitudes vertical wind amplitudes of about 0.2 mm/s corresponding to height changes of the ozone layer of roughly ±20 m are obtained.  相似文献   

2.
— This paper examines the spatial and temporal distributions of the mixing height, ventilation coefficient (defined as the product of mixing height and surface wind speed), and cloud cover over the eastern United States during the summer of 1995, using the high-resolution meteorological data generated by MM5 (Version 1), a mesoscale model widely used in air quality studies. The ability of MM5 to simulate the key temporal and spatial features embedded in the time series of observations of temperature, wind speed, and moisture is assessed using spectral decomposition methods. Also, mixing heights estimated from the MM5 outputs are compared with those derived from observations at a few locations where data with high temporal resolution are available in the Northeast. In addition, the uncertainties associated with the estimation of the evolution of the boundary layer during the morning time are examined. The results indicate that nighttime mixing heights averaged <200?m, rising to 1 km by 10 EST, and to about 2.5?km in the afternoon. Ventilation coefficients followed a similar diurnal pattern, increasing from 500?m2/s at night?to 15,000?m2/s in the afternoon; the increase due to the growing mixing height and increasing surface wind speeds. Spatial variability of these parameters was relatively small (coefficient of variation=0.25) at?night and in the afternoon when conditions were quasi-stationary, but increased (to 0.5) during morning?and evening hours when mixing heights and wind speeds were changing rapidly. Analyses of surface ozone observations from about 400 sites throughout the eastern United States indicate that days with numerous stations reporting surface ozone concentrations in excess of 80 ppb (i.e., “high ozone” days) generally had less daytime cloud cover, lower surface wind speeds, higher mixing heights, and lower ventilation coefficients than did comparable “low ozone” days. Such meteorological features are consistent with a synoptic anticyclone centered over the mid-south region (Kentucky, Tennessee). Low ozone days were characterized by more disturbed weather conditions (low pressure systems, fronts, greater cloud cover, and precipitation events). Ozone observations at two elevated platforms (~400?m agl) in Garner, NC, and Chicago, IL, indicated that ozone concentrations aloft were about 40% larger on “high ozone” days than on “low ozone” days. On average, high levels of ozone persist aloft for about 2 to 3 days. Strong vertical mixing in the daytime can bring this pool of upper-level ozone downward to augment surface ozone production. Since ozone can be transported downwind several hundred kilometers from its source region over this time scale, depending on upper-level winds, effective ozone control strategies must take into consideration spatial scales ranging from local to regional, and time scales of the order of several days.  相似文献   

3.
A one-dimensional atmospheric photochemical model with an altitude grid of about 1.5 km was used to examine the structure of the global mean vertical ozone profile and its night-time-to-daytime variation in the upper atmosphere. Two distinct ozone layers are predicted, separated by a sharp drop in the ozone concentration near the mesopause. This naturally occurring mesopause ozone deep minimum is primarily produced by the rapid increase in the destruction of water vapour, and hence increase in HOx, at altitudes between 80 and 85 km, a region where water-vapour photodissociation by ultraviolet radiation of the solar Lyman-alpha line is significant, and where the supply of water vapour is maintained by methane oxidation even for very dry conditions at the tropospheric-stratospheric exchange region. The model indicates that the depth of the mesopause ozone minimum is limited by the efficiency with which inactive molecular hydrogen is produced, either by the conversion of atomic hydrogen to molecular hydrogen via one of the reaction channels of H with HO2, or by Lyman-alpha photodissociation of water vapour via the channel that leads to the production of molecular hydrogen. The ozone concentration rapidly recovers above 85 km due to the rapid increase in O produced by the photodissociation of O2 by absorption of ultraviolet solar radiation in the Schumann-Runge bands and continuum. Above 90 km, there is a decrease in ozone due to photolysis as the production of ozone through the three-body recombination of O2 and O becomes slower with decreasing pressure. The model also predicts two peaks in the night-time/daytime ozone ratio, one near 75 km and the other near 110 km, plus a strong peak in the night-time/daytime ratio of OH near 110 km. Recent observational evidence supports the predictions of the model.  相似文献   

4.
我国上空平流层中微量气体的垂直分布和变化趋势   总被引:7,自引:0,他引:7       下载免费PDF全文
利用1992~2005年卤素掩星试验(HALOE)的观测资料分析了中国上空平流层的几种微量气体(NO, NO2, HF, HCl, CH4, H2O 和O3)混合比的垂直分布和变化趋势,以期为研究平流层的辐射和化学过程提供一些有用的数据. 文中除给出我国上空平流层各高度上平均的各种微量气体的含量外,还给出青藏高原上空这些微量气体的含量. 分析结果表明,平流层各种微量气体混合比的垂直分布有其不同的特征,在对流层上层到平流层底部各种微量气体的混合比分布和季节变化与平流层相比有明显的差异;分析结果还表明,这些微量气体的季节变化、准两年周期振荡和长期变化趋势都很明显,并且在平流层的不同高度上它们的变化趋势是不相同的. 在平流层中层,NO, NO2, HCl 和H2O 混合比在1998年以前都是增加而后则是明显下降的,但O3相反,在1998年以前明显减少,1998年后其减少的趋势不明显. 这表明,近年来平流层中层这些微量气体的减少使得它们对臭氧的破坏有所缓解. 但在平流层下层,臭氧的耗损仍然很明显.  相似文献   

5.
The October depletions in the Antarctic ozone spread to lower latitudes in early November in 1988, in late November in 1989, and in late October in 1990. The depletions were 10-15% for latitudes up to 40°S and smaller thereafter, and almost negligible at 25°S and beyond. However, for the southern hemisphere, the normal seasonal changes at middle latitudes from October to December are much larger (about 20%). Also, there are superposed fluctuations of about 20% over a few (5-6) days.  相似文献   

6.
Despite substantial progress in atmospheric modeling, the agreement of the simulated atmospheric response to decadal scale solar variability with the solar signal in different atmospheric quantities obtained from the statistical analysis of the observations cannot be qualified as successful. An alternative way to validate the simulated solar signal is to compare the sensitivity of the model to the solar irradiance variability on shorter time scales. To study atmospheric response to the 28-day solar rotation cycle, we used the chemistry–climate model SOCOL that represents the main physical–chemical processes in the atmosphere from the ground up to the mesopause. An ensemble simulation has been carried out, which is comprised of nine 1-year long runs, driven by the spectral solar irradiance prescribed on a daily basis using UARS SUSIM measurements for the year 1992. The correlation of zonal mean hydroxyl, ozone and temperature averaged over the tropics with solar irradiance time series have been analyzed. The hydroxyl has robust correlations with solar irradiance in the upper stratosphere and mesosphere, because the hydroxyl concentration is defined mostly by the photolysis. The simulated sensitivity of the hydroxyl to the solar irradiance changes is in good agreement with previous estimations. The ozone and temperature correlations are more complicated because their behavior depends on non-linear dynamics and transport in the atmosphere. The model simulates marginally significant ozone response to the solar irradiance variability during the Sun rotation cycle, but the simulated temperature response is not robust. The physical nature of this is not clear yet. It seems likely that the temperature (and partly the ozone) daily fields possess their own internal variability, which is not stable and can differ from year to year reflecting different dynamical states of the system.  相似文献   

7.
In this paper, we report the results of our comparison study between satellite measurements and the International Reference Ionosphere (IRI) model on the seasonal and longitudinal changes of the low-latitude nighttime topside ionosphere during the period of solar maximum from June 2000 to July 2001. Satellite measurements were made by KOMPSAT-1 and DMSP F15 at 685 km altitude and 840 km altitude, respectively. The results show that the IRI2001 model gives reasonable density estimations for the summer hemisphere and the March equinox at both altitudes. However, the observed wintertime densities are smaller than the predictions of the IRI2001 model, especially at a higher (840 km) altitude, manifesting strong hemispheric asymmetries. The observed electron temperatures generally reside between the two estimations of IRI2001, one based on the Aeros–ISIS data and the other based on Intercosmos, and the latter estimation better represents the observations. With more or less monotonic increase with latitude, the temperature profiles of the IRI2001 model do not predict the enhancement seen around 15° magnetic latitude of the winter hemisphere. Longitudinal variation, probably caused by the zonal winds, is seen in all seasons at both altitudes, while the IRI2001 model does not show a large variation. The observed density and temperature show significant changes according to the F10.7 values in the whole low-latitude region from 40°S to 40°N geomagnetic latitude. The effect is manifested as increases in the density and temperature, but not in the hemispheric asymmetry or in the longitudinal variation.  相似文献   

8.
Summary Ozone observations made during 1964 and 1965 at nine Mediterranean, central and southeast European stations (latitudes 38–52°N, longitudes 9–23°E) reveal patterns of seasonal and shorter time-variations in total ozone as well as in vertical ozone distribution. During the winter-spring season, a significant increase (20%) of ozone occurs essentially simultaneously with the spring stratospheric warming, and is noticed at all stations.—Autocorrelation coefficients show that the total ozone on any day is strongly related to the total ozone of the preceding four days in summer or one or two days in winter-spring or autumn. Changes of total ozone in southeast Europe correlate closely with those in Mediterranean Europe, and less closely with those from north central Europe.—Power spectrum analysis detects the dependence of ozone changes on processes with periods longer than 6–8 days, and indicates a significant oscillation with a period of 14–15 days, perhaps a result of the direct influence of lower stratospheric circumhemispheric circulation. — Reliable vertical ozone soundings were not available from all stations. The mean vertical profiles at Arosa, Switzerland (47°N) and Belsk, Poland (51°) are very similar. More than 60% of the variability of the total ozone is contributed by changes in ozone concentration between 10 and 24 km; less than 10% is due to variations above 33 km. Changes in ozone partial pressure at different altitudes, and relationships of those changes to total ozone, indicates that a mean vertical ozone distribution may be described adequately by considering the ozone changes in four layers: a) the troposphere, b) the lower stratosphere up to 24 km, c) a transition layer from 24 km to a variable upper border at 33–37 km, and d) the layer above 33–37 km.Part of this paper was presented at the Ozone Seminar in Potsdam, Germany, 27 September 1966.  相似文献   

9.
Sreedharan  C. R.  Mani  A. 《Pure and Applied Geophysics》1973,106(1):1576-1580
The vertical profiles of ozone and temperature from a series of balloon soundings at Delhi (28°N), Poona (18°N) and Trivandrum (8°N) were studied with synoptic meteorological data. While both ozone and temperature profiles show similar variations over all three stations, ozone maxima being always associated with thermally stable layers, the variations are most pronounced over Delhi, particularly in winter and in early spring when a series of western disturbances pass over north India. Both ozone and temperature profiles over Delhi show a layer structure characterized by a series of maxima and minima in both the vertical distribution of ozone and temperature and these are most pronounced in the lower stratosphere. These variations are associated with the influx of ozone-rich middle latitude stratospheric air over Delhi replacing subtropical air.  相似文献   

10.
The geographic location of the dip equator on the globe has been determined for several epochs between 1550 and 1990 A.D. It is shown that two regions near 165°E and 285°E are devoid of migratory changes whereas between 300 and 0°E there is a large northward movement. The period between 1945 and 1990 is marked by a nearly linear change in the latitude of the dip equator while earlier epochs show more complex trends. Consistent with the earlier observations of the movement of the magnetic center towards or away from the centre of the earth, before and after 1800 A.D., the secular curves in certain longitude zones indicate a clear change in pattern. The observed secular variations in the vertical cornponent at several low latitude stations are generally in agreement with the direction of the movement of the dip equator. Examples of unexpected behaviour are highlighted. The eccentric dipole model appears to be adequate to delineate the dip equator for any epoch.  相似文献   

11.
Züllig  W. 《Pure and Applied Geophysics》1973,106(1):1544-1552
Summary The intensity of the polar vortex at 10 mb is used to calculate theoretical values of mean total ozone north of 40° latitude. A satisfactory fit is attained between the development in time of the theoretical ozone and that of the mean of the observed total ozone. The results lead to the conclusion, that a one-cell mean meridional motion relative to the polar night vortex is important for the transport of heat and ozone.  相似文献   

12.
南半球减速膨胀的定量分析   总被引:1,自引:1,他引:1       下载免费PDF全文
利用空间大地测量技术的长期观测资料,得出南半球纬线圈纬线长变化率和全球活动板块边缘扩张与汇聚运动速率,并与3Ma平均地质地磁模型NUVEL1A的估算结果进行比较:(1)空间大地测量技术测得南半球纬线圈纬线变化率均为正值;(2)南半球测站的垂向运动除了赤道附近几个测站下沉,其余91髎的台站全上升;(3)南半球相邻板块的现今汇聚和扩张运动速率均比3Ma平均地质模型NUVEL1A估值小,而北半球相邻板块的汇聚和扩张运动速率没有系统性的变化. 这些实测结果反映了南半球纬线圈方向在减速伸展,南北方向在减速拉伸,即南半球在减速膨胀.  相似文献   

13.
All available data of the vertical ozone distribution measured with chemical sondes have been assembled and combined with one year's results from the BUV satellite to obtain the best possible information on the vertical ozone distribution averaged over longitude as a function of season (month by month). For the southern hemisphere Umkehr data have been used as a guideline in the necessary smoothing procedure. Especially in the northern hemisphere considerable adaptation to the observed latitudinal mean of the total amount was needed because most sounding stations, are situated in upper air trough positions.The results are presented as vertical distributions, as meridional cross sections of partial pressure and of mixing ratio and as partial pressure isolines as a function of latitude and season at different levels. The interaction between photochemical processes and transport resonsible for the observed distribution is briefly discussed.  相似文献   

14.
Summary A steady-state mean meridional model of the stratosphere is used to investigate the effects of water vapour and nitrogen oxides on ozone and temperature distributions in the stratosphere. The Chapman classical photochemical scheme for ozone is extended to include the dominant reactions involving hydrogen compounds and nitrogen oxides. The ozone and temperature changes are studied under radiative-photochemical equilibrium conditions and in a model incorporating both transport and radiative-photochemical processes. It is found that both hydrogen and nitrogen reactions contribute to substantial decreases in ozone and temperature under photochemical equilibrium conditions, but the computed distribution do not resemble those observed. The effect of transport processes is to reduce the deviations in the ozone mixing ratio and temperature with the computed distributions having many features in common with the observations. It is found that the ozone and temperature respond more readily to the arbitrary increase of nitrogen oxides than to that of water vapour.  相似文献   

15.
利用17年的SABER(Sounding of the Atmosphere using Broadband Emission Radiometry)Level2C数据研究了中间层与低热层大气(MLT, Mesosphere and Lower Thermosphere) CO2 VMR(Volume Mixing Ratio)的年际变化特征.使用多元线性回归模型对双月平均时间序列拟合,定量地提取各变化特征.结果表明,SABER CO2 VMR长期趋势在中间层保持在5.5%/decade左右,在中间层顶和低热层降低至4.5%/decade左右;结果与模式预测在统计意义上相符.长期趋势没有显著的纬度差异,但在各纬度上都具有明显的季节依赖,MLT CO2 VMR长期趋势的季节性改变源自低层大气长期趋势季节性改变.SABER CO2 VMR对QBO (Quasi-Biannual Oscillation)和ENSO (El Ni1o-Southern Oscillation)在绝大多数区域没有统计显著的响...  相似文献   

16.
An updated empirical climatic zonally averaged prevailing wind model for the upper mesosphere/lower thermosphere (70/110 km), extending from 80°N to 80°S is presented. The model is constructed from the fitting of monthly mean winds from meteor radar and MF radar measurements at more than 40 stations, well distributed over the globe. The height-latitude contour plots of monthly mean zonal and meridional winds for all months of the year, and of annual mean wind, amplitudes and phases of annual and semiannual harmonics of wind variations are analyzed to reveal the main features of the seasonal variation of the global wind structures in the Northern and Southern Hemispheres. Some results of comparison between the ground-based wind models and the space-based models are presented. It is shown that, with the exception of annual mean systematic bias between the zonal winds provided by the ground-based and space-based models, a good agreement between the models is observed. The possible origin of this bias is discussed.  相似文献   

17.
W. T. Sloan  C. G. Kilsby  R. Lunn 《水文研究》2004,18(17):3371-3390
General circulation models (GCMs), or stand‐alone models that are forced by the output from GCMs, are increasingly being used to simulate the interactions between snow cover, snowmelt, climate and water resources. The variation in snowpack extent, and hence albedo, through time in a cell is likely to be substantial, especially in mid‐latitude mountainous regions. As a consequence, the energy budget simulation by a GCM relies on a realistic representation of snowpack extent. Similarly, from a water resource perspective, the spatial extent of the pack is key in predicting meltwater discharges into rivers. In this paper a simple computationally efficient regional snow model has been developed, which is based on a degree‐day approach and simulates the fraction of the model domain covered by snow, the spatially averaged melt rate and the mean snowpack depth. Computational efficiency is achieved through a novel spatial averaging procedure, which relies on the assumptions that precipitation and temperature scale linearly with elevation and that the distribution of elevations in the domain can be modelled by a continuous function. The resulting spatially averaged model is compared with both observations of the duration of snow cover throughout Austria and with results from a distributed model based on the same underlying assumptions but applied at a fine spatial resolution. The new spatially averaged model successfully simulated the seasonal snow duration observations and reproduced the daily dynamics of snow cover extent, the spatially averaged melt rate and mean pack depth simulated by the distributed model. It, therefore, offers a computationally efficient and easily applied alternative to the current crop of regional snow models. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

18.
利用1958~2001年共44年的ECMWF资料及参数化方法,计算了对流层顶上、下3 km气层间的臭氧含量及其吸收太阳辐射加热率的时空分布.结果表明: (1) 臭氧分布的空间梯度从赤道指向两极,而加热率则是分别由高纬和低纬指向副热带,这样的经向梯度可能是驱动对流层顶结构变化的一种重要因素;两者空间分布的季节变化显著,但其对应关系并不完全一致,1月和4月的空间结构与7月和10月的相反,随季节调整具有突变现象;东亚及青藏高原是季节变化相对稳定的区域.(2) 在热带对流层顶控制区加热率与臭氧含量呈正相关,而极地对流层顶控制区各季节有所不同,还与太阳赤纬变化相关联;各纬度间加热率季节变化的位相和变率都存在差异,但南半球相对较为一致,最大距平为±2×10-4 K·d-1,北半球则较复杂,最大正距平为4×1010-4 K·d-1;两半球的季节周期位相趋于相反.(3) 除赤道外,臭氧距平的季节变化位相超前于加热率距平2~3月,并且发生在季节变化的调整期;最大距平出现在南极的8月大于0.4 DU,3~4月则小于-0.2 DU,而北极为±0.2 DU.(4) 臭氧含量和加热率的年际与年代际演变关系对应一致,并具有多尺度的结构特征;但两半球及赤道的时空演变差异明显,30° S~30° N间副热带控制区的加热率变幅剧烈,最大距平为±2.5×10-4 K·d-1,高纬和两极的变幅在不同演变期各不相同;臭氧的变幅结构与之相反,北极的最大距平分别大于0.25 DU和小于-0.35 DU.(5) 20世纪70年代以前及70年代中期,两半球的正负距平具有相反的演变结构,而90年代是负距平演变最剧烈的时期.  相似文献   

19.
Mani  A.  Sreedharan  C. R. 《Pure and Applied Geophysics》1973,106(1):1180-1191
The latitudinal and temporal variations in the vertical profiles of ozone over the Indian subcontinent are discussed. In the equatorial atmosphere represented by Trivandrum (8°N) and Poona (18°N), while tropospheric ozone shows marked seasonal variations, the basic pattern of the vertical distribution of ozone in the stratosphere remains practically unchanged throughout the year, with a maximum at about 28 to 26 km and a minimum just below the tropopause. The maximum total ozone occurs over Trivandrum in the summer monsoon season and the latitudinal anomaly observed over the Indian monsoon area at this time is explained as arising from the horizontal transport of ozone-rich stratospheric air from over the thermal equator to the southern regions.In the higher latitudes represented by New Delhi (28°N), the maximum occurs at 23 km. Delhi, which lies in the temperate regime in winter, shows marked day-to-day variations in association with western disturbances and the strong westerly jet stream that lies over north and central India at this time.Although the basic pattern of the vertical distribution of ozone in the equatorial atmosphere is generally the same in all seasons, significant though small changes occur in the lower stratosphere and in the troposphere. There are small perturbations in the ozone and temperature structures, distinct ozone maxima being always associated with temperature inversions. There are also large perturbances not related to temperature, ozone-depleted regions normally reflecting a stratification of either destructive processes or materials such as dust layers or clouds at these levels. Particularly interesting are the upper tropospheric levels just below the tropopause where the ozone concentration is consistently the smallest, in all seasons and at all places where soundings have been made in India.  相似文献   

20.
The spatial and temporal distribution of total ozone over India and its vertical distribution in theatmosphere during 1964–1969 was studied using Dobson spectrophotometer data at a network of six stations in India, Srinagar (34°N), New Delhi (28°N), Varanasi (24°N), Ahmedabad (23°N), Dum Dum (22°N), and Kodaikanal (10°N). The annual and seasonal variations show a clear phase-shift in the occurrence of the ozone maxima and minima as one proceeds from higher to lower latitudes in the tropics. In the northern stations (north of 25°N) the increase in total ozone during the course of the annual variation is caused by the fractional increase in all layers from the ground to 28 km, the main contribution coming from 10–24 km. Above 28 km the concentration changes roughly in accordance with photochemical production.In lower latitudes (south of 25°N) an increase in total ozone amount during the annual cycle is caused by a gradual increase in all the layers from the ground to 36 km above which the variation is negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号