共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
针对BP神经网络预测下沉系数时易陷入局部极小以及下沉系数影响因素间存在一定相关性的问题,该文提出了一种基于主成分分析(PCA)和模拟退火—粒子群优化算法(SAPSO)优化BP神经网络的下沉系数预测模型。该模型首先采用PCA对下沉系数影响因素进行降维,消除其所包含的冗余信息;然后利用SAPSO优化BP神经网络的权值与阈值;最后使用训练样本训练模型,利用训练后的模型预测5组测试样本的下沉系数,并对比分析SAPSO-BP、PSO-BP和BP神经网络模型的预测结果。实验结果表明:基于PCA-SAPSO-BP神经网络的下沉系数预测模型的预测值与实际值最为吻合,其平均绝对误差、平均绝对百分比误差及均方根误差相比SAPSO-BP、PSO-BP和BP神经网络模型显著降低,可以有效提高下沉系数预测的准确性。 相似文献
3.
4.
5.
BP神经网络具有非常强的非线性映射能力,广泛应用于分类识别、逼近、回归、压缩等领域。本文基于BP神经网络的理论基础,利用某矿区地表沉降观测点1~10期的实测沉降数据资料,结合MATLAB建立针对矿区地表沉降的预测模型,并预测其11~15期的沉降情况。通过将预测值与实测值进行对比,分析预测模型精度,结果表明BP神经网络用于矿区地表的沉降研究是可行的。 相似文献
6.
针对现有Tm模型建模方法多为基于最小二乘线性回归方法以致于模型精度有待提高的问题,该文以中国西北地区2015—2017年的24个探空站的探空数据作为实验数据,在中国西北地区使用粒子群优化BP神经网络(PSO-BP)回归方法建立大气加权平均温度(Tm)模型:将地表温度、水气压、纬度、高程和时间变化等影响因素作为模型输入因子,将数值积分法所计算得到的Tm作为学习目标,利用神经网络模型进行迭代训练得到中国西北地区的Tm。以2018年探空站Tm数据为参考值,对PSO-BP模型精度进行验证,并与Bevis模型、GPT3模型和中国西部地区Tm模型进行比较。结果表明,PSO-BP模型的年均RMSE和年均bias分别为2.71 K和0.35 K,相比Bevis模型、GPT3模型和中国西部地区Tm模型年均RMSE分别降低了1.36 K(33.4%)、1.81 K(39.5%)和1.78 K(39.1%),年均bias分别下降了0.70 K(87.7%)... 相似文献
7.
为解决"三下"压煤问题,本文以邯矿集团亨健煤矿2515工作面为研究对象,对现场进行实测,计算地表实测下沉系数;采用文克儿地基假设方法,对比分析了不同开采方法采空区上覆岩层破断规律.结果表明:采用全部垮落法开采,推进距离等于直接顶的极限跨距(l=25.7 m)时极限挠度约为1.057 m,随着工作面推进,直接顶出现破碎;... 相似文献
8.
9.
在使用传统BP神经网络算法建模进行预测过程中,由于初始权值和阈值是随机给定的,易使网络陷入局部最优,从而导致预测精度较低。利用具有较强优化能力的粒子群算法( particle swarm optimization ,PSO)优化BP神经网络在训练过程中的初始权值和阈值,建立新的预测模型,以青岛地铁3号线保河区间隧道监测数据为例进行验证分析,研究结果表明,与传统BP神经网络预测算法相比,使用PSO算法优化的BP神经网络预测算法可以得到更优的预测结果。 相似文献
10.
刘占利 《测绘与空间地理信息》2021,44(11):151-154
跨海大桥在运行期间因受自身因素以及飓风、海浪等多种外界因素的影响,桥梁变形表现为非线性变形.针对这种现象,本文以跨海大桥观测数据为例,使用小波理论进行去噪处理,对去噪后的数据分别建立BP神经网络预测模型以及POS-BP神经网络预测模型,并对比分析预测结果.结果表明:POS-BP神经网络预测模型预测精度更高. 相似文献
11.
滑坡敏感性评价是地质灾害预测预报的关键环节。针对BP神经网络易陷入局部最小值、收敛速度慢等问题,该文以三峡库区秭归县境内为研究区,采用粒子群优化(PSO)算法对BP神经网络的初始权值和阈值进行优化,构建PSO-BP神经网络滑坡敏感性预测模型,实现研究区滑坡敏感性评价。采用受试者工作特征曲线分析模型预测精度,得到PSO-BP神经网络预测精度为0.931,预测结果与实际滑坡总体空间分布具有良好的一致性,且预测能力优于BP神经网络。实验结果表明,PSO-BP神经网络耦合模型在实现滑坡敏感性评价上具有理想的预测精度和良好的适用性。 相似文献
12.
13.
本文首先针对标准粒子群优化算法容易陷入局部最优的缺点,采用动态自适应调节策略,使得粒子的惯性权重随群体聚集程度而适时变化,从而调整粒子群搜索的速度和方向以跳出局部最优;然后将粒子群算法的全局搜寻能力和RBF网络的局部优化能力相结合,利用改进的粒子群优化算法优化RBF神经网络的关键参数;并将其应用于地理信息的预测,得到满意的结果。 相似文献
14.
15.
16.
17.
一种基于地物波谱特征的最佳波段组合选取方法 总被引:2,自引:0,他引:2
对多光谱数据选取最佳的波段组合,是图像解译和专题信息提取的重要前提。文中提出一种基于地物波谱特征的最佳波段组合选取方法,即综合考虑方差、相关系数、OIF指数和地物间的可分离性4个因素,利用ERDAS和EXCEL等工具进行各指标的解算,并通过实验,选择红菱矿区1995年的TM多光谱影像为数据源,选取了基于水体波谱特征的最佳波段组合TM345。经定性分析和定量计算,验证了该方法的可行性。 相似文献