首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Walsh  R. W.  Bell  G. E.  Hood  A. W. 《Solar physics》1996,169(1):33-45
Many coronal heating mechanisms have been suggested to balance the losses from this tenuous medium by radiation, conduction, and plasma mass flows. A previous paper (Walsh, Bell, and Hood, 1995) considered a time-dependent heating supply where the plasma evolved isobarically along the loop length. The validity of this assumption is investigated by including the inertial terms in the fluid equations making it necessary to track the sound waves propagating in a coronal loop structure due to changes in the heating rate with time. It is found that the temperature changes along the loop are mainly governed by the variations in the heating so that the thermal evolution can be approximated to a high degree by the simple isobaric case. A typical isobaric evolution of the plasma properties is reproduced when the acoustic time scale is short enough. However, the cooling of a hot temperature equilibrium to a cool one creates supersonic flows which are not allowed for in this model.  相似文献   

2.
We discuss the spatial and temporal characteristics of X-ray flares occurring in the active region NOAA2372 from April 6 to 13, 1980. The flares are seen to extend in most cases across the whole active complex, involving several magnetic features. They originate in an intermediate bipole, between the two main sunspots of the active region, where high magnetic shear was detected. A rapid expansion is seen in some cases, in conjunction with the start of the impulsive hard X-ray bursts. We also detect, in the late phases of some of the events, a large soft X-ray structure overlying the whole active region, which also shows up as a noise storm region at metric wavelengths. These large loops cool by heat conduction but, in some cases, Hα condensations seem to appear, probably as a result of magnetic compression and a condensation mode of the thermal instability. The topological aspects of the field configuration are discussed, in the context of flare models invoking magnetic reconnection at the site of the primary energy release. In such a model, the intermediate bipole is the natural site of initial magnetic reconnection, particle acceleration and heating. In one particular case of a flare observed at the limb, we find possible evidence of particle acceleration in a neutral sheet at the boundary between two clearly defined magnetic structures.  相似文献   

3.
In this paper, we suggest that a solar flare may be triggered by a lack of thermal equilibrium rather than by a magnetic instability. The possibility of such a thermal nonequilibrium (or catastrophe) is demonstrated by solving approximately the energy equation for a loop under a balance between thermal conduction, optically thin radiation and a heating source. It is found that, if one starts with a cool equilibrium at a few times 104 K and gradually increases the heating or decreases the loop pressure (or decreases the loop length), then, ultimately, critical metastable conditions are reached beyond which no cool equilibrium exists. The plasma heats up explosively to a new quasi-equilibrium at typically 107 K. During such a thermal flaring, any magnetic disruption or particle acceleration are secondary in nature. For a simple-loop (or compact) flare, the cool core of an active-region loop heats up and the magnetic tube of plasma maintains its position. For a two-ribbon flare, the material of an active-region (or plage) filament heats up and expands along the filament; it slowly rises until, at a critical height, the magnetic configuration becomes magnetohydrodynamically unstable and erupts violently outwards. In this case thermal nonequilibrium acts as a trigger for the magnetic eruption and subsequent magnetic energy release as the field closes back down.  相似文献   

4.
Previous studies of a thermal (radiative) instability in a sheared magnetic field have shown that, under solar coronal conditions, cool condensations can form in a small neighborhood about the shear layer. Such results have served to model the formation of solar filaments (or prominences) observed to occur above photospheric magnetic polarity-inversion lines. A surprising conclusion of these studies is that the width of the condensation does not depend on the thermal conductivity (). By examining the mass-flow patterns of two-dimensional condensations in the absence of thermal conduction, we demonstrate that local plasma dynamics and the constraints imposed by boundary conditions are together sufficient to explain the size of the condensation width. In addition we present the results of a series of numerical calculations which illustrate the characteristic mode structure of sheared-field condensations.  相似文献   

5.
6.
We examine the flow from asymptotic giant branch (AGB) stars when along a small solid angle the optical depth resulting from dust is very large. We consider two types of flows. In the first, small cool spots are formed on the surface of slowly rotating AGB stars. Large quantities of dust are expected to be formed above the surface of these cool spots. We propose that if the dust formation occurs during the last AGB phase when the mass-loss rate is high, the dust shields the region above it from the stellar radiation. This leads to both further dust formation in the shaded region and, owing to lower temperature and pressure, the convergence of the stream toward the shaded region, and the formation of a flow having a higher density than its surroundings. This density contrast can be as high as ∼4. A concentration of magnetic cool spots toward the equator will lead to a density contrast of up to a few between the equatorial and polar directions. This process can explain the positive correlation between high mass-loss rate and a larger departure from sphericity in progenitors of elliptical planetary nebulae. In the second type of flow, the high density in the equatorial plane is formed by a binary interaction, where the secondary star is close to, but outside the AGB envelope. The shielding of the radiation by dust results in a very slow and dense flow in the equatorial plane. We suggest this flow as an alternative explanation for the equatorial dense matter found at several hundred astronomical units around several post-AGB binary systems.  相似文献   

7.
Solar plasma that exists at around 105 K, which has traditionally been referred to as the solar transition region, is probably in a dynamic and fibril state with a small filling factor. Its origin is as yet unknown, but we suggest that it may be produced primarily by one of five different physical mechanisms, namely: the heating of cool spicular material; the containment of plasma in low-lying loops in the network; the thermal linking of cool and hot plasma at the feet of coronal loops; the heating and evaporating of chromospheric plasma in response to a coronal heating event; and the cooling and draining of hot coronal plasma when coronal heating is switched off. We suggest that, in each case, a blinker could be produced by the granular compression of a network junction, causing subtelescopic fibril flux tubes to spend more of their time at transition-region temperatures and so to increase the filling factor temporarily.  相似文献   

8.
A coronal magnetic arcade can be thought of as consisting of an assembly of coronal loops. By solving equations of isobaric thermal equilibrium along each loop and assuming a base temperature of 2 × 104 K, the thermal structure of the arcade can be found. The possible thermal equilibria can be shown to depend on two parameters L * p * and h */p * representing the ratios of cooling (radiation) to condu and heating to cooling, respectively. Arcades can contain four types of loops: hot loops with summits hotter than 400000 K; cool loops at temperatures less than 80000 K along their lengths; hot-cool loops with cool summits and cool footpoints but hotter intermediate portions; and warm loops, cooler than 80000 K along most of their lengths but with summits as hot as 400000 K. Two possibilities for coronal heating are considered, namely a heating that is independent of magnetic field and a heating that is proportional to the square of the local magnetic field. When the arcade is sheared the thermal structure of the arcade may change, leading in some cases to non-equilibrium or in other cases to the formation of a cool core.  相似文献   

9.
Frictional heating by the ion-neutral drift is calculated and its effect on the isobaric thermal instability is studied. Ambipolar drift heating of a one-dimensional self-gravitating magnetized molecular slab is used under the assumptions of quasi-magnetohydrostatic and local ionization equilibrium. We see that ambipolar drift heating is inversely proportional to density and its value in some regions of the slab can be significantly larger than the average heating rates of cosmic rays and turbulent motions. The results show that isobaric thermal instability can occur in some regions of the slab, and thus it may produce slab fragmentation and formation of astronomical unit scale condensations.  相似文献   

10.
This paper investigates the physical state of the photosphere in the main phase of the two-ribbon solar flare on June 3, 1979. The derived models show that the photosphere was in a disturbed state for a long time during the main phase of the flare. In the models, the temperature in the upper photospheric layers is higher and that in the lower layers is lower than in the quiet-sun model atmosphere. During the flare, the heating extends to the lower photospheric layers, and the upper layers cool down. A comparison of the obtained models to those for the two-ribbon solar flare on October 7, 1979, shows that the height distributions of the temperature in the main phase of the flares are strongly different.  相似文献   

11.
Skylab EUV observations of an active region near the solar limb were analyzed. Both cool (T < 106 K) and hot (T > 106 K) loops were observed in this region. For the hot loops the observed intensity variations were small, typically a few percent over a period of 30 min. The cool loops exhibited stronger variations, sometimes appearing and disappearing in 5 to 10 min. Most of the cool material observed in the loops appeared to be caused by the downward flow of coronal rain and by the upward ejection of chromospheric material in surges. The frequent EUV brightenings observed near the loop footpoints appear to have been produced by both in situ transient energy releases (e.g. subflares) and the infall/impact of coronal rain. The physical conditions in the loops (temperatures, densities, radiative and conducting cooling rates, cooling times) were determined. The mean energy required to balance the radiative and conductive cooling of the hot loops is approximately 3 × 10–3 erg cm–3 s–1. One coronal heating mechanism that can account for the observed behavior of the EUV emission from McMath region 12634 is heating by the dissipation of fast mode MHD waves.  相似文献   

12.
Neupert  W.M.  Newmark  J.  Delaboudinière  J.-P.  Thompson  B.J.  Catura  R.C.  Moses  J.D.  Gurman  J.B.  Portier-Fozzani  F.  Maucherat  A.J.  Defise  J.M.  Jamar  C.  Rochus  P.  Dere  K.P.  Howard  R.A.  Michels  D.J.  Freeland  S.  Lemen  J.R.  Stern  R.A. 《Solar physics》1998,183(2):305-321
Solar EUV images recorded by the EUV Imaging Telescope (EIT) on SOHO have been used to evaluate temperature and density as a function of position in two largescale features in the corona observed in the temperature range of 1.0–2.0 MK. Such observations permit estimates of longitudinal temperature gradients (if present) in the corona and, consequently, estimates of thermal conduction and radiative losses as a function of position in the features. We examine two relatively cool features as recorded in EIT's Feix/x (171 Å) and Fexii (195 Å) bands in a decaying active region. The first is a long-lived loop-like feature with one leg, ending in the active region, much more prominent than one or more distant footpoints assumed to be rooted in regions of weakly enhanced field. The other is a near-radial feature, observed at the West limb, which may be either the base of a very high loop or the base of a helmet streamer. We evaluate energy requirements to support a steady-state energy balance in these features and find in both instances that downward thermal conductive losses (at heights above the transition region) are inadequate to support local radiative losses, which are the predominant loss mechanism. The requirement that a coronal energy deposition rate proportional to the square of the ambient electron density (or pressure) is present in these cool coronal features provides an additional constraint on coronal heating mechanisms.  相似文献   

13.
The recently discovered groups of submillimeter starless condensations at the junction of HII regions and molecular clouds, which are invisible in the optical and near IR ranges, are similar in many ways to visible radial systems of dark globules, specifically, in their densities of molecular hydrogen, sizes, proximity to bright stars of early classes (which may be responsible for their formation), etc. It is proposed that the groups of submm starless condensations are radial systems of dark globules that are optically invisible because they lie behind dark clouds. Thus, it is shown that these groups of condensations are not a new type of object.  相似文献   

14.
The standstill luminosity in Z Cam systems   总被引:1,自引:0,他引:1  
We consider accretion discs in close binary systems. We show that the heating of a disc at the impact point of the accretion stream contributes significantly to the local energy budget at its outer edge. As a result, the thermal balance relation between local accretion rate and surface density (the 'S-curve') changes; the critical mass transfer rate above which no dwarf nova outbursts occur can be up to 40 per cent smaller than without impact heating. Standstills in Z Cam systems thus occur at smaller mass transfer rates than otherwise expected, and are fainter than the peak luminosity during the dwarf nova phase as a result.  相似文献   

15.
Equations of thermal equilibrium along coronal loops with footpoint temperatures of 2 × 104 K are solved. Three fundamentally different categories of solution are found, namely hot loops with summit temperatures above about 4 × 105 K, cool loops which are cooler than 8 × 104 K along their whole length and hot-cool loops which have summit temperatures around 2 × 104 K but much hotter parts at intermediate points between the summit and the footpoints. Hot loops correspond to the hot corona of the Sun. The cool loops are of relevance for fibrils, for the cool cores observed by Foukal and also for active-region prominences where the magnetic field is directed mainly along the prominence. Quiescent prominences consist of many cool threads inclined to the prominence axis, and each thread may be modelled as a hot-cool loop. In addition, it is possible for warm loops at intermediate summit temperatures (8 × 104K to 4 × 105 K) to exist, but the observed differential emission measure suggests that most of the plasma in the solar atmosphere is in either the hot phase or the cool phase. Thermal catastrophe may occur when the length or pressure of a loop is so small that the hot solution ceases to exist and there are only cool loop solutions. Many loops can be superimposed to form a coronal arcade which contains loops of several different types.  相似文献   

16.
“Condensations” of light have been observed when Saturn's rings are seen almost edge on, and the Sun and the Earth are on opposite sides of the ring plane. These condensations are associated with ring C and Cassini's division. If the relative brightness between the two condensations and the optical thickness of ring C are known, we can calculate the optical thickness of Cassini's division, τCASS. Using Barnard's and Sekiguchi's measurements, we have obtained 0.01 ? τCASS ? 0.05. A brightness profile of the condensations which agrees well with visual observations is also presented.We are able to set an upper limit of about 0.01 for the optical thickness of any hypothetical outer ring. This rules out a ring observed by C. Cragg in 1954, but does not eliminate the D′ ring observed by Feibelman in 1967.It is known that the outer edge of ring B is almost at the position of the 1/2 resonance with Mimas. Franklin, Colombo, and Cook explained this fact in 1971, postulating a total mass of ring B of 10?6MSATURN. We have derived a formula for the mass of the rings, which is a linear function of the mean particle size. We find that 10?6MSATURN implies large particles (~70m). If the particles are small (~10cm), as currently believed, the total mass of ring B is not enough to shift the outer edge. We conclude that the above explanation and current size estimates are inconsistent.  相似文献   

17.
Slow long-duration events (SLDEs) are flares characterized by the long duration of their rising phase. In many such cases the impulsive phase is weak without typical short-lasting pulses. Instead, smooth, long-lasting hard X-ray (HXR) emission is observed. We analyzed hard X-ray emission and morphology of six selected SLDEs. In our analysis we utilized data from the RHESSI and GOES satellites. The physical parameters of HXR sources were obtained from imaging spectroscopy and were used for the energy balance analysis. The characteristic decay time of the heating rate, after reaching its maximum value, is very long, which explains the long rising phase of these flares.  相似文献   

18.
Three spectra of Pleione (1981, 1987–88, 1994), obtained in the blue wavelength range, show strong long-term changes which indicate that the surrounding shell, first rather cool and close to the central star, then expands gradually in the equatorial plane of the star and towards the poles. From 1981 to 1987–88, the spectrum of Pleione is that of the central star, with a cool shell which globally mimics a late-type star. The year 1994 is marked by a pure and stronger Be spectrum, with no shell line.  相似文献   

19.
A coronal magnetic arcade can be thought of as consisting of an assembly of coronal loops. By solving equations of thermal equilibrium along each loop and assuming a base temperature of 2 × 104 K, the thermal structure of the arcade can be found. By assuming a form for the plasma pressure in the arcade, the possible thermal structures can be shown to depend on three parameters. Arcades can contain hot loops with summits hotter than 400 000 K, cool loops at temperatures less than 80 000 K along their lengths, hot-cool loops with cool summits and cool footpoints but hotter intermediate portions, and warm loops, cooler than 80 000 K along most of their lengths but with summits as hot as 400 000 K. For certain arcades, there exist regions where more than one kind of loop is possible. If the parameters describing the arcade are varied, it is possible for non-equilibrium to occur when a type of solution ceases to exist. For example, hot or warm loops can cease to exist so that only cool solutions are possible when the arcade size or pressure is decreased, while warm or cool loops may give way to hot-cool loops when the heating is reduced or the pressure is increased.  相似文献   

20.
It has been proposed that dissipation of hydromagnetic waves is an important heat source for the solar corona. We consider damping by collisionless processes and by electron thermal conduction and ion viscosity, and calculate the wave energy density such that heating balances the energy radiated by the plasma. We then analyze the thermal stability of the wave heated medium. The fastest growing instabilities are condensations perpendicular to the fieldlines. The instability may be important for producing coronal fine structure, and in loops and streamers.The National Center for Atmospheric Research is sponsored by the National Science Foundation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号