首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The paper treats the problem of interpolating annual runoff from regular streamflow measurements in a regional scale applying objective methods. These methods are adapted to point processes like temperature and precipitation. Modifications are needed to account for the fact that streamflow is an integrated process following the hierarchical structure of river systems. The most straightforward method is therefore to relate the interpolation to the existing river network. For theoretical reasons it is preferable to interpolate the lateral inflow rather than the flow in the river itself. Procedures for the interpolation with the different approaches are developed and discussed. Special attention is put on the question how the equation of continuity can be satisfied. The Laagen drainage basin in southern Norway is used as a test area. The data consist of annual observations of streamflow and digital map information on river networks and drainage basin boundaries.  相似文献   

2.
The Nooksack River has its headwaters in the North Cascade Mountains and drains an approximately 2000 km2 watershed in northwestern Washington State. The timing and magnitude of streamflow in a snowpack‐dominated drainage basin such as the Nooksack River basin are strongly influenced by temperature and precipitation. Projections of future climate made by general circulation models (GCMs) indicate increases in temperature and variable changes in precipitation for the Nooksack River basin. Understanding the response of the river to climate change is crucial for regional water resources planning because municipalities, tribes, and industry depend on the river for water use and for fish habitat. We combine three different climate scenarios downscaled from GCMs and the Distributed‐Hydrology‐Soil‐Vegetation Model to simulate future changes to timing and magnitude of streamflow in the higher elevations of the Nooksack River. Simulations of future streamflow and snowpack in the basin project a range of magnitudes, which reflects the variable meteorological changes indicated by the three GCM scenarios and the local natural variability employed in the modeling. Simulation results project increased winter flows, decreased summer flows, decreased snowpack, and a shift in timing of the spring melt peak and maximum snow water equivalent. These results are consistent with previous regional studies, but the magnitude of increased winter flows and total annual runoff is higher. Increases in temperature dominate snowpack declines and changes to spring and summer streamflow, whereas a combination of increases in temperature and precipitation control increased winter streamflow. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
Correlation and covariance of runoff   总被引:1,自引:0,他引:1  
The application of objective methods for interpolation of stochastic fields is based on the assumption of homogeneity with respect to the correlation function, i.e. only the relative distance between two points is of importance. This is not the case for runoff data which is demonstrated in this paper. Taking into consideration the structure of the river network and the related drainage basin supporting areas theoretical expressions are derived for the correlation function for flow along a river from its outlet and upstream. The results are exact for a rectangular drainage basin. For more complex basin geometry a grid approximation is suggested. The found relations are demonstrated on a real world example with a good agreement between the theoretically calculated correlation functions and empirical data.  相似文献   

4.
The aim of the study was to determine the effects of climate variability, agricultural land drainage and afforestation of agricultural land on river discharge. The study was conducted in the Vienziemīte stream basin (6 km2), where discharge was monitored on a daily basis during the time period of 1946–2010. In the stream basin, natural afforestation of agricultural land began in the 1950s, and in the mid-1970s artificial drainage systems were installed in all agricultural land (70% of the total basin area). Climate variability and artificial drainage were the main factors observed to be affecting stream discharge. The changes were most evident in annual and seasonal mean, minimum and maximum streamflow. There was no effect of afforestation of agriculture land on stream discharge.  相似文献   

5.
Abstract

A novel approach for mapping river runoff is presented. It is based on a disaggregation of the mean annual streamflow measured at the outlet of a basin to estimate water depths on elements of an exact partition of this basin. The developed technique is based on geostatistical interpolation procedures to which a global constraint of water balance has been added. The methodology is illustrated by a case study from a tributary to the Rhône River, France. The results were compared to an established method-the nested approach, and a cross-validation was performed for each mapping technique. The disaggregation approach appears to give the most consistent results. Finally, two gridded maps were derived by applying the disaggregation twice to assess water depth on an increasingly finer grid mesh. The global constraint of water balance was applied to each element of the coarser mesh to give estimates for the finer one.  相似文献   

6.
In recent years, the Xitiaoxi river basin in China has experienced intensified human activity, including city expansion and increased water demand. Climate change also has influenced streamflow. Assessing the impact of climate variability and human activity on hydrological processes is important for water resources planning and management and for the sustainable development of eco‐environmental systems. The non‐parametric Mann–Kendall test was employed to detect the trends of climatic and hydrological variables. The Mann–Kendall–Sneyers test and the moving t‐test were used to locate any abrupt change of annual streamflow. A runoff model, driven by precipitation and potential evapotranspiration, was employed to assess the impact of climate change on streamflow. A significant downward trend was detected for annual streamflow from 1975 to 2009, and an abrupt change occurred in 1999, which was consistent with the change detected by the double mass curve test between streamflow and precipitation. The annual precipitation decreased slightly, but upward trends of annual mean temperature and potential evapotranspiration were significant. The annual streamflow during the period 1999–2009 decreased by 26.19% compared with the reference stage, 1975–1998. Climate change was estimated to be responsible for 42.8% of the total reduction in annual streamflow, and human activity accounted for 57.2%. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

7.
Using a nonstationary flood frequency model, this study investigates the impact of trends on the estimation of flood frequencies and flood magnification factors. Analysis of annual peak streamflow data from 28 hydrological stations across the Pearl River basin, China, shows that: (1) northeast parts of the West and the North River basins are dominated by increasing annual peak streamflow, whereas decreasing trends of annual peak streamflow are prevailing in other regions of the Pearl River basin; (2) trends significantly impact the estimation of flood frequencies. The changing frequency of the same flood magnitude is related to the changing magnitude or significance/insignificance of trends, larger increasing frequency can be detected for stations with significant increasing trends of annual peak streamflow and vice versa, and smaller increasing magnitude for stations with not significant increasing annual peak streamflow, pointing to the critical impact of trends on estimation of flood frequencies; (3) larger‐than‐1 flood magnification factors are observed mainly in the northeast parts of the West River basin and in the North River basin, implying magnifying flood processes in these regions and a higher flood risk in comparison with design flood‐control standards; and (4) changes in hydrological extremes result from the integrated influence of human activities and climate change. Generally, magnifying flood regimes in the northeast Pearl River basin and in the North River basin are mainly the result of intensifying precipitation regime; smaller‐than‐1 flood magnification factors along the mainstream of the West River basin and also in the East River basin are the result of hydrological regulations of water reservoirs. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
J.M. Buttle  M.C. Eimers   《Journal of Hydrology》2009,374(3-4):360-372
Relationships explaining streamflow behaviour in terms of drainage basin physiography greatly assist efforts to extrapolate streamflow metrics from gauged to ungauged basins in the same landscape. The Dorset Environmental Science Centre (DESC) has monitored streamflow from 22 small basins (3.4–190.5 ha) on the Precambrian Shield in south-central Ontario, in some cases since 1976. The basins exhibit regional coherence in their interannual response to precipitation; however, there is often a poor correlation between streamflow metrics from basins separated by as little as 1 km. This study assesses whether inter-basin variations in such metrics can be explained in terms of basin scale and physiography. Several characteristics (annual maximum, minimum and average flow) exhibited simple scaling with basin area, while magnitude, range and timing of annual maximum daily runoff showed scaling behaviour consistent with the Representative Elementary Area (REA) concept. This REA behaviour is partly attributed to convergence of fractional coverage of the two dominant and hydrologically-contrasting land cover types in the DESC region with increasing basin size. Three Principal Components (PCs) explained 82.4% of the variation among basin physiographic properties, and several runoff metrics (magnitude and timing of annual minimum daily runoff, mean number of days per year with 0 streamflow) exhibited significant relationships with one or more PC. Significant relationships were obtained between basin quickflow (QF) production and the PCs on a seasonal and annual basis, almost all of which were superior to simple area-based relationships. Basin physiography influenced QF generation via its control on slope runoff, water storage and hydrologic connectivity; however, this role was minimized during Spring when QF production in response to large rain-on-snow events was relatively uniform across the DESC basins. The PC-based relationships and inter-seasonal changes in their form were consistent with previous research conducted at point, slope and basin scales in the DESC region, and perceptions of key hydrological processes in these small basins may not have been as readily obtained from scaling studies using streamflow from larger basins. This process understanding provides insights into scaling behaviour beyond those derived from simple scaling and REA analyses. The physiography of the study area is representative of large portions of the Precambrian Shield, such that basin streamflow behaviour could potentially be extended across much of south-central Ontario. This would assist predictions of streamflow conditions at ungauged locations, development and testing of hydrological models for this landscape, and interpretation of inter-basin and intra-annual differences in hydrochemical behaviour on the southern Precambrian Shield.  相似文献   

9.
Several studies have shown that the dominant streamflow generation mechanism in a river basin can leave distinct geomorphological signatures in basin topography. In particular, it has been suggested previously that basins generated by groundwater discharge tend to have a larger hypsometric integral than surface runoff basins because fluvial erosion is more focused in the valleys where groundwater discharge tends to occur. In this analysis, we aim to clarify this relationship by developing an alternative method to quantify the effects of streamflow generation mechanisms on basin hypsometry and by using a numerical model that can generate streamflow by different processes to evaluate the sensitivity of the results to the hydrological and geomorphological properties of the basin. The model results suggest that the hypsometric characteristics that are usually associated with groundwater discharge basins, such as a larger hypsometric integral, occur primarily when drainage networks are still advancing in the watershed. During later stages of development, an additional factor such as lithological controls or a distinct geomorphological process would be needed to preserve these features. The model results also show that the hypsometric effects are stronger when the parameters of the fluvial erosion process promote the influence of small discharge rates. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
ABSTRACT

Much of New Hampshire and Vermont (combined area = 50 000 km2) has hilly to mountainous topography. Elevations range from 0 to 1900 m a.s.l. (average = 360 m), and many peaks exceed 1200 m. Mean annual precipitation increases strongly with elevation (adjusted for additional orographic effects and distance from moisture sources), as do mean monthly precipitation, snow depth, and snow water equivalents. Mean monthly temperatures decrease with elevation, largely masking latitudinal effects, and can be used with other information to show how potential evapotranspiration changes with elevation. These effects combine to produce strong elevational increases in mean annual streamflow and, more surprisingly, cause streamflow variability, both short term and annual, to decrease with mean drainage basin elevation. Low flows for a given exceedance probability increase markedly as mean basin elevation increases above 340 m. Flood peaks for a given return period also increase with mean basin elevation. Slope and aspect affect the timing of snowmelt runoff, but otherwise appear to have only second order effects on hydrology. The effect of elevation is so dominant in the region that it can be used as the single independent variable in predicting many streamflow parameters.  相似文献   

11.
Located in the Loess Plateau of China, the Wuding River basin (30 261 km2) contributes significantly to the total sediment yield in the Yellow River. To reduce sediment yield from the catchment, large-scale soil conservation measures have been implemented in the last four decades. These included building terraces and sediment-trapping dams and changing land cover by planting trees and improving pastures. It is important to assess the impact of these measures on the hydrology of the catchment and to provide a scientific basis for future soil conservation planning. The non-parametric Mann–Kendall–Sneyers rank test was employed to detect trends and changes in annual streamflow for the period of 1961 to 1997. Two methods were used to assess the impact of climate variability on mean annual streamflow. The first is based on a framework describing the sensitivity of annual streamflow to precipitation and potential evaporation, and the second relies on relationships between annual streamflow and precipitation. The two methods produced consistent results. A significant downward trend was found for annual streamflow, and an abrupt change occurred in 1972. The reduction in annual streamflow between 1972 and 1997 was 42% compared with the baseline period (1961–1971). Flood-season streamflow showed an even greater reduction of 49%. The streamflow regime of the catchment showed a relative reduction of 31% for most percentile flows, except for low flows, which showed a 57% reduction. The soil conservation measures reduced streamflow variability, leading to more uniform streamflow. It was estimated that the soil conservation measures account for 87% of the total reduction in mean annual streamflow in the period of 1972 to 1997, and the reduction due to changes in precipitation and potential evaporation was 13%. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
General circulation models (GCMs), the climate models often used in assessing the impact of climate change, operate on a coarse scale and thus the simulation results obtained from GCMs are not particularly useful in a comparatively smaller river basin scale hydrology. The article presents a methodology of statistical downscaling based on sparse Bayesian learning and Relevance Vector Machine (RVM) to model streamflow at river basin scale for monsoon period (June, July, August, September) using GCM simulated climatic variables. NCEP/NCAR reanalysis data have been used for training the model to establish a statistical relationship between streamflow and climatic variables. The relationship thus obtained is used to project the future streamflow from GCM simulations. The statistical methodology involves principal component analysis, fuzzy clustering and RVM. Different kernel functions are used for comparison purpose. The model is applied to Mahanadi river basin in India. The results obtained using RVM are compared with those of state-of-the-art Support Vector Machine (SVM) to present the advantages of RVMs over SVMs. A decreasing trend is observed for monsoon streamflow of Mahanadi due to high surface warming in future, with the CCSR/NIES GCM and B2 scenario.  相似文献   

13.
Uruguay has encouraged the development of the forestry sector since 1989. As a member of the Montreal Process, the country has followed a set of criteria and indicators for the Sustainable Forest Management. The aim of this paper is to describe the studies carried out in a large basin of 2097 km2, located in an area of humid subtropical climate and 1300 mm of long‐term mean annual rainfall, where the conversion of natural grasslands to forests increased up to 540 km2 during the last 15 years. Using data from daily rainfall and streamflow, the study analyses the effects of afforestation on the runoff and water loss. The analysis comprises hydrographs resulting from comparable rainfall events and annual and seasonal streamflow and water loss behaviour, both before afforestation (1975–1993) and during the afforestation period (1994–2008). A statistically significant reduction of runoff volumes (33–43%) and peak flows (59–65%) were identified on storm hydrographs. The annual and seasonal streamflow also showed diminishing tendencies due to the forestry development, whereas the water loss increases. The annual streamflow decreased between 8·2 and 36·5% depending on the annual rainfall totals. The streamflow reduction was higher during spring and summer (25·2–38·4%) and smaller during autumn and winter (15–20·3%). The water loss is expected to increase by 98 mm for the long‐term mean annual rainfall. The resulting information is a valuable input for the Integrated Water Resources Management of the Negro river basin located downstream, where hydroelectric power, rice irrigation and forestry development are supported. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

14.
River discharges vary strongly through time and space, and quantifying this variability is fundamental to understanding and modelling river processes. The river basin is increasingly being used as the unit for natural resource planning and management; to facilitate this, basin‐scale models of material supply and transport are being developed. For many basin‐scale planning activities, detailed rainfall‐runoff modelling is neither necessary nor tractable, and models that capture spatial patterns of material supply and transport averaged over decades are sufficient. Nevertheless, the data to describe the spatial variability of river discharge across large basins for use in such models are often limited, and hence models to predict river discharge at the basin scale are required. We describe models for predicting mean annual flow and a non‐dimensional measure of daily flow variability for every river reach within a drainage network. The models use sparse river gauging data, modelled grid surfaces of mean annual rainfall and mean annual potential evapotranspiration, and a network accumulation algorithm. We demonstrate the parameterization and application of the models using data for the Murrumbidgee basin, in southeast Australia, and describe the use of these predictions in modelling sediment transport through the river network. The regionalizations described contain less uncertainty, and are more sensitive to observed spatial variations in runoff, than regionalizations based on catchment area and rainfall alone. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

15.
Jiongxin Xu 《水文研究》2005,19(9):1871-1882
In the past 30 years, the measured annual river flow of the Yellow River has declined significantly. After adding the diverted water back to get the ‘natural’ annual river flow, the tendency of decrease can still be seen. This indicates that the river flow renewability of the Yellow River has changed. The river flow renewability is indexed as the ratio of annual ‘natural’ river flow to annual precipitation over a river drainage basin, where the ‘natural’ river flow is the measured annual river flow plus the annual ‘net’ water diversion from the river. By using this index, based on the data from the drainage area between Hekouzhen and Longmen stations on the middle Yellow River, a study has been made of the river flow renewability of the Yellow River in the changing environment of the past 50 years. The river flow renewability index (Irr) in the drainage area between Hekouzhen and Longmen in the middle Yellow River basin has been found to decline significantly with time. In the meantime, annual precipitation decreased, annual air temperature increased, but the area of water and soil conservation measures has been increased. It has been found that Irr is positively correlated with the areal averaged annual precipitation, but negatively correlated with annual air temperature. There is close, negative correlation between Irr and the area of water and soil conservation measures including land terracing, tree and grass planting and checkdam building, implying that water and soil conservation measures have reduced the river flow renewability. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

16.
Abstract

This study uses the Soil and Water Assessment Tool (SWAT) and downscaled climate projections from the ensemble of two global climate models (ECHAM4 and CSIRO) forced by the A1FI greenhouse-gas scenario to estimate the impact of climate change on streamflow in the White Volta and Pra river basins, Ghana. The SWAT model was calibrated for the two basins and subsequently driven by downscaled future climate projections to estimate the streamflow for the 2020s (2006–2035) and 2050s (2036–2075). Relative to the baseline, the mean annual streamflow estimated for the White Volta basin for the 2020s and 2050s showed a decrease of 22 and 50%, respectively. Similarly, the estimated streamflow for the 2020s and 2050s for the Pra basin showed a decrease of 22 and 46%, respectively. These results underscore the need to put in place appropriate adaptation measures to foster resilience to climate change in order to enhance water security within the two basins.

Citation Kankam-Yeboah, K., Obuobie, E., Amisigo, B., and Opoku-Ankomah, Y., 2013. Impact of climate change on streamflow in selected river basins in Ghana. Hydrological Sciences Journal, 58 (4), 773–788.  相似文献   

17.
Transformations of precipitation into groundwater and streamflow are fundamental hydrological processes, critical to irrigated agriculture, hydroelectric power generation, and ecosystem health. Our understanding of the timing of groundwater recharge and streamflow generation remains incomplete, limiting our ability to predict fresh water, nutrient, and contaminant fluxes, especially in large basins. Here, we analyze thousands of rain, snow, groundwater, and streamflow δ18O and δ2H values in the Nelson River basin, which covers 1.2 million km2 of central Canada. We show that the fraction of precipitation that recharges aquifers is ~1.3–5 times higher for precipitation falling during cold months with subzero mean monthly temperatures than for precipitation falling during warmer months. The near‐ubiquity of cold‐season‐biased groundwater recharge implies that changes to winter water balances may have disproportionate impacts on annual groundwater recharge rates. We also show that young streamflow—defined as precipitation that enters a river in less than ~2.3 months—comprises ~27% of annual streamflow but varies widely among tributaries in the Nelson River basin (1–59%). Young streamflow fractions are lower in steep catchments and higher in flatter catchments such as the transboundary Red River basin. Our findings imply that flat, lower permeability, heavily tiled landscapes favor more rapid transmission of precipitation into rivers, possibly mobilizing excess soluble fertilizers and exacerbating eutrophication events in Lake Winnipeg.  相似文献   

18.
Abstract

The spatial scaling properties of annual average streamflow is examined using records from 1 433 river basins across the continental United States. The log-linear relationship ln(E[Qr i]) = a + br ln(Ai) is representative throughout the United States, where E[Qr i] represents the expectation of the rth moment of annual streamflow at site i, and Ai represents drainage area. The scaling model parameters ar and br follow nearly perfect linear relationships ar = rα and br = rβ throughout the continental United States. We conclude that the probability distribution of annual streamflow follows simple scaling relationships in all regions of the United States. In temperate regions where climate is relatively homogeneous, scale alone describes most of the variability in the moments of annual streamflow. In the more climatically heterogeneous regions, such as in the Upper Colorado and Missouri river basins, scale alone is a poor predictor of the moments of annual flow.  相似文献   

19.
鄱阳湖流域5大水系来水变化与湖区水文极值事件有密切关系,研究径流变化特征与丰枯遭遇规律对区域防洪抗旱有重要意义.本文运用Copula函数构建了鄱阳湖水系多维径流联合分布模型,采用特枯、偏枯、平水、偏丰和特丰的径流丰枯分类,定量研究了鄱阳湖5大水系丰枯遭遇的问题,探讨了多维丰枯遭遇同步联合概率的变化特征.结果表明:鄱阳湖水系河流之间的径流具有较高的相关性,Gaussian Copula函数能较好地模拟二维至五维的径流联合分布.多条河流的丰枯遭遇随着维数的增加,丰枯组合增加,丰枯同步的联合概率明显下降,且丰枯同步的最大联合概率趋向于丰枯两端.对于相同的概率区间,非汛期径流的丰枯同步联合概率明显大于年径流和汛期径流,而年径流和汛期径流之间的丰枯同步联合概率差别较小.同处于流域北部或南部或相邻的河流之间的组合,其同步联合概率相较其他组合大,而南、北河流组合的同步联合概率相对较小.该研究可为流域水资源管理及水旱灾害预防提供科学依据.  相似文献   

20.
Variations in streamflows of five tributaries of the Poyang Lake basin, China, because of the influence of human activities and climate change were evaluated using the Australia Water Balance Model and multivariate regression. Results indicated that multiple regression models were appropriate with precipitation, potential evapotranspiration of the current month, and precipitation of the last month as explanatory variables. The NASH coefficient for the Australia Water Balance Model was larger than 0.842, indicating satisfactory simulation of streamflow of the Poyang Lake basin. Comparison indicated that the sensitivity method could not exclude the benchmark‐period human influence, and the human influence on streamflow changes was overestimated. Generally, contributions of human activities and climate change to streamflow changes were 73.2% and 26.8% respectively. However, human‐induced and climate‐induced influences on streamflow were different in different river basins. Specifically, climate change was found to be the major driving factor for the increase of streamflow within the Rao, Xin, and Gan River basins; however, human activity was the principal driving factor for the increase of streamflow of the Xiu River basin and also for the decrease of streamflow of the Fu River basin. Meanwhile, impacts of human activities and climate change on streamflow variations were distinctly different at different temporal scales. At the annual time scale, the increase of streamflow was largely because of climate change and human activities during the 1970s–1990s and the decrease of streamflow during the 2000s. At the seasonal scale, climate change was the main factor behind the increase of streamflow in the spring and summer season. Human activities increase the streamflow in autumn and winter, but decrease the streamflow in spring. At the monthly scale, different influences of climate change and human activities were detected. Climate change was the main factor behind the decrease of streamflow during May to June and human activities behind the decrease of streamflow during February to May. Results of this study can provide a theoretical basis for basin‐scale water resources management under the influence of climate change and human activities. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号