首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The aim of this study was to evaluate the biosorption capacity of selected strains of microscopic fungi. We optimized the biosorption process and used the Freundlich isotherm for three strains: H. haematococca BwIII43, K37 and T. harzianum BsIII33 to describe the biosorption equilibrium of anthraquinone dye, Alizarin Blue Black B (ABBB) and alkali lignin (AL). In optimal conditions (1 g of mycelium biomass, pH = 7.0, 28 °C) for ABBB and AL sorption, the live biomass of H. haematococca BwIII43 was characterized by a higher sorption capacity, amounting to 247.47 and 161.00 mg g?1, respectively. The highest sorption properties toward anthraquinone dye (K F = 19.96 mg g?1) were shown for the biomass of H. haematococca K37. In the presence of alkali lignin, the highest sorption capacity and bond strength exhibited the biomass of H. haematococca BwIII43 (K F = 28.20 mg g?1, n = 3.46). Effective decolorization of ABBB and AL by the selected strains of microscopic fungi indicated that the biosorption process additionally enhanced the removal of color compounds from the solution.  相似文献   

2.
Phytoremediation has been applied for treating an extensive range of environmental contaminants such as anti-diabetic drug metformin which is increasingly found as environmental contaminant. These contaminants are released to the environment via human and veterinary medicine and pharmaceutical industries. In this study, native plant capabilities for uptake of metformin from wastewater were investigated. Moreover, uptake rate of metformin was studied in two different concentrations of 20 and 50 mg l?1 metformin solution by Amaranthus retroflexus, Ricinus communis, Brassica napus, Celosia cristata, Helianthus annuus and Phragmites australis. The results showed that after exposing to 20 mg l?1 metformin solution 69.53 ± 2.25% of metformin was remediated by H. annuus plants. Also in 50 mg l?1 metformin solution, H. annuus plants showed the most remediation potential (65.7 ± 1%). Metformin uptake is raised by B. napus and C. cristata plants along with increasing metformin concentration. There was no evidence of the presence of metformin in the roots and shoots of R. communis and C. cristata. The results also indicated that plants such as H. annuus can be a potential candidate for uptake of metformin from wastewater.  相似文献   

3.
Pollution by heavy metals presents an environmental concern, and their toxicity threats soil, water, animals and human health. Phytoremediation can be used as a solution to remediate contaminated soils. The aim of this study was to identify native plants collected from tailings: material of Pb–Zn mine sites of Fedj Lahdoum and Jebel Ressas (two abandoned mines located, respectively, in the northwest of Tunisia and in the south of Tunis City). The tolerance of plant to heavy metals (lead, zinc and cadmium) is evaluated. Soil samples were collected and analyzed for Pb, Zn and Cd concentration. The total soil Pb, Zn and Cd are, respectively, reached 6132 mg kg?1, 11,052 mg kg?1 and it doesn’t exceed 479 mg kg?1 for Cd. The highest content of Zn in plants was detected in shoots of Rumex bucephalophorus (1048 mg kg?1), and the highest Pb concentration was detected in roots of Chrysopogon zizanioides (381 mg kg?1), while for Cd Silene colorata it accumulated the highest content in roots (51 mg kg?1). From all plants, only 12 have a translocation factor for Pb which is higher than one. Among all plants, only 17 have a translocation factor that is higher than one for Zn, while for Cd only 13 plants indicate TF > 1. As for the biological absorption coefficient, all samples indicate a rate which is lower than one. These plants can be primarily hyper accumulators and useful in remediation of lead- and zinc-contaminated soils after further biochemistry researches in mechanism of accumulation and translocation of heavy metals in plants.  相似文献   

4.
A pot experiment was conducted to monitor the dynamic response of photosynthesis of Amorpha fruticosa seedlings to different concentrations of petroleum-contaminated soils from April to September. The results showed that the photosynthetic rates, stomatal conductance and transpiration rate of seedlings significantly decreased in 5–20 g kg?1 petroleum-contaminated soil during the three given sampling period of July 31 (early), August 30 (mid-term) and September 29 (late). However, the intercellular CO2 concentration significantly increased in 10 g kg?1 contaminated soil, while declined in 20 g kg?1 contaminated soil during the early sampling period as well as in 20 g kg?1 contaminated soil during the late sampling period. The leaf relative water content of seedlings significantly increased in 20 g kg?1 contaminated soil during the early sampling period, while it dropped dramatically in 15–20 g kg?1 contaminated soil during the late sampling period. The contents of chlorophyll a, chlorophyll b and the total chlorophyll of seedlings showed a sharp decline during the three sampling periods in contaminated soil. Comprehensively, considering the negative effects of petroleum on the photosynthesis, growth performance and remediation effect on petroleum of A. fruticosa seedlings, this plant was tolerant of petroleum-contaminated soil and was potentially useful for the phytoremediation of petroleum-contaminated sites in northern Shaanxi, China.  相似文献   

5.
Bisphenol-A is one of the highest volumes of chemicals produced worldwide and released into the atmosphere each year. Recent extensive literature has raised concerns about its possible endocrine-disrupting effect in animals and humans. A bacterium having high tolerance of bisphenol-A (1000 mg L?1) was isolated from agriculture soil of Coimbatore District, Tamil Nadu, India, and identified as Virgibacillus sp. KU4 by 16S ribosomal RNA sequence analysis. Bisphenol-A removal efficiency of this strain was measured as greater than 92% at seventh day of incubation in a basal mineral medium supplemented with 1000 mg L?1 at seventh day. Gas chromatography analysis showed that 1000 mg L?1 BPA in distilled water was degraded by the Virgibacillus sp. KU4 in an efficient way. A 70 ± 3% bisphenol-A degradation was observed in the suspended cell pellet-mediated degradation study, where distilled water supplemented with 1000 mg L?1 bisphenol-A was sole carbon and energy source for bacterial growth. Further, Virgibacillus sp. KU4 is expected to be a candidate as a biological cleaner of BPA in the environment.  相似文献   

6.
The potential of the autoclaved Tunisian landfill leachate treatment using microalgae (Chlorella sp.) cultivation was investigated in this study. Landfill leachate was collected from Borj Chakir landfill, Tunisia. A full factorial experimental design 22 was proposed to study the effects of the incubation time and leachate ratio factors on the organic matter removal expressed in chemical oxygen demand (COD) and ammoniacal nitrogen (NH4─N) and on the biological response of Chlorella sp. expressed by the cell density and chlorophyll content. All experiments were batch runs at ambient temperature (25 ± 2 °C). The Chlorella sp. biomass and chlorophyll a concentrations of 1.2 and 5.32 mg L?1, respectively, were obtained with 10% leachate spike ratio. The obtained results showed that up to 90% of the ammoniacal nitrogen in landfill leachate was removed in 10% leachate ratio spiked medium with a residual concentration of 40 mg L?1. The maximum COD removal rate reached 60% within 13 days of incubation time indicating that microalgae consortium was quite effective for treating landfill leachate organic contaminants. Furthermore, with the 10% leachate ratio spiked medium, the maximum lipid productivity was 4.74 mg L?1 d?1. The present study provides valuable information for potential adaptation of microalgae culture and its contribution for the treatment of Tunisian landfill leachate.  相似文献   

7.
Synchrotron-based in situ angle-dispersive X-ray diffraction experiments were conducted on a natural uvite-dominated tourmaline sample by using an external-heating diamond anvil cell at simultaneously high pressures and temperatures up to 18 GPa and 723 K, respectively. The angle-dispersive X-ray diffraction data reveal no indication of a structural phase transition over the P–T range of the current experiment in this study. The pressure–volume–temperature data were fitted by the high-temperature Birch–Murnaghan equation of state. Isothermal bulk modulus of K 0 = 96.6 (9) GPa, pressure derivative of the bulk modulus of \(K_{0}^{\prime } = 12.5 \;(4)\), thermal expansion coefficient of α 0 = 4.39 (27) × 10?5 K?1 and temperature derivative of the bulk modulus (?K/?T) P  = ?0.009 (6) GPa K?1 were obtained. The axial thermoelastic properties were also obtained with K a0 = 139 (2) GPa, \(K_{a0}^{\prime }\) = 11.5 (7) and α a0 = 1.00 (11) × 10?5 K?1 for the a-axis, and K c0 = 59 (1) GPa, \(K_{c0}^{\prime }\) = 11.4 (5) and α c0 = 2.41 (24) × 10?5 K?1 for the c-axis. Both of axial compression and thermal expansion exhibit large anisotropic behavior. Thermoelastic parameters of tourmaline in this study were also compared with that of the other two ring silicates of beryl and cordierite.  相似文献   

8.
The thermal evolution of 10-Å phase Mg3Si4O10(OH)2·H2O, a phyllosilicate which may have an important role in the storage/release of water in subducting slabs, was studied by X-ray single-crystal diffraction in the temperature range 116–293 K. The lattice parameters were measured at several intervals both on cooling and heating. The structural model was refined with intensity data collected at 116 K and compared to the model refined at room temperature. As expected for a layer silicate on cooling in this temperature range, the a and b lattice parameters undergo a small linear decrease, α a  = 1.7(4) 10?6 K?1 and α b  = 1.9(4) 10?6 K?1, where α is the linear thermal expansion coefficient. The greater variation is along the c axis and can be modeled with the second order polynomial c T  = c 293(1 + 6.7(4)10?5 K?1ΔT + 9.5(2.5)10?8 K?2T)2) where ΔT = T ? 293 K; the monoclinic angle β slightly increased. The cell volume thermal expansion can be modeled with the polynomial V T  V 293 (1 + 8.0 10?5 K?1 ΔT + 1.4 10?7 K?2T)2) where ΔT = T ? 293 is in K and V in Å3. These variations were similar to those expected for a pressure increase, indicating that T and P effects are approximately inverse. The least-squares refinement with intensity data measured at 116 K shows that the volume of the SiO4 tetrahedra does not change significantly, whereas the volume of the Mg octahedra slightly decreases. To adjust for the increased misfit between the tetrahedral and octahedral sheets, the tetrahedral rotation angle α changes from 0.58° to 1.38°, increasing the ditrigonalization of the silicate sheet. This deformation has implications on the H-bonds between the water molecule and the basal oxygen atoms. Furthermore, the highly anisotropic thermal ellipsoid of the H2O oxygen indicates positional disorder, similar to the disorder observed at room temperature. The low-temperature results support the hypothesis that the disorder is static. It can be modeled with a splitting of the interlayer oxygen site with a statistical distribution of the H2O molecules into two positions, 0.6 Å apart. The resulting shortest Obas–OW distances are 2.97 Å, with a significant shortening with respect to the value at room temperature. The low-temperature behavior of the H-bond system is consistent with that hypothesized at high pressure on the basis of the Raman spectra evolution with P.  相似文献   

9.
10.
The role of rhizospheric microbes of giant reed (Arundo donax L.) in Cr uptake from hydroponic culture was investigated. The control group was exposed to Cr in range of 25–100 mg L?1 containing a control itself (with no metal addition). The experimental group received same Cr treatments, but in addition was exposed to antibiotic treatment in order to inhibit rhizospheric bacteria. The range of Cr accumulated in the roots was 3–7.65 mg L?1; in stem it ranged 2.15–42.4 mg kg?1; while in leaves, the range of Cr content was 13.7–15 mg kg?1. Overall, Cr uptake in A. donax (without rhizobacterial inhibition) was root < leaf < stem. However, the amount of Cr uptake in plants with rhizobacterial inhibition was significantly less (~4.6-folds in 100 mg L?1 Cr treatment) than those without such inhibition clearly highlighting that rhizobacterial inhibition decreased the Cr uptake. The experimental results clearly demonstrated that the inhibition of the rhizobacterial populations had great influence on the Cr uptake. However, Cr uptake could not be completely inhibited as some metal uptake was observed after the rhizobacterial inhibition although it was significantly less than the Cr uptake of plants without such inhibition.  相似文献   

11.
Novel bionanocomposites, S. cerevisiae–AgNPs, were synthesized by in situ formation of AgNPs on S. cerevisiae surface using fulvic acids as reductants under simulated sunlight. S. cerevisiae–AgNPs were characterized using UV–Vis spectroscopy, scanning electron microscope, transmission electron microscope and Fourier transform infrared spectroscopy. These analyses showed that AgNPs were distributed on the surface of S. cerevisiae. The application of S. cerevisiae–AgNPs in bacteria killing and heavy metal removal was studied. S. cerevisiae–AgNPs effectively inhibited the growth of E. coli with increasing concentrations of S. cerevisiae–AgNPs. E. coli was killed completely at high concentration S. cerevisiae–AgNPs (e.g., 100 or 200 µg mL?1). S. cerevisiae–AgNPs as excellent heavy metal absorbents also have been studied. Using Cd2+ as model heavy metal, batch experiments confirmed that the adsorption behavior fitted the Langmuir adsorption isotherms and the Cd2+ adsorption capacity of S. cerevisiae–AgNPs was 15.01 mg g?1. According to adsorption data, the kinetics of Cd2+ uptake by S. cerevisiae–AgNPs followed pseudo second-order kinetic model. Moreover, S. cerevisiae–AgNPs possessed ability of different heavy metals’ removal (e.g., Cr5+, As5+, Pb2+, Cu2+, Mn2+, Zn2+, Hg2+, Ni2+). The simulated contaminated water containing E. coli, Cd2+ and Pb2+ was treated using S. cerevisiae–AgNPs. The results indicated that the bionanocomposites can be used to develop antibacterial agents and bioremediation agents for water treatment.  相似文献   

12.
Acacia nilotica was used for the adsorption of Reactive Black 5 (RB5) dye from an aqueous solution. Both the raw and activated (with H3PO4) carbon forms of Acacia nilotica (RAN and ANAC, respectively) were used for comparison. Various parameters (including dye concentration, contact time, temperature, and pH) were optimized to obtain the maximum adsorption capacity. RAN and ANAC were characterized using Fourier transform infrared spectroscopy, scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The maximum experimental adsorption capacities for RAN and ANAC were 34.79 and 41.01 mg g?1, respectively, which agreed with the maximum adsorption capacities predicted by the Langmuir, Freundlich, and Dubinin–Radushkevich equilibrium isotherm models. The adsorption data of ANAC showed a good fit to the isotherm models based on the coefficient of determination (R 2): Langmuir type II (R 2 = 0.99) > Freundlich (R 2 = 0.9853) > Dubinin–Radushkevich (R 2 = 0.9659). This result suggested monolayer adsorption of RB5 dye. The adsorption of RB5 dye followed pseudo-second-order kinetics. The RAN adsorbent reflected an exothermic reaction (enthalpy change, ΔH = ?0.006 kJ mol?1) and increased randomness (standard entropy change, ΔS = 0.038 kJ mol?1) at the solid–solution interface. In contrast, ANAC reflected both exothermic [?0.011 kJ mol?1 (303–313 K)] and endothermic [0.003 kJ mol?1 (313–323 K)] reactions. However, the ΔS value of ANAC was lower when the RB5 adsorption increased from 313 to 323 K. The negative values for the Gibbs free energy change at all temperatures indicated that the adsorption of RB5 dye onto RAN and ANAC was spontaneous in the forward direction.  相似文献   

13.
Effects of initial concentrations of Moringa oleifera seed coagulant for removing Chemical Oxygen Demand and Total Dissolved Solids from municipal solid waste leachate have been evaluated at an optimum pH of 7 and temperature of 318 K. The kinetic data obtained from the experiments were fitted to the pseudo first-order, pseudo second-order, Elovich and intraparticle diffusion models. Based on a regression coefficient (R 2), the equilibrium (kinetic) data were best fitted with the Elovich model (R 2 = 0.993 for Chemical Oxygen Demand and R 2 = 0.996 for Total Dissolved Solids) than that of other models. The results of the kinetic models study indicated that the adsorption capacity of M. oleifera seed as a coagulant for removing Chemical Oxygen Demand and Total Dissolved Solids in a leachate increased up to 100 mg L?1, beyond which the adsorption capacity got reduced. Finally, the present study concluded that M. oleifera seed coagulant could be employed effectively for the removal of Chemical Oxygen Demand and Total Dissolved Solids in a municipal solid waste leachate.  相似文献   

14.
A new synchrotron X-ray diffraction study of chromium oxide Cr2O3 (eskolaite) with the corundum-type structure has been carried out in a Kawai-type multi-anvil apparatus to pressure of 15 GPa and temperatures of 1873 K. Fitting the Birch–Murnaghan equation of state (EoS) with the present data up to 15 GPa yielded: bulk modulus (K 0,T0), 206 ± 4 GPa; its pressure derivative K0,T , 4.4 ± 0.8; (?K 0,T /?T) = ?0.037 ± 0.006 GPa K?1; a = 2.98 ± 0.14 × 10?5 K?1 and b = 0.47 ± 0.28 × 10?8 K?2, where α 0,T  = a + bT is the volumetric thermal expansion coefficient. The thermal expansion of Cr2O3 was additionally measured at the high-temperature powder diffraction experiment at ambient pressure and α 0,T0 was determined to be 2.95 × 10?5 K?1. The results indicate that coefficient of the thermal expansion calculated from the EoS appeared to be high-precision because it is consistent with the data obtained at 1 atm. However, our results contradict α 0 value suggested by Rigby et al. (Brit Ceram Trans J 45:137–148, 1946) widely used in many physical and geological databases. Fitting the Mie–Grüneisen–Debye EoS with the present ambient and high-pressure data yielded the following parameters: K 0,T0 = 205 ± 3 GPa, K0,T  = 4.0, Grüneisen parameter (γ 0) = 1.42 ± 0.80, q = 1.82 ± 0.56. The thermoelastic parameters indicate that Cr2O3 undergoes near isotropic compression at room and high temperatures up to 15 GPa. Cr2O3 is shown to be stable in this pressure range and adopts the corundum-type structure. Using obtained thermoelastic parameters, we calculated the reaction boundary of knorringite formation from enstatite and eskolaite. The Clapeyron slope (with \({\text{d}}P/{\text{d}}T = - 0.014\) GPa/K) was found to be consistent with experimental data.  相似文献   

15.
The elastic and structural behaviour of the synthetic zeolite CsAlSi5O12 (= 16.753(4), = 13.797(3) and = 5.0235(17) Å, space group Ama2, Z = 2) were investigated up to 8.5 GPa by in situ single-crystal X-ray diffraction with a diamond anvil cell under hydrostatic conditions. No phase-transition occurs within the P-range investigated. Fitting the volume data with a third-order Birch–Murnaghan equation-of-state gives: V 0 = 1,155(4) Å3, K T0 = 20(1) GPa and K′ = 6.5(7). The “axial moduli” were calculated with a third-order “linearized” BM-EoS, substituting the cube of the individual lattice parameter (a 3, b 3, c 3) for the volume. The refined axial-EoS parameters are: a 0 = 16.701(44) Å, K T0a = 14(2) GPa (βa = 0.024(3) GPa?1), K′ a = 6.2(8) for the a-axis; b 0 = 13.778(20) Å, K T0b = 21(3) GPa (βb = 0.016(2) GPa?1), K′ b = 10(2) for the b-axis; c 0 = 5.018(7) Å, K T0c = 33(3) GPa (βc = 0.010(1) GPa?1), K′ c = 3.2(8) for the c-axis (K T0a:K T0b:K T0c = 1:1.50:2.36). The HP-crystal structure evolution was studied on the basis of several structural refinements at different pressures: 0.0001 GPa (with crystal in DAC without any pressure medium), 1.58(3), 1.75(4), 1.94(6), 3.25(4), 4.69(5), 7.36(6), 8.45(5) and 0.0001 GPa (after decompression). The main deformation mechanisms at high-pressure are basically driven by tetrahedral tilting, the tetrahedra behaving as rigid-units. A change in the compressional mechanisms was observed at ≤ 2 GPa. The P-induced structural rearrangement up to 8.5 GPa is completely reversible. The high thermo-elastic stability of CsAlSi5O12, the immobility of Cs at HT/HP-conditions, the preservation of crystallinity at least up to 8.5 GPa and 1,000°C in elastic regime and the extremely low leaching rate of Cs from CsAlSi5O12 allow to consider this open-framework silicate as functional material potentially usable for fixation and deposition of Cs radioisotopes.  相似文献   

16.
There is currently limited research available on the secondary metabolites of moulds in workplaces. The aim of this study was to determine the mould contamination in museums (N = 4), composting plants (N = 4) and tanneries (N = 4) and the secondary metabolite profiles of Alternaria, Aspergillus and Penicillium isolates from these workplaces. Alternaria, Aspergillus and Penicillium species were identified using the ITS1/2 sequence of the rDNA region. Mould metabolites were quantitatively analysed on standard laboratory medium and mineral medium containing materials specific to each workplace using liquid chromatography-mass spectrometry. We also examined the cytotoxicity of the moulds using MTT (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide) assays. Air microbiological contamination analyses showed a number of microorganisms, ranging from 2.4 × 103 CFU m?3 (composting plants) to 6.8 × 104 CFU m?3 (tanneries). We identified high percentages of Alternaria, Aspergillus and Penicillium moulds (air 57–59%, surfaces 10–65%) in all workplaces. The following moulds were the most cytotoxic (>90%): Alternaria alternata, A. limoniasperae, Aspergillus flavus, Penicillium biourgeianum, P. commune and P. spinulosum. The same mould species isolated from different working environments exhibited varying toxigenic and cytotoxic properties. Modifying the culture medium to simulate environmental conditions most often resulted in the inhibition of secondary metabolite production. Moulds isolated from the working environments produced the following mycotoxins (ng g?1): chanoclavines (0.28–204), cyclopiazonic acid (27.1–1045), fumigaclavines (0.33–10,640,000), meleagrin (0.57–13,393), roquefortins (0.01–16,660), rugulovasines (112–220), viridicatin (0.12–957), viridicatol (4.23–2753) and quinocitrinines (0.07–1104), which may have a negative impact on human health.  相似文献   

17.
The increasing usage and disposal of plastic products could cause the wide distribution of phthalate esters (PAEs) in various environmental media. In this study, six PAE compounds, namely dimethyl phthalate, diethyl phthalate, di-n-butyl phthalate, benzyl butyl phthalate, di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate, were analyzed in various samples collected from the major plastic industrial area of southern Taiwan, including soil, fertilizer and plastic products, for the purposes of identifying of the possible sources of PAEs and assessing the related health risk. The results show that PAEs in soil samples was dominated by DEHP, with the total concentrations in the range of 0.7?±?0.5, 0.2?±?0.1, and 0.3?±?0.2 mg kg?1 for soil samples from farmland, household back gardens and the roadside, respectively. Contents of PAEs in chemical fertilizer (ND—0 0.87 mg kg?1) were higher than that in organic fertilizer (ND—0.08 mg kg?1), and PAEs concentrations (ND—316 mg kg?1) in plastic mulching films were much less than those in the other types of plastic products (ND—1719 mg kg?1), implying that major sources of PAEs in agricultural soil could be the use of chemical fertilizer and plastic products other than plastic mulching films. Health risk assessment suggested that, via the exposure to PAEs in soil, the potential non-cancer and carcinogenic risks for adults and children are minimal in most cases, except that a “moderate” carcinogenic risk for children exposure to DEHP. The results of this study can serve as a reference for further pollution prevention and environmental protection plans in relation to the industrial operation and discharge as well as the farming practices.  相似文献   

18.
Binary mixture of Variovorax sp. BS1 and Achromobacter denitrificans degraded >99 % of 300 mg l?1 of ortho-dimethyl phthalate (DMP) within 24 h of incubation at 30 °C. Rate of degradation of DMP followed the order: A. denitrificans > binary mixture > Variovorax sp. BS1. Transient intermediate metabolites were not detected using HPLC analyses at any time points using Variovorax sp. BS1 and binary mixture. However, using pure culture of A. denitrificans, monomethyl phthalate was accumulated during the course of DMP biodegradation which disappeared with time of incubation. Binary mixture of Variovorax sp. BS1 and A. denitrificans exhibited better efficiency in terms of biodegradation of DMP as compared to either individual bacterial strain. In addition, fluorescence in situ hybridization technique was used to estimate the population dynamics of Variovorax sp. BS1 in binary mixture. A. denitrificans in mixed culture were estimated by subtracting total number of cells of Variovorax sp. BS1 from the total counts of microbial cells using an epifluorescence microscope after staining with 4′,6-diamidino-2-phenylindole. Results obtained at mid-exponential growth phase suggested the abundance of both bacterial strains as primary degraders.  相似文献   

19.
Axenic culture of microalgae Chlorella vulgaris ATCC® 13482 and Scenedesmus obliquus FACHB 417 was used for phycoremediation of primary municipal wastewater. The main aim of this study was to measure the effects of normal air and CO2-augmented air on the removal efficacy of nutrients (ammonia N and phosphate P) from municipal wastewater by the two microalgae. Batch experiments were carried out in cylindrical glass bottles of 1 L working volume at 25 °C and cool fluorescent light of 6500 lux maintaining 14/10 h of light/dark cycle with normal air supplied at 0.2 L min?1 per liter of the liquid for both algal strains for the experimental period. In the next set of experiments, the treatment process was enhanced by using 1, 2 and 5% CO2/air (vol./vol.) supply into microalgal cultures. The enrichment of inlet air with CO2 was found to be beneficial. The maximum removal of 76.3 and 76% COD, 94.2 and 92.6% ammonia, and 94.8 and 93.1% phosphate after a period of 10 days was reported for C. vulgaris and S. obliquus, respectively, with 5% CO2/air supply. Comparing the two microalgae, maximum removal rates of ammonia and phosphate by C. vulgaris were 4.12 and 1.75 mg L?1 day?1, respectively, at 5% CO2/air supply. From kinetic study data, it was found that the specific rates of phosphate utilization (q phsophate) by C. vulgaris and S. obliquus at 5% CO2/air supply were 1.98 and 2.11 day?1, respectively. Scale-up estimation of a reactor removing phosphate (the criteria pollutant) from 50 MLD wastewater influent was also done.  相似文献   

20.
Fine sediment inputs can alter estuarine ecosystem structure and function. However, natural variations in the processes that regulate sediment transport make it difficult to predict their fate. In this study, sediments were sampled at different times (2011–2012) from 45 points across intertidal sandflat transects in three New Zealand estuaries (Whitford, Whangamata, and Kawhia) encompassing a wide range in mud (≤63 μm) content (0–56 %) and macrofaunal community structure. Using a core-based erosion measurement device (EROMES), we calculated three distinct measures of sediment erosion potential: erosion threshold (? c ; N m?2), erosion rate (ER; g m?2 s?1), and change in erosion rate with increasing bed shear stress (m e ; g N?1 s?1). Collectively, these measures characterized surface (? c and ER) and sub-surface (m e ) erosion. Benthic macrofauna were grouped by functional traits (size and motility) and data pooled across estuaries to determine relationships between abiotic (mud content, mean grain size) and biotic (benthic macrofauna, microbial biomass) variables and erosion measures. Results indicated that small bioturbating macrofauna (predominantly freely motile species <5 mm in size) destabilized surface sediments, explaining 23 % of the variation in ? c (p ≤ 0.01) and 59 % of the variation in ER (p ≤ 0.01). Alternatively, mud content and mean grain size cumulatively explained 61 % of the variation in m e (p ≤ 0.01), where increasing mud and grain size stabilized sub-surface sediments. These results highlight that the importance of biotic and abiotic predictors vary with erosion stage and that functional group classifications are a useful way to determine the impact of benthic macrofauna on sediment erodibility across communities with different species composition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号