首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Trace element analysis of Phlegrean Fields volcanic products shows that they belong to a homogeneous series whose evolution is due mainly to fractional crystallization. However quantitative modelling of crystal fractionation using measured mineral/groundmass and computed bulk distribution coefficients singles out K, Sb, Cl and F as elements which are selectively enriched in the differentiation process with respect to proven hygromagmaphile (HYG) elements. This anomalous enrichment involving elements that are easily transported in a magmatic fluid phase is thought to be due to percolation of such a fluid through a stored magma body. This enrichment is strongest in products resulting from protracted differentiation (trachybasalts-latites). Isotopic data from the literature are reinterpreted in terms of this model and show good agreement. Trace elements concentrations in clinopyroxenes provide evidence that complex differentiation paths were followed to produce latitic magmas. Their origin by mixing of magmas from different parentages is not indicated by the data. However, mixing of batches of the same parentage but of different degree of evolution seems likely. Because HYG elements ratios are not modified in the evolution of the magmas, they record these ratios in the partial melting zone. For example, the Th/Ta ratio in the source areas of the magmas has apparently been quite heterogeneous.  相似文献   

2.
Screening methodologies aim at improving knowledge about subsurface contamination processes before expensive intrusive operations, i.e. drilling and core-sampling, well installation and development, sampling of groundwater and free-phase product, are implemented. Blind field tests carried out at a hydrocarbon storage and distribution center in NE Spain suggest that Rn monitoring can be effectively used to locate the boundaries of subsurface accumulations of NAPLs. Sixty seven measurements of Rn in soil air were performed with a SARAD RTM 2100 current-ionization alpha-particle spectrometer following a 10 m square grid. Reductions of 222Rn concentration above a pool of LNAPL due to the preferential partition of Rn into the organic phase were spatially analyzed and resolved to yield the surface contour of the NAPL source zone. This surface trace of the source zone agreed well with the extent and situation inferred from measurements of free-phase thickness taken at eight monitoring wells at the site. Moreover, the good repeatability (as measured by replicate measurements at the same sampling point) and spatial resolution of the technique suggest that the boundaries of the plume can be delineated at the sub-decametre level.  相似文献   

3.
Spatial distribution of concentrations of radon gas in the soil is important for defining high risk areas because geogenic radon is the major potential source of indoor radon concentrations regardless of the construction features of buildings. An area of southern Italy (Catanzaro-Lamezia plain) was surveyed to study the relationship between radon gas concentrations in the soil, geology and structural patterns. Moreover, the uncertainty associated with the mapping of geogenic radon in soil gas was assessed. Multi-Gaussian kriging was used to map the geogenic soil gas radon concentration, while conditional sequential Gaussian simulation was used to yield a series of stochastic images representing equally probable spatial distributions of soil radon across the study area. The stochastic images generated by the sequential Gaussian simulation were used to assess the uncertainty associated with the mapping of geogenic radon in the soil and they were combined to calculate the probability of exceeding a specified critical threshold that might cause concern for human health. The study showed that emanation of radon gas radon was also dependent on geological structure and lithology. The results have provided insight into the influence of basement geochemistry on the spatial distribution of radon levels at the soil/atmosphere interface and suggested that knowledge of the geology of the area may be helpful in understanding the distribution pattern of radon near the earth’s surface.  相似文献   

4.
The distribution of H2O, F, Cl and S in the Campanian Ignimbrite (CI) magma chamber was investigated through study of primary glass inclusions and matrix glasses from pumices of the Plinian fall deposit. The eruption, fed by trachytic to phono-trachytic magmas, mainly produced a trachytic non-welded to partially welded tuff, underlain by a minor cogenetic fallout deposit. The entire chemical variability of the eruptive products is well represented in the pumices of the Plinian fall deposit, which we divide into a basal Lower Fall Unit (LFU) and an overlying Upper Fall Unit (UFU). Primary glass inclusions were only found in clinopyroxenes associated with the LFU pumice and contain a mean of 1.60ǂ.32 wt% H2O (analysed by FTIR), 0.11ǂ.08 wt% F, 0.37ǂ.03 wt% Cl and 0.08ǂ.04 wt% SO3 (EMP analysis); CO2 concentrations were below the FTIR detection limit (10-20 ppm). The coexisting matrix glasses contain similar amounts of halogens and sulfur but less water (~0.60 wt%). Partially degassed matrix glasses from UFU pumices contain a mean of 0.30ǂ.02 H2O, 0.28ǂ.10 F, 0.04ǂ.02 SO3 and 0.80ǂ.04 wt% Cl. To reconstruct the total amount of volatiles dissolved in the most evolved trachytes we have used experimental solubility data and mass balance calculations concerning the amount of crystal fractionation required to produce the most evolved trachyte from the least evolved trachyte; these yield an estimated pre-eruptive magma volatile content (H2O + Cl + F) of ~5.5 wt% for the most evolved magmas. On the basis of new determinations of Cl solubility limits in hydrous trachytic melts coexisting with an aqueous fluid phase + hydrosaline melt (brine), we suggest that the upper part of the magma chamber which fed the CI eruption was fluid(s) saturated and at a minimum depth of ~2 km. Variations in eruptive style (Plinian fallout, pyroclastic flows) do not appear to be related to significant variations in pre-eruptive volatile contents.  相似文献   

5.
This paper documents arsenic concentrations in 157 groundwater samples from the island of Ischia and the Phlegrean Fields, two of the most active volcano-hosted hydrothermal systems from the Campanian Volcanic Province (Southern Italy), in an attempt to identify the environmental conditions and mineral-solution reactions governing arsenic aqueous cycling. On Ischia and in the Phlegrean Fields, groundwaters range in composition from NaCl brines, which we interpret as the surface discharge of deep reservoir fluids, to shallow-depth circulating fluids, the latter ranging from acid-sulphate steam-heated to hypothermal, cold, bicarbonate groundwaters. Arsenic concentrations range from 1.6 to 6900 μg·l− 1 and from 2.6 to 3800 μg·l− 1 in the Phlegrean Fields and on Ischia, respectively. They increase with increasing water temperature and chlorine contents, and in the sequence bicarbonate groundwaters < steam-heated groundwaters < NaCl brines. According to thermochemical modeling, we propose that high As concentrations in NaCl brines form after prolonged water-rock interactions at reservoir T, fO2 and fH2S conditions, and under the buffering action of an arsenopyrite + pyrite + pyrrhotite rock assemblage. On their ascent toward the surface, NaCl brines become diluted by As-depleted meteoric-derived bicarbonate groundwaters, giving rise to hybrid water types with intermediate to low As contents. Steam-heated groundwaters give their intermediate to high As concentrations to extensive rock leaching promoted by interaction with As-bearing hydrothermal steam.  相似文献   

6.
Iovine  G.  Guagliardi  I.  Bruno  C.  Greco  R.  Tallarico  A.  Falcone  G.  Luc&#;  F.  Buttafuoco  G. 《Natural Hazards》2017,86(1):193-195

One of the most critical issues in the management of post-earthquake emergency is the prompt identification of the most damaged urban areas. Rapid detection of damage distribution is crucial for Civil Protection during the management of the first emergency phase, in order to both address assistance teams and identify priorities in planning the usability inspections, thus permitting people to go back, as safe as possible, to their houses. Generally, the estimation of building usability is performed by means of a building-by-building survey based on a form to be filled out by expert technicians (Masi et al. 2016). Different countries adopt different forms whose result in terms of usability is dependent essentially on building damage and, in some cases, vulnerability conditions of buildings. When the affected area is large, usability inspections can require a lot of time and a huge number of expert technicians. Therefore, great efforts have been made during past earthquakes in order to define rapid procedures to identify areas not severely damaged and then potentially with a low percentage of unusable buildings. In this framework, many experiences have been carried out worldwide in order to identify, in the immediate aftermath of an earthquake, the damage distribution through remote sensing approaches, possibly combined to field survey data (e.g., Saito and Spence 2004; Yamazaki et al. 2004; Chesnel et al. 2007; Zhai et al. 2016; An et al. 2016; Huang et al. 2016).

  相似文献   

7.
Soil-gas radon concentrations and exhalation rates have generally been observed to be anomalously high along active faults in many parts of the world. The soil-gas method is based on the principle that faults and fractures in rocks are highly permeable pathways along which gases can migrate upward from deep crust and mantle to soil cover, retaining their source signatures. The present study summarizes the influence of fault zones on anomalous radon concentrations in soil by integrated geophysical and geo-structural analyses in three study areas of Central-Northern Calabria (Southern Italy). Soil-gas radon surveys have been carried out by means of an alpha scintillation counting system, at 12,509 locations between 2002 and 2004. A geostatistical approach has been used to estimate the spatial distribution of soil radon concentrations. Relations among soil-gas distribution and geo-structural features have been evaluated by ordinary multi-Gaussian kriging. Highest soil radon concentrations (ca. 90 kBq m?3) have been measured in the Rossanese sector. In the three study areas, no appreciable differences can be noticed among lithotypes, with the highest concentration values (ca. 89 kBq m?3) measured in alluvial deposit and in clay. Measurements of soil-gas radon reveal anomalies clearly connected to the tectonic structures. Increased signals are linearly distributed along regional WNW–ESE trending shear zones, with main pathways of concentration also recognizable along the E–W fault system in the Rossanese sector, the N–S fault system in the Crati Graben and the Catanzaro Trough, and the NE–SW fault system in the Catanzaro Trough. The distribution of epicentres of historical earthquakes occurred between 1184 and 2001 confirms the recent activity of the same fault systems. Soil-gas radon concentrations generally increase, as expected, with decreasing distance to the faults.  相似文献   

8.
The construction of the European Geogenic Radon Map in a proposed grid system 10 × 10 km requires the data test to derive the probability of exceeding the indoor action level 200 Bq m−3 from the geologically based data. The Czech Republic disposes both indoor and soil gas data sets to test the real probability to exceed 200 Bq m−3 from indoor radon measurements and to compare it with the probability calculated from soil gas radon concentrations. Comparison of real and calculated probability enables to delineate the areas, where under- or overestimation can be expected. The results of data processing show minor differences between processing the raw data in generalised polygons of geological units and in a grid net, when using the generalised geological characteristics of grid cells.  相似文献   

9.
The Campi Flegrei volcanic district (Naples region, Italy) is a 12-km-wide, restless caldera system that has erupted at least six voluminous ignimbrites during the late Pleistocene, including the >300 km3 Campanian ignimbrite (CI) which originated from the largest known volcanic event of the Mediterranean region. The Breccia Museo (BM), a petrologically heterogeneous and stratigraphically complex volcanic deposit extending over 200 km2 in close proximity to Campi Flegrei, has long remained contentious regarding its age and stratigraphic relation to the CI. Here, we present crystallization and eruption ages for BM plutonic ejecta clasts that were determined via uranium decay series and (U–Th)/He dating of zircon, respectively. Despite mineralogical and textural heterogeneity of these syenitic clasts, their U–Th zircon rim crystallization ages are indistinguishable with an average age of 49.7 ± 2.5 ka (2σ errors; mean square of weighted deviates MSWD = 1.2; n = 34). A subset of these crystals was used to obtain disequilibrium-corrected (U–Th)/He zircon ages which average 41.7 ± 1.8 ka (probability of fit P = 0.54; n = 15). This age closely overlaps with published CI 40Ar/39Ar eruption ages (40.6 ± 0.1 ka) after recalibration to recently revised flux monitor ages. Concordant eruption ages for BM and CI agree with previous chemostratigraphic and paleomagnetic correlations, suggesting their origin from the same eruption. However, they are at variance with recalibrated 40Ar/39Ar ages which have BM postdate CI by 3 ± 1 ka. BM syenites show similar geochemical and Sr–Nd isotopical features of pre-caldera rocks erupted between 58 and 46 ka, but are distinctive from subsequent caldera-forming magmas. Energy-constrained assimilation and fractional crystallization modeling of Nd–Sr isotopic data suggests that pre-caldera magmas formed a carapace of BM-type intrusions in a mid-crust magma chamber (≥8 km depth) shielding the younger CI magma from contamination by Hercynian basement wall rocks. An ~41–50 ka hiatus in crystallization ages implies rapid solidification of these pre-CI intrusions. This argues against protracted pre-eruptive storage of a large volume of CI magma at shallow crustal levels.  相似文献   

10.
A geochemical survey, in shallow aquifers and soils, has been carried out to evaluate the feasibility of natural gas (CH4) storage in a deep saline aquifer at Rivara (MO), Northern Italy. This paper discusses the areal distribution of CO2 and CH4 fluxes and CO2, CH4, Rn, He, H2 concentrations both in soils and shallow aquifers above the proposed storage reservoir. The distribution of pathfinder elements such as 222Rn, He and H2 has been studied in order to identify potential faults and/or fractures related to preferential migration pathways and the possible interactions between the reservoir and surface. A geochemical and isotopic characterization of the ground waters circulating in the first 200 m has allowed to investigation of (i) the origin of the circulating fluids, (ii) the gas–water–rock interaction processes, (iii) the amount of dissolved gases and/or their saturation status. In the first 200 m, the presence of CH4-rich reducing waters are probably related to organic matter (peat) bearing strata which generate shallow-derived CH4, as elsewhere in the Po Plain. On the basis of isotopic analysis, no hints of thermogenic CH4 gas leakage from a deeper reservoir have been shown. The δ13C(CO2) both in ground waters and free gases suggests a prevalent shallow origin of CO2 (i.e. organic and/or soil-derived). The acquisition of pre-injection data is strategic for the natural gas storage development project and as a baseline for future monitoring during the gas injection/withdrawing period. Such a geochemical approach is considered as a methodological reference model for future CO2/CH4 storage projects.  相似文献   

11.
The assessment of the risks associated with contamination by elevated levels of pollutants is a major issue in most parts of the world. The risk arises from the presence of a pollutant and from the uncertainty associated with estimating its concentration, extent and trajectory. The uncertainty in the assessment comes from the difficulty of measuring the pollutant concentration values accurately at any given location and the impossibility of measuring it at all locations within a study zone. Estimations tend to give smoothed versions of reality, with the smoothing effect being inversely proportional to the amount of data. If risk is a measure of the probability of pollutant concentrations exceeding specified thresholds, then the variability is the key feature in risk assessment and risk analysis. For this reason, geostatistical simulations provide an appropriate way of quantifying risk by simulating possible “realities” and determining how many of these realities exceed the contamination thresholds, and, finally, provides a means of visualizing risk and the geological causes of risk. This study concerns multivariate simulations of organic and inorganic pollutants measured in terrain samples to assess the uncertainty for the risk analysis of a contaminated site, an industrial site in northern Italy that has to be remediated. The main geostatistical tools are used to model the local uncertainty of pollutant concentrations, which prevail at any unsampled site, in particular by means of stochastic simulation. These models of uncertainty have been used in the decision-making processes to identify the areas targeted for remediation.  相似文献   

12.
缅甸拉泰-其培河段恩梅开江断裂带氡气测量   总被引:3,自引:0,他引:3       下载免费PDF全文
利用测量土壤中氡气异常来确定隐伏断裂的几何学特征。在缅甸拉泰—其培河段布置的四条测氡剖面中,氡气异常明显,拉泰-芒童段异常值约为本底值的3~8倍,芒童以南部分异常值比本底值高100倍,表明芒童以南地段活动性较强。氡气测量结果很好地控制了恩梅开江断裂在覆盖层之下的延伸展布方向。地表开挖及平硐揭露,很好地验证了测氡结果所推测的断层几何学特征。因此,测定土壤中氡气异常来寻找隐伏断裂的方法是可行的。  相似文献   

13.
Soil gas approaches have been proven useful for detecting buried faults in field survey. How about their applicability in urban area? A trial soil gas survey has been conducted in an attempt to evaluate this in Fuzhou City, Southeastern China. The detection was performed by measuring the adsorbed mercury, free mercury and radon gases in soil in the sites such as crop soil, refilled soil and those with shallow groundwater levels. The resulting distributions show that anomalous concentrations of soil gases over faults are generally two to four times as much as those in the surrounding areas. The locations of peak values of absorbed and free mercury could possibly be applied to assist to determine the trend of faults. The background values of free mercury seems to be more stable and the anomalous zones narrower than those of radon gas, therefore, the free mercury method seems to be good for detection at this area, especially in those sites with shallow groundwater levels. The false gas anomalies may occur in such a site as refilled with external soil, refilled pond and abandoned construction bases.  相似文献   

14.
The relationship of soil gas radon Rn222 and indoor radon was studied within the Quaternary fluvial sediments of the Czech Republic. The processing of data selection from the radon database of the Czech Geological Survey and indoor radon data (database of the National Radiation Protection institute) has proved the concentration dependence of radon in Quaternary fluvial sediments on deeper bedrock. The ArcGIS processing was accompanied by the field verification in five profiles, intersecting the granitoid Central Bohemian Plutonic Complex and its rim rock types. Both theoretical and experimental results show dependence of soil gas radon and indoor radon concentrations in Quaternary fluvial sediments on deeper geological basement, thus leading to the conclusion that the lateral transport of Quaternary sediments does not play such a dominant role in radon concentrations, as was thought previously. This fact will enable to determine precisely the radon index of Quaternary sediments (in the Czech radon mapping classified as an intermediate index) into three categories according to the lithology of their geological basement.  相似文献   

15.
The study area is located in the south-eastern part of the Crati valley (Northern Calabria, Italy), which is a graben bordered by N–S trending normal faults and crossed by NW–SE normal left-lateral faults. Numerous severe crustal earthquakes have affected the area in historical time. Present-day seismic activity is mainly related to the N–S faults located along the eastern border of the graben. In this area, much seismically induced deep-seated deformation has also been recognised.In the present paper, radon concentrations in soil gas have been measured and compared with (a) lithology, (b) Quaternary faults, (c) historical and instrumental seismicity, and (d) deep-seated deformation.The results highlight the following:
(a) There is no evidence of a strong correlation between lithology and the radon anomalies.
(b) A clear correlation between the N–S geometry of radon anomalies and the orientation of main fault systems has been recognised, except in the southernmost part of the area, where the radon concentrations are strongly affected by the superposition of the N–S and the NW–SE fault systems.
(c) Epicentral zones of instrumental and historical earthquakes correspond to the highest values of radon concentrations, probably indicating recent activated fault segments. In particular, high radon values occur in the zones struck by earthquakes in 1835, 1854, and 1870.
(d) Deep-seated gravitational deformation generally coincides with zones characterised by low radon concentrations.
In the studied area, the anisotropic distribution of radon concentrations is congruent with the presence of neotectonic features and deep-seated gravitational phenomena. The method used in this study could profitably contribute towards either seismic risk or deep-seated gravitational deformation analyses.  相似文献   

16.
根据壤中氡非稳态运移模型,通过设计实验,采用自行研制的土壤连续测氡仪,对某地下0.28 m和1.4 m深度处氡浓度进行测量,得到实验数据并拟合图形。研究结果表明,非稳态条件下壤中氡浓度受压强和温度影响随时间呈现周期性变化。氡浓度与压强变化趋势相反,与温度变化趋势一致;温度对氡运移比压强对氡运移的影响大。根据理论值和实测值的拟合情况,平均浓度误差在0.28 m处为-2.01%、在1.4 m处为-8.59%。实验成果表明,理论公式可以用于氡的运移与分布状态的研究。  相似文献   

17.
A development of De Paolo's mathematical procedure (1981) for magmatic AFC (Assimilation-Fractional Crystallization) processes is discussed with respect to both trace element and Sr isotopic ratio behaviours during the genesis and evolution of Adamello batholith (northern Italy). Resolution of a two equation-system (one relative to 87Sr/86Sr ratio variation in a magma generated by an AFC process, the other to its trace element content variations) gives the F (mass of magma at time t/mass of initial magma) and D (bulk partition coefficient) values, by which one can deduce the r (rate of assimilation/rate of crystallization) value during each step of magmatic evolution. This quantitative approach suggests that: 1) there was a common precursor magma for all the Adamello granitoids, with a Mg-rich tholeiitic composition; 2) each intrusive unit appears to have been generated by different extents of AFC; 3) the trace element distribution in the magma seems essentially influenced by mineral fractionation, rather than by the composition of the assimilated crustal material.  相似文献   

18.
《Applied Geochemistry》2000,15(4):455-474
Between 1987 and 1995 more than 100 chemical and isotopic analyses were carried out on the thermal fluids discharged at surface from wells and springs of the Euganean and Berician thermal district. Results for δD and δ18O in waters, δ13C in CO2 and in C1–C4 n-alkanes, δD in CH4, 3He/4He and 40Ar/36Ar ratios in natural gases were coupled with chemical analyses in an attempt to determine the main characteristics and evolutionary trends of thermal fluids emerging in the region. The isotopic and chemical composition of thermal waters has led to the postulation of a meteoric origin of discharged thermal fluids and of a “maturation” trend as water moves from the peripheral manifestations of the Berici Hills towards those of the Battaglia, Montegrotto and Abano springs in the inner part of the geothermal field. Numerical simulation suggested that the observed evolutionary path is consistent with differentiation due to processes of water–rock interaction.The results of bulk analyses have shown that the gases are made up mainly of N2 (65–95 vol%), CO2 (0.5–20.5 vol%) and CH4 (up to 10 vol%), with relatively high Ar and He contents (up to 1.5 vol% and 0.16 vol%, respectively) and detectable amounts of C2–C6 saturated hydrocarbons. The chemical and isotopic composition of the gases suggests that both the meteoric and crustal contributions to the natural discharges are significant, while any significant magmatic contribution, possibly related to vestiges of the volcanic activity that occurred in the Abano area during the Tertiary age, can be ruled out.  相似文献   

19.

This paper reports on a quantitative estimation of the risk to residents at the toe of Mount Albino, a carbonatic relief covered by shallow deposits of pyroclastic soils, which threatens the municipality of Nocera Inferiore (southern Italy). The quantitative risk analysis (QRA) focuses on one type of mass transport phenomena typical for the context at hand, namely the hyperconcentrated flows. The methodological approach includes three main steps: hazard analysis, consequence analysis and risk estimation. Based on historical incident data, the hazard analysis makes use of a high-resolution digital terrain model and advanced models that incorporate relevant geological and geotechnical input data collected via in situ investigations and laboratory tests. The consequence analysis takes into account information on the exposed persons (age, gender) and their vulnerability. The estimated risk to life is calculated at the individual level (risk to the average and most exposed person). The reported procedure is one of the first QRA’s applications to instabilities which potentially affect natural slopes in Italy, and it was successfully used as technical basis for a public participatory process in Nocera Inferiore, designed and developed to support decisions about risk mitigation measures.

  相似文献   

20.
The coastal region of Southern Italy’s Caserta province, known as the Litorale Domitio (Domitia coast) has been subjected to increasing pressure from unsustainably fast economic and urban growth in the last century, that resulted in a induced serious land degradation. To obtain a comprehensive picture of the ecological status of the Domitia coastal zone (Campania, Southern Italy), a holistic methodology has been applied. Sedimentological, geochemical, and biological analyses of the surface sediments and water samples were performed along the submerged beach. The data were integrated using a geographical information system, together with information on past and present land use and human activities along the coast and in inland regions. Heavy metal concentrations in sediments plus As and Se (Cd, Co, Cr, Cu, Hg, Ni, Pb, V, Zn) and their enrichment factors, which are important for identifying polluted areas in countries like Italy (where environmental legislation has not yet established intervention limits), indicate excesses Cd, Cr, Pb, and V of probable anthropogenic origin. A microbiological contamination of marine waters has been detected by the Regional Environmental Protection Agency of Campania. The Bacteriological Quality Index map shows that bathing areas must be classified as “contaminated” and “highly contaminated”. High levels of chemical and biological contamination are particularly common in both bathing seawater and sediments along the coastal zone south of the Volturno River, where the existing wastewater treatment plant is not properly working, to date. Factory farming, which is widespread in the area, is likely to be an additional important source of contamination. In accordance with these conclusions, analyses of the benthic diatom community revealed dominance of eutrophic species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号