共查询到20条相似文献,搜索用时 0 毫秒
1.
In semiarid regions the occurrence of alternating long drought and heavy rainfall periods directly impacts water availability, affecting human water supply, agriculture development and the provision of ecosystem services. Because of that, research on the water input and output fluxes at the basin scale is of paramount importance. In this sense, rainfall-evapotranspiration (ET) dynamics play a critical role in water, soil and vegetation interactions, in hydrometeorological modelling and in the energy fluxes dynamics of semiarid regions. Therefore, the objective of this study was to quantify daily ET during a wet year and a dry year in a watershed located in the Brazilian Semiarid, by using remote sensing data and formulations based on the Simplified Surface Energy Balance Index (S-SEBI) and the Simplified Surface Energy Balance (SSEB) algorithms. Land surface temperature, albedo and NDVI data from MODIS sensor and solar radiation data from weather stations located in the basin were used. Rainfall analysis indicated 2009 and 2012 as being representatives of anomalously wet and dry years respectively, which were selected for the quantification of ET. The proposed algorithm was adjusted and verified with data from a flux tower equipped with eddy covariance system. Daily remote sensing ET estimates showed good agreement with observed values (RMSE = 0.79 mm.d −1) and the annual ET relative error was of 7.7% (35.4 mm.year −1). Results showed that the native vegetation can delay its dormant state for five months during wet years. During the wet year, ET differences between land cover classes were less noticeable due to soil saturation and the urgency of vegetated surfaces to meet their physiological needs. In dry year, however, differences were more evident, with bare soil presenting lower ET rates and vegetation classes showing higher ET values. 相似文献
2.
High-data dimensionality is a common problem in hyperspectral data processing. Consequently, remote sensing techniques that reduce the number of bands are considered essential tools for most hyperspectral applications. The aim of this study was to examine the utility of the random forest ensemble to select the optimal subset of hyperspectral bands to predict the age of Pinus patula stands. Airborne AISA Eagle hyperspectral image data were collected over the study area. The random forest ensemble was used to test whether the forward or backward variable selection methods could identify the optimal subset of bands. Results indicate that both the selection methods produced high-predictive accuracies (root mean square error = 3.097 years). However, the backward variable selection method utilized 206 bands for the final model, while the forward variable selection utilized only a small subset of non-redundant bands ( n = 9) while preserving the highest model accuracy ( R 2 = 0.6). 相似文献
3.
The presented work describes a methodology that employs artificial neural networks (ANN) and multi-temporal imagery from the MODIS/Terra-Aqua sensors to detect areas of high risk of forest fire in the Brazilian Amazon. The hypothesis of this work is that due to characteristic land use and land cover change dynamics in the Amazon forest, forest areas likely to be burned can be separated from other land targets. A study case was carried out in three municipalities located in northern Mato Grosso State, Brazilian Amazon. Feedforward ANNs, with different architectures, were trained with a backpropagation algorithm, taking as inputs the NDVI values calculated from MODIS imagery acquired during five different periods preceding the 2005 fire season. Selected samples were extracted from areas where forest fires were detected in 2005 and from other non-burned forest and agricultural areas. These samples were used to train, validate and test the ANN. The results achieved a mean squared error of 0.07. In addition, the model was simulated for an entire municipality and its results were compared with hotspots detected by the MODIS sensor during the year. A histogram analysis showed that the spatial distribution of the areas with fire risk were consistent with the fire events observed from June to December 2005. The ANN model allowed a fast and relatively precise method to predict forest fire events in the studied area. Hence, it offers an excellent alternative for supporting forest fire prevention policies, and in assisting the assessment of burned areas, reducing the uncertainty involved in currently used methods. 相似文献
4.
Remote sensing and climate digital products have become increasingly available in recent years. Access to these products has favored a variety of Digital Earth studies, such as the analysis of the impact of global warming over different biomes. The study of the Amazon forest response to drought has recently received particular attention from the scientific community due to the occurrence of extreme droughts and anomalous warming over the last decade. This paper focuses on the differences observed between surface thermal anomalies obtained from remote sensing moderate resolution imaging spectroradiometer (MODIS) and climatic (ERA-Interim) monthly products over the Amazon forest. With a few exceptions, results show that the spatial pattern of standardized anomalies is similar for both products. In terms of absolute anomalies, the differences between the two products show a bias near to zero with a standard deviation of around 0.2?K, although the differences can be up to 1?K over particular regions and months. Despite this general agreement, the proper filtering of MODIS daily values in order to construct a new monthly product showed a dramatic reduction in the number of reliable pixels during the rainy season, while for the dry season this reduction is only seen in Northern Amazonia. 相似文献
5.
This study assesses whether MODIS Vegetation Continuous Fields percent tree cover (PTC) data can detect deforestation and forest degradation. To assess the usefulness of PTC for detecting deforestation, we used a data set consisting of eight forest and seven non-forest categories. To evaluate forest degradation, we used data from two temperate forest types in three conservation states: primary (dense), secondary (moderately degraded) and open (heavily degraded) forest. Our results show that PTC can differentiate temperate forest from non-forest categories ( p = 0.05) and thus suggests PTC can adequately detect deforestation in temperate forests. In contrast, single-date PTC data does not appear to be adequate to detect forest degradation in temperate forests. As for tropical forest, PTC can partially discriminate between forest and non-forest categories. 相似文献
6.
Information on ecosystem services as a function of the successional stage for secondary tropical dry forests (TDFs) is scarce and limited. Secondary TDFs succession is defined as regrowth following a complete forest clearance for cattle growth or agriculture activities. In the context of large conservation initiatives, the identification of the extent, structure and composition of secondary TDFs can serve as key elements to estimate the effectiveness of such activities. As such, in this study we evaluate the use of a Hyperspectral MAPper (HyMap) dataset and a waveform LIDAR dataset for characterization of different levels of intra-secondary forests stages at the Santa Rosa National Park (SRNP) Environmental Monitoring Super Site located in Costa Rica. Specifically, a multi-task learning based machine learning classifier (MLC-MTL) is employed on the first shortwave infrared (SWIR1) of HyMap in order to identify the variability of aboveground biomass of secondary TDFs along a successional gradient. Our paper recognizes that the process of ecological succession is not deterministic but a combination of transitional forests types along a stochastic path that depends on ecological, edaphic, land use, and micro-meteorological conditions, and our results provide a new way to obtain the spatial distribution of three main types of TDFs successional stages. 相似文献
7.
This article's goal is to explore the benefits of using Digital Surface Model (DSM) and Digital Terrain Model (DTM) derived from LiDAR acquisitions for characterizing the horizontal structure of different facies in forested areas (primary forests vs. secondary forests) within the framework of an object-oriented classification. The area under study is the island of Mayotte in the western Indian Ocean. The LiDAR data were the data originally acquired by an airborne small-footprint discrete-return LiDAR for the “Litto3D” coastline mapping project. They were used to create a Digital Elevation Model (DEM) at a spatial resolution of 1 m and a Digital Canopy Model (DCM) using median filtering. The use of two successive segmentations at different scales allowed us to adjust the segmentation parameters to the local structure of the landscape and of the cover. Working in object-oriented mode with LiDAR allowed us to discriminate six vegetation classes based on canopy height and horizontal heterogeneity. This heterogeneity was assessed using a texture index calculated from the height-transition co-occurrence matrix. Overall accuracy exceeds 90%. The resulting product is the first vegetation map of Mayotte which emphasizes the structure over the composition. 相似文献
8.
Forest vegetation of Vindhyan range located in the north of G.B. Pant Sagar (dam) has been subjected to degradation due to high biotic pressure caused by the installation of thermal power plants, coal mining, heavy cattle grazing etc. In the present study Landsat TM FCC of 1∶250,000 scale was visually analysed with respect to forest vegetation types, crown density and structure along with other landuse/land cover classes. ExceptShorea robusta (Sal) andLagerstroemia parviflora (Lendia) all forest vegetation types show higher percentage of degradation and under-stocked condition with respect to their areal extent under study. Overall classification accuracy of the forest types has been found to be 88.94%. This indicates that for obtaining reliable mapping accuracy in dry deciduous areas, satellite remote sensing data of appropriate season is essential. 相似文献
9.
竹林是中国亚热带地区特殊而重要的森林资源,现有方法难以实现全国范围竹林时空分布信息快速准确提取。针对此问题,本研究利用2003年、2008年、2014年MODIS NDVI、反射率产品数据和省域Landsat分类数据,提出了基于决策树结合混合像元分解的全国竹林信息提取方法。首先,通过最大似然法获取中国林地分布信息;然后,在林地信息的基础上,构建决策树模型提取中国竹林分布信息;最后,采用线性最小二乘法混合像元分解得到中国竹林丰度图,并计算竹林面积。研究结果表明:(1)最大似然法提取的3个时期中国林地信息的生产者与用户精度均在90%以上,Kappa系数均值为0.93,为竹林信息提取奠定了基础。(2)C5.0算法构建的决策树模型能够很好的提取中国竹林时空分布信息,3个时期竹林分类精度均在80%左右。(3)在混合像元分解的基础上,统计得到的全国各省竹林估算面积与清查面积具有较高的相关性,R~2分别为0.98、0.97和0.95,RMSE范围为3.92万—9.58万ha,说明估算得到全国竹林面积与实际情况较为吻合。本研究所提出基于MODIS遥感数据运用C5.0算法决策树结合混合像元分解的方法,实现了全国竹林时空分布信息的准确提取,为全国竹林资源信息动态监测及管理提供了技术手段和数据支撑。 相似文献
10.
Tropical forest embraces a large stock of carbon and contributes to the enormous amount of above- and below-ground biomass and the global carbon cycle. The carbon kept in the above-ground living biomass of trees is typically the largest pool and the most directly impacted by deforestation and degradation. Hence, quantifying carbon stock and fluxes from tropical forests by estimating the above-ground forest biomass is the critical step that will be investigated further in this paper. Remote sensing technology can provide many advantages in quantifying and mapping forest structure and monitoring and mapping above-ground biomass, and is both temporally and spatially accurate. Therefore, a good data-set of biomass which comprises canopy height and canopy structure can provide carbon sequestration potential for forest reserves. This paper reviews a thorough research of biomass estimation using remote sensing and geospatial technologies. 相似文献
11.
作为陆地生态系统的主体,森林的碳循环与碳蓄积对研究陆地生态系统起着重要作用,但目前森林扰动资料的缺乏在很大程度上影响着区域森林碳通量的估算精度。在对森林扰动监测方法和监测指数进行总结的基础上,对几种森林扰动监测指数进行了比较研究。鉴于当前基于长时间序列的森林扰动研究主要集中在北美国家,国内鲜有系统报道,因此,针对我国森林变化特点,结合长时间序列扰动分析方法和适宜的扰动监测指数,研究适用于我国森林的扰动监测模型具有重要的理论意义和应用价值。 相似文献
12.
In this study, we tested whether the inclusion of the red-edge band as a covariate to vegetation indices improves the predictive accuracy in forest carbon estimation and mapping in savanna dry forests of Zimbabwe. Initially, we tested whether and to what extent vegetation indices (simple ratio SR, soil-adjusted vegetation index and normalized difference vegetation index) derived from high spatial resolution satellite imagery (WorldView-2) predict forest carbon stocks. Next, we tested whether inclusion of reflectance in the red-edge band as a covariate to vegetation indices improve the model's accuracy in forest carbon prediction. We used simple regression analysis to determine the nature and the strength of the relationship between forest carbon stocks and remotely sensed vegetation indices. We then used multiple regression analysis to determine whether integrating vegetation indices and reflection in the red-edge band improve forest carbon prediction. Next, we mapped the spatial variation in forest carbon stocks using the best regression model relating forest carbon stocks to remotely sensed vegetation indices and reflection in the red-edge band. Our results showed that vegetation indices alone as an explanatory variable significantly ( p < 0.05) predicted forest carbon stocks with R2 ranging between 45 and 63% and RMSE ranging from 10.3 to 12.9%. However, when the reflectance in the red-edge band was included in the regression models the explained variance increased to between 68 and 70% with the RMSE ranging between 9.56 and 10.1%. A combination of SR and reflectance in the red edge produced the best predictor of forest carbon stocks. We concluded that integrating vegetation indices and reflectance in the red-edge band derived from high spatial resolution can be successfully used to estimate forest carbon in dry forests with minimal error. 相似文献
13.
The knowledge of biomass stocks in tropical forests is critical for climate change and ecosystem services studies. This research was conducted in a tropical rain forest located near the city of Libreville (the capital of Gabon), in the Akanda Peninsula. The forest cover was stratified in terms of mature, secondary and mangrove forests using Landsat-ETM data. A field inventory was conducted to measure the required basic forest parameters and estimate the aboveground biomass (AGB) and carbon over the different forest classes. The Shuttle Radar Topography Mission (SRTM) data were used in combination with ground-based GPS measurements to derive forest heights. Finally, the relationships between the estimated heights and AGB were established and validated. Highest biomass stocks were found in the mature stands (223 ± 37 MgC/ha), followed by the secondary forests (116 ± 17 MgC/ha) and finally the mangrove forests (36 ± 19 MgC/ha). Strong relationships were found between AGB and forest heights (R 2 > 0.85). 相似文献
14.
In this study, the potential of remote sensing in tropical forests is examined in relation to the diversification of sensors. We report here on the comparison of alternative methods that use multisource data from Airborne Laser Scanning (ALS), Airborne CIR and ALOS AVNIR-2 to estimate stem volume and basal area, in Laos. Multivariate linear regression analyses with stepwise selection of predictors were implemented for modelling. The predictors of ALS metrics were calculated by means of the canopy height distribution approach, while predictors from both spectral and textual features were respectively generated for Airborne CIR and ALOS AVNIR-2 data. With respect to the estimation capacity from individual data sources after leave-one-out cross-validation, the ALS data proved superior, with the lowest RMSE of 36.92% for stem volume and 47.35% for basal area, whereas Airborne CIR and ALOS AVNIR-2 remained at similar accuracy levels, but fell well behind the ALS data. By integrating ALS metrics with other predictors from Airborne CIR or ALOS AVNIR-2, hybrid modelling was further tested respectively. The results showed that only the hybrid model for stem volume involving ALS and Airborne CIR improved the accuracy of 1.9% in terms of relative RMSE than that of using ALS alone. 相似文献
15.
Using the NASA Earth Exchange platform, the North American Forest Dynamics (NAFD) project mapped forest history wall-to-wall, annually for the contiguous US (1986–2010) using the Vegetation Change Tracker algorithm. As with any effort to identify real changes in remotely sensed time-series, data gaps, shifts in seasonality, misregistration, inconsistent radiometry and cloud contamination can be sources of error. We discuss the NAFD image selection and processing stream (NISPS) that was designed to minimize these sources of error. The NISPS image quality assessments highlighted issues with the Landsat archive and metadata including inadequate georegistration, unreliability of the pre-2009 L5 cloud cover assessments algorithm, missing growing-season imagery and paucity of clear views. Assessment maps of Landsat 5–7 image quantities and qualities are presented that offer novel perspectives on the growing-season archive considered for this study. Over 150,000+ Landsat images were considered for the NAFD project. Optimally, one high quality cloud-free image in each year or a total of 12,152 images would be used. However, to accommodate data gaps and cloud/shadow contamination 23,338 images were needed. In 220 specific path-row image years no acceptable images were found resulting in data gaps in the annual national map products. 相似文献
16.
Quantification of forest degradation in monitoring and reporting as well as in historic baselines is among the most challenging tasks in national REDD+ strategies. However, a recently introduced option is to base monitoring systems on subnational conditions such as prevalent degradation activities. In Tanzania, charcoal production is considered a major cause of forest degradation, but is challenging to quantify due to sub-canopy biomass loss, remote production sites and illegal trade. We studied two charcoal production sites in dry Miombo woodland representing open woodland conditions near human settlements and remote forest with nearly closed canopies. Supervised classification and adaptive thresholding were applied on a pansharpened QuickBird (QB) image to detect kiln burn marks (KBMs). Supervised classification showed reasonable detection accuracy in the remote forest site only, while adaptive thresholding was found acceptable at both locations. We used supervised classification and manual digitizing for KBM delineation and found acceptable delineation accuracy at both sites with RMSEs of 25–32% compared to ground measurements. Regression of charcoal production on KBM area delineated from QB resulted in R2s of 0.86–0.88 with cross-validation RMSE ranging from 2.22 to 2.29 Mg charcoal per kiln. This study demonstrates, how locally calibrated remote sensing techniques may be used to identify and delineate charcoal production sites for estimation of charcoal production and associated extraction of woody biomass. 相似文献
17.
目前LiDAR技术已经成为DTM的主要生产方法。地面误差对LiDAR生成DTM的精度影响比较明显,特别是由于亚热带森林植被覆盖区LiDAR激光点云少,生成的DTM更复杂,需要分析地面误差对LiDAR生成林下DTM的精度影响。本文以华南农业大学增城教学科研基地为研究对象,从森林郁闭度和坡度两个方面探讨了地面误差对机载LiDAR数据生成林下DTM精度的影响。研究结果发现高程误差会随郁闭度的增大而增大;而随坡度变化趋势不明显,但是坡度为15°时成为误差的分水岭,其前后误差差异比较明显。总体而言,郁闭度的影响更为明显。 相似文献
18.
AbstractThe aim of this study is to investigate the potential of Sentinel-2 imagery for the identification and determination of forest patches of particular interest, with respect to ecosystem integrity and biodiversity and to produce a relevant biodiversity map, based on Simpson’s diversity index in Taxiarchis university research forest, Chalkidiki, North Greece. The research is based on OBIA being developed on to bi-temporal summer and winter Sentinel-2 imagery. Fuzzy rules, which are based on topographic factors, such as terrain elevation and slope for the distribution of each tree species, derived from expert knowledge and field observations, were used to improve the accuracy of tree species classification. Finally, Simpson’s diversity index for forest tree species, was calculated and mapped, constituting a relative indicator for biodiversity for forest ecosystem organisms (fungi, insects, birds, reptiles, mammals) and carrying implications for the identification of patches prone to disturbance or that should be prioritized for conservation. 相似文献
19.
激光雷达(Lidar)与光学遥感的有效结合对中国南方区域森林冠顶高度反演意义重大,而国产卫星将为中国森林生态研究提供新的数据源。本文联合利用大脚印激光雷达GLA和国产MERSI数据,在实现GLAS波形数据处理和不同地形条件下森林冠顶高度反演算法基础上,建立了区域尺度不同森林类型林分冠顶高度GLAS+MERSI联合反演关系模型,进行了江西地区森林冠顶高度反演。总体上,GLAS激光雷达森林冠顶高度估算精度较高;且在与MERSI 250 m数据的联合反演模型中,针叶林模型精度较好( R2=0.7325);阔叶林次之( R2=0.6095);混交林较差( R2=0.4068)。分析发现,考虑了光学遥感生物物理参数的GLAS+MERSI联合关系模型在区域森林冠顶高度估算中有较高精度,且在空间分布上与土地覆盖数据分布特征非常一致。 相似文献
20.
Recent studies in Amazonian tropical evergreen forests using the Multi-angle Imaging SpectroRadiometer (MISR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) have highlighted the importance of considering the view-illumination geometry in satellite data analysis. However, contrary to the observed for evergreen forests, bidirectional effects have not been evaluated in Brazilian subtropical deciduous forests. In this study, we used MISR data to characterize the reflectance and vegetation index anisotropies in subtropical deciduous forest from south Brazil under large seasonal solar zenith angle (SZA) variation and decreasing leaf area index (LAI) from the summer to winter. MODIS data were used to observe seasonal changes in the normalized difference vegetation index (NDVI) and enhanced vegetation index (EVI). Topographic effects on their determination were inspected by dividing data from the summer to winter and projecting results over a digital elevation model (DEM). By using the PROSAIL, we investigated the relative contribution of LAI and SZA to vegetation indices (VI) of deciduous forest. We also simulated and compared the MISR NDVI and EVI response of subtropical deciduous and tropical evergreen forests as a function of the large seasonal SZA amplitude of 33°. Results showed that the MODIS-MISR NDVI and EVI presented higher values in the summer and lower ones in the winter with decreasing LAI and increasing SZA or greater amounts of canopy shadows viewed by the sensors. In the winter, NDVI reduced local topographic effects due to the red-near infrared (NIR) band normalization. However, the contrary was observed for the three-band EVI that enhanced local variations in shaded and sunlit surfaces due to its strong dependence on the NIR band response. The reflectance anisotropy of the MISR bands increased from the summer to winter and was stronger in the backscattering direction at large view zenith angles (VZA). EVI was much more anisotropic than NDVI and the anisotropy increased from the summer to winter. It also increased from the forward scatter to the backscattering direction with the predominance of sunlit canopy components viewed by MISR, especially at large VZA. Modeling PROSAIL results confirmed the stronger anisotropy of EVI than NDVI for the subtropical deciduous and tropical evergreen forests. PROSAIL showed that LAI and SZA are coupled factors to decrease seasonally the VIs of deciduous forest with the first one having greater importance than the latter. However, PROSAIL seasonal variations in VIs were much smaller than those observed with MODIS data probably because the effects of shadows in heterogeneous canopy structures or/and cast by emergent trees and from local topography were not modeled. 相似文献
|