首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We devise two asymptotic inversion methods of inferring the density distribution in the outer part of the Sun from the p-mode frequency spectrum of the Sun. One of them is based on an integral equation of nonlinear inversion, while the other reduces the problem to a linear form which is derived from comparison of the observed eigenfrequencies of the true Sun and the theoretical eigenfrequencies of a solar model.  相似文献   

2.
The distribution of the sunspots for the period 1967–1987 (solar cycles 20 and 21) is presented here. We find that the ±11–20° latitude belt is most prolific for the occurrence of various spot types irrespective of magnetic-field ranges. Furthermore, longitudinally sunspots occur most prolifically at six or more places on the Sun. Spatially 7–9 zones are present in each hemisphere (north or south) of the Sun where about 50% sunspots occur and occupy only about 4% area of the Sun. During the above cycles at least 5 flare zones were regularly present in each hemisphere. The existing models cannot explain these active zones on the Sun. Thus, the present analysis emphasizes the need for a new magnetic models of the Sun.  相似文献   

3.
Differences of magnetic field flows of “+” and “?” polarities, i.e. the imbalance of magnetic fields for 26 years—from January 1, 1977, to September 30, 2003—are investigated,. The synoptic maps of the longitudinal vector of Sun’s magnetic field strength obtained at the Kitt Peak National Observatory (United States) and kindly given to us by Dr. J. Harvey have served as the initial material. The imbalance of magnetic fields’ cyclicity features and the deviations from the dipole structure of Sun’s magnetic field are determined. The contribution of latitude zones and fields of various strength into the general magnetic flux from the Sun is found. The latter characteristic was compared with the Sun’s mean magnetic field (MMF) obtained from the observations of the Sun as a star (Kotov et al., 2002; Kotov, 2008). The obtained results testify that the imbalance is one of physical characteristics of the Sun. The confirmations of this conclusion are the strict regularities of the Sun’s dipole structure changing; the complicated character of the imbalance cyclicity, i.e., the multiplicity of cycles; the solar nature of MMF changing; and the distinction between two classes of magnetic fields in the imbalance characteristics.  相似文献   

4.
The Teepee Tee array of the Clark Lake Radio Observatory has been used to compare the flux of the Sun with that of the sidereal sources Tau A and Vir A at several frequencies in the range 109.0–19.0 MHz. Only the two central banks of the E-W arm of the array were used as elements of a phase switched interferometer so that the Sun could be observed as a point source and compared directly to the sidereal sources. The Sun was still partially resolved however, and appropriate corrections for this effect were made. The observations were taken at times when the Sun and either Tau A or Vir A were at the same declination. We have therefore been able to derive the values for the solar flux, without having to resort to a gain vs zenith distance correction. The observations, combined with those available in the literature, allow us to derive an accurate meter and decameter wavelength spectrum of the quiet Sun.On leave of absence from Instituto Argentino de Radioastronomía, Argentina.  相似文献   

5.
The interior of the Sun is not directly accessible to observations. Nonetheless, it is possible to infer the physical conditions inside the Sun with the help of structure equations governing its equilibrium and with the powerful observational tools provided by the neutrino fluxes and oscillation frequencies. The helioseismic data show that the internal constitution of the Sun can be adequately represented by a standard solar model. It turns out that a cooler solar core is not a viable solution for the measured deficit of neutrino fluxes, and the resolution of the solar neutrino puzzle should be sought in the realm of particle physics.  相似文献   

6.
In this presentation we briefly describe the Sun through large number of illustrations and pictures of the Sun taken from early times to the present day space missions. The importance of the study of the Sun is emphasized as it is the nearest star which presents unparallelled views of surface details and numerous phenomena. Our Sun offers a unique celestial laboratory where a large variety of phenomena take place, ranging in temporal domain from a few milliseconds to several decades, in spatial domain from a few hundred kilometers to thousands of kilometers, and in the temperature domain from a few thousand degrees to several million degrees. Its mass motion ranges from thousandths to thousands of kilometers per second. Such an object provides us with a unique laboratory to study the state of matter in the Universe. The existing solar ground-based and space missions have already revealed several mysteries of the outer environment of our Sun and much more is going to come in the near future from planned new sophisticated ground-based solar telescopes and Space missions. The new technique of helioseismology has unravelled many secrets of the solar interior and has put the Standard Solar Model (SSM) on firm footing. The long-standing problem of solar neutrinos has been recently sorted out, and even the ‘back side’ view of the Sun can be seen using the technique of holographic helioseismology.  相似文献   

7.
The brightness distribution near the solar limb has been investigated by means of a technique in which derivatives of drift scans of the Sun were compared with derivatives of drift scans of the Moon. The results obtained at 88.3 GHz (3.4 mm) indicate that the Sun is limb neutral within the uncertainty of our measurement. If limb brightening or darkening is present, it represents less than 1.6 % or 1.2 %, respectively, of the total power received from the Sun at this wavelength.  相似文献   

8.
It is shown that if the Sun passed through a T Tauri stage, then a mass loss of only 15% would be sufficient to despin the Sun to an angular velocity of 0 (10–5 rad/sec) at 107 years without the additional braking effect of an enhanced magnetic field. Thus the present Sun could have a core rotating at most ten times faster than its surface.  相似文献   

9.
We discuss the question of loss of angular momentum through coronal expansion. From a large volume of data on Type-1 cometary tails we have confirmed the presence of a tangential component in the coronal expansion, which has not only a stochastic component but also a constant component of 9.8 km/s. Through coronal expansion the Sun has lost 80% of its angular momentum since it evolved on to the main sequence and the angular velocity of the Sun is decreasing exponentially. This result should have a large effect on the dynamical evolution of the Sun.  相似文献   

10.
太阳大气铍丰度的衰减   总被引:1,自引:0,他引:1  
Li和Be轻元素在温度仅几百万度时就因核反应而遭毁坏,因此它们是恒星演化过程的外层对流混合延伸程度很好的一种示踪。基于这种考虑,我们曾计算过太阳包层模型Li的衰减,得到一个同时满足日震学太阳对流区深度和太阳Li丰度观测要求的非局部太阳对流包层模型[1].Li丰度给出了一个非局部对流混合延伸程度的上限。  相似文献   

11.
A solar radio burst was observed in a coronal mass ejection/flare event by the Solar Broadband Radio Spectrometer at the Huairou Solar Observing Station on2004 December 1. The data exhibited various patterns of plasma motions, suggestive of the interaction between sunward moving plasmoids and the flare loop system during the impulsive phase of the event. In addition to the radio data, the associated whitelight, Hα, extreme ultraviolet light, and soft and hard X-rays were also studied.  相似文献   

12.
The relative space motions of the Sun and nearby stars are considered. The coordinates and velocities of the stars are taken from the Catalogue of Nearby Stars by Gliese and Jahreiss (1991). The minimum space separation between the Sun and every star as well as the corresponding moment of time are calculated by two ways. Firstly, the straight line motions are considered. Secondly, the effect of the Galaxy potential is taken into account. The Galaxy model proposed by Kutuzov and Ossipkov (1989) is used. Twenty five stars approaching the Sun closer than two parsecs are selected. The effects of the uncertainties in the observational data are studied. The influence of the encounters to the Oort cloud is discussed.  相似文献   

13.
The relative space motions of the Sun and nearby stars are considered. The coordinates and velocities of the stars are taken from the Catalogue of Nearby Stars by Gliese and Jahreiss (1991). The minimum space separation between the Sun and every star as well as the corresponding moment of time are calculated by two ways. Firstly, the straight line motions are considered. Secondly, the effect of the Galaxy potential is taken into account. The Galaxy model proposed by Kutuzov and Ossipkov (1989) is used. Twenty five stars approaching the Sun closer than two parsecs are selected. The effects of the uncertainties in the observational data are studied. The influence of the encounters to the Oort cloud is discussed.  相似文献   

14.
By analysing the observed results on the neutrino flux from the Sun for the years 1970–1978, it is shown that the production rate of the neutrinos at the central core of the Sun had been varying with a period almost equal to 26 months for these years. This so-called quasi-biennial periodicity in this rate suggests that the physical state of the central core of the Sun must have been modulated with this period through the variation of physical parameters as temperature and the chemical composition at the central core of the Sun. An idea to interpret this observed periodicity is thus proposed by taking the variations of these parameters into consideration. Some supporting evidence on this periodicity can be found on the variations of the solar activity as the relative sunspot numbers and the equatorial rotation speed of the Sun.Proceedings of the 14th ESLAB Symposium on Physics of Solar Variations, 16–19 September 1980, Scheveningen, The Netherlands.  相似文献   

15.
Radio cool regions observed on strip scans of the Sun made at 2800 MHz with a 1.5 min arc fan beam are associated with X-ray coronal holes and are used to derive lower envelopes which are similar to spotless Sun drift curves. Fluxes are evaluated from the Ottawa-ARO solar patrol;. e.g. that of Coronal Hole 1 observed during the Skylab Mission with central meridian passage on July 25, 1973 is 66.5 s.f.u. ± 0.6%. This level is identified as that observed during sunspot minimum by comparison with the flux of 67.2 observed in July, 1964, and with the low daily values of 67.5 and 67.1 observed in April, 1975 and January, 1976. The enhancement of the quiet Sun of 3.0 s.f.u. for the optically inactive hemisphere of May 20, 1974 suggests that the radio quiet Sun may vary during the sunspot cycle.  相似文献   

16.
L. Györi 《Solar physics》1989,120(2):421-430
For a perfectly aligned Coudé heliograph the north direction of Sun's image in the image plane of the heliograph changes linearly with the hour angle of the Sun or in a common heliograph it is constant. But if the alignment is not perfect and there are instrumental errors the angle between the north direction of the Sun's image and a direction fixed in the image plane is a complicated function of the hour angle of the Sun. In this paper we derive this dependence.  相似文献   

17.
Ch. V. Sastry 《Solar physics》1994,150(1-2):285-294
We have mapped the continuum emission from the undisturbed Sun at a wavelength of 8.7 m during 1981–1985 using the large decameter-wave radiotelescope at Gauribidanur, India with a resolution of 26 #x00D7; 38 arc min. During the period August 6–30, 1983, the Sun was exceptionally quiet at meter and decameter wavelengths, and we were able to make maps on several consecutive days. On these days the position of the centroid of the radio Sun agreed quite closely with the center of the optical Sun indicating that there is very little or no contribution from active regions. But the observed peak brightness temperature varied from 100 000 to 700 000 K. The half-power widths of the brightness distribution were in the range of 3 to 4R . The variations of the brightness temperature and the half-power widths are not correlate. It is therefore suggested that the variations of the brightness temperature are not caused by uniform density variations or due to scattering by an irregular corona.  相似文献   

18.
Some properties of the recently-discovered torsional oscillations of the Sun are presented. The detailed relation of this velocity feature to magnetic activity gives evidence that these motions represent a fundamental oscillation within the Sun that is responsible for the solar activity cycle and that they are not a natural consequence of an - dynamo. A new torsional oscillation with wave number 1 hemisphere–1 is demonstrated to exist on the Sun.  相似文献   

19.
It is suggested here that the laminar character of the large-scale deep convective flows appearing in numerical simulations of the convective envelope of the Sun arises from the effect of turbulent eddy viscosity. Previously, M. Schwarzschild suggested the same idea to explain the observed surface granulation in the Sun.  相似文献   

20.
Multicolor photometry from the Tycho-2 and 2MASS catalogues for 11 990 OB and 30 671 K-type red giant branch stars is used to detect systematic large-scale variations of the interstellar extinction law within the nearest kiloparsec. The characteristic of the extinction law, the total-to-selective extinction ratio Rv, which also characterizes the size and other properties of interstellar dust grains, has been calculated for various regions of space by the extinction law extrapolation method. The results for the two classes of stars agree: the standard deviation of the “red giants minus OB” Rv differences within 500 pc of the Sun is 0.2. The detected Rv variations between 2.2 and 4.4 not only manifest themselves in individual clouds but also span the entire space near the Sun, following Galactic structures. In the Local Bubble within about 100 pc of the Sun, Rv has a minimum. In the inner part of the Gould Belt and at high Galactic latitudes, at a distance of about 150 pc from the Sun, Rv reaches a maximum and then decreases to its minimum in the outer part of the Belt and other directions at a distance of about 500 pc from the Sun, returning to its mean values far from the Sun. The detected maximum of Rv at high Galactic latitudes is important when allowance is made for the interstellar extinction toward extragalactic objects. In addition, a monotonic increase in Rv by 0.3 per kpc toward the Galactic center has been found near the Galactic equator. It is consistent with the result obtained by Zasowski et al. (2009) for much of the Galaxy. Ignoring the Rv variations and traditionally using a single value for the entire space must lead to systematic errors in the calculated distances reaching 10%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号