首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Chlorophenols are persistent toxins in the natural environment. In this investigation, 2,4-dichlorophenol (2,4-DCP) and pentachlorophenol (PCP) in aqueous media were degraded using an electrokinetic process (EK) and an electro-Fenton process (EF) using stainless steel and graphite as the anode and cathode, respectively. Chlorophenols were degraded via direct electrolysis at the surface of the electrode in the EK process. However, in the EF process, the degradation mechanism includes direct electrolysis and oxidation by hydroxyl radicals. The optimal conditions were a current density of 0.75 mA/cm2 and an air flow of 0.7 l/min at pH 4. Under the optimal conditions, the 2,4-DCP and PCP removal rates in the EF process were 80.18 and 64.03 %, respectively. The mineralization efficiencies of 2,4-DCP and PCP were 78.23 and 75.77 %, respectively. The results of dechlorination reveal that almost all of the chlorines were released, but some were retained in the intermediates. The dechlorination efficiency revealed that the EF and EK4 processes two chlorines from 2,4-DCP. They released four or five chlorines and four chlorines from PCP, respectively. The kinetic results provide evidence of pseudo-first degradation. The rate constant (k cp) declined as pHi was increased from 4 to 10. The k cp values reveal that the pH is an important factor that affects the degradation efficiency in the electrochemical process.  相似文献   

2.
This paper presents the removal of hazardous hexavalent chromium from liquid waste streams using divinylbenzene copolymer resin Amberlite IRA 96. Important sorption parameters such as contact time, pH, resin dosage and initial metal concentration were studied at 30?°C. The kinetic study was conducted using pseudo-first and pseudo-second-order kinetics at 30?°C. The sorption process was found to be pH dependent. Maximum removal was obtained at pH 2 under optimized conditions. The sorption process was rapid and 99?% of the removal was achieved in first 30?min. The equilibrium data were fitted to both Langmuir and Freundlich models. The better regression coefficient (R 2) in Freundlich model suggests the multilayer sorption process. The value of Gibbs free energy for sorption process was found to be ?12.394?kJmol?1. The negative value indicated the spontaneity of the sorption process. Scanning electron microscope and energy dispersive X-ray spectroscopy studies were conducted to find the role of surface morphology during sorption process. The Fourier transform infrared study was conducted to identify the functional groups responsible for interaction between the resin and chromium. Desorption and regeneration studies were also carried out.  相似文献   

3.
Removal of fluoride from aqueous solution by modified fly ash   总被引:1,自引:0,他引:1  
Removal of fluoride from aqueous solution by modified fly ash was studied in batch model. The influences of the contact time, the initial F^- concentration, the dosage of fly ash, and the temperature on removal of F have been studied, respectively. It was found that fly ash modified with dilute HCl has the maximum adsorption of fluoride from aqueous solutions, and that the retention of fluoride ions by material was 85% or higher with initial 10 mg F^-/L. First-order kinetics was observed for the adsorption process, which follows the Langrnuir and Freundlich isotherms. The thermodynamic parameters such as ΔG0, ΔH0, ΔS0 were calculated from Langmuir constants. The positive value of ΔH0 (1.273 J/mol) confirms the endothermic nature of adsorption.  相似文献   

4.
The removal of the chromium (VI) ion from aqueous solutions with the Lewatit FO36 ion-exchange resin is described at different conditions. The effects of adsorbent dose, initial metal concentration, contact time and pH on the removal of chromium (VI) were investigated. The batch ion exchange process was relatively fast and it reached equilibrium after about 90 min of contact. The ion exchange process, which is pH dependent showed maximum removal of chromium (VI) in the pH range 5.0–8.0 for an initial chromium (VI) concentration of 0.5 mg/dm3. The equilibrium related to Lewatit FO36 ion- exchange capacity and the amounts of the ion exchange were obtained using the plots of the Langmuir adsorption isotherm. It was observed that the maximum ion exchange capacity of 0.29 mmol of chromium (VLVg for Lewatit FO36 was achieved at optimum pH value of 6.0. The ion exchange of chromium (VI) on this cation-exchange resin followed first-order reversible kinetics.  相似文献   

5.
Batch and column experiments were conducted to examine the capability of naturally formed hematite and siderite to remove As from drinking water. Results show that both minerals were able to remove As from aqueous solutions, but with different efficiencies. In general, each material removed arsenate much more efficiently than As–DMA (dimethylarsinic acid), with the lowest adsorption efficiency for arsenite. The best removal efficiency for As species was obtained using a hematite, with a grain size range between 0.25 and 0.50 mm. The adsorption capacity for inorganic As(V) reached 202 μg/g. The pH generally had a great impact on the arsenate removal by the Fe minerals studied, while arsenite removal was slightly dependent on the initial pH of between 3 and 10. The presence of phosphate always had a negative effect on arsenate adsorption, due to competitive adsorption between them. A column packed with hematite in the upper half and siderite in the lower half with a grain size range of 0.25–0.5 mm proved to be an efficient reactive filter for the removal of all As species, causing a decrease in As concentration from 500 μg/L (including 200 μg/L As(V) as arsenate, 200 μg/L As(III) as arsenite and 100 μg/L As(V) as DMA) to less than 10 μg/L after 1055 pore volumes of water were filtered at a flow rate of 0.51 mL/min. After 2340 pore volumes passed through the column filter, the total inorganic As in the effluent was less than 5 μg/L. The total As load in the column filter was estimated to be 0.164 mg/g. Results of μ-synchrotron X-ray fluorescence analysis (μ-XRFA) suggest that coatings of fresh Fe(III) oxides, formed on the surface of the siderite grains after two weeks of operation, greatly increased the adsorption capacity of the filling material towards As.  相似文献   

6.
The batch removal of Cr(VI) from aqueous solution using lignocellulosic solid wastes such as sawdust and pine leaves under different experimental conditions was investigated in this study. The influence of pH, temperature, contact time, initial concentration of Cr(VI) and particle size on the chromium removal was investigated. Adsorption of Cr(VI) is highly pH-dependent and the results indicate that the optimum pH for the removal is 2. The capacity of chromium adsorption at equilibrium by these natural wastes increased with absorbent concentration. Temperature in the range of 20–60 °C showed a restricted effect on the adsorption capacity of pine leaves, but had a considerable effect on the adsorption capacity of sawdust. The capacity of chromium adsorption at the equilibrium increased with the decrease in particle sizes. The suitability of adsorbents was tested with Langmuir and Freundlich isotherms and their constants were evaluated. Results indicated that the Freundlich model gave a better fit to the experimental data in comparison with the Langmuir equation. The study showed that lignocellulosic solid wastes such as sawdust and pine leaves can be used as effective adsorbents for removal of Cr(VI) from wastewater.  相似文献   

7.
In this work, the hydrophobic sorption of hemimicelles was proposed as an innovative method for removing bisphenol A from aqueous solution with esterified carboxyl cotton as sorbent and cetyl trimethyl ammonium bromide as cationic surfactant. In order to optimize the sorption process, the effect of sorbent dose, initial pH, surfactant dose, sorbate concentration, contact time and temperature was investigated in batch system. The maximum value of bisphenol A removal appeared in the pH range 4–10. The bisphenol A removal ratio came up to the maximum value beyond 12 time of surfactant/bisphenol A. The isothermal data of bisphenol A sorption conformed well to the Langmuir model and the maximum sorption capacity (Qm) of esterified carboxyl cotton for bisphenol A was 87.72 mg/g. The bisphenol A removal equilibrium was reached within about 4 h and the removal process could be described by the pseudo-second-order kinetic model. The thermodynamic study indicated that the bisphenol A sorption process was spontaneous and exothermic.  相似文献   

8.
In this work, clinoptilolite was modified with conducting polyaniline polymer and then the nanocomposite was used as an adsorbent for methyl orange (MO) as a model dye. Cations located in clinoptilolite structure like Na+, K+, Mg2+, Ca2+ were exchanged with anilinium cations and then the polymerization of anilinium cations in and outside of the clinoptilolite channels resulted in the formation of polyaniline/clinoptilolite nanocomposite. The resulted nanocomposite was used for the removal of MO from aqueous solution. The effect of various factors like contact time, concentration of dye as well as the amount of adsorbent on the removal efficiency of dye was investigated. The adsorption isotherms were investigated. It was found that the equilibrium adsorption data were well described by the Langmuir isotherm model. The kinetic studies indicated that the adsorption process was controlled by pseudo-second-order equation. High adsorption capacity and low contact time as well as the low cost of modified clinoptilolite proved that it is an efficient adsorbent for the removal of MO from aqueous solutions.  相似文献   

9.
10.
Barium ion cross-linked alginate beads have shown great affinity to toxic hexavalent chromium ions in aqueous solution, in contrast to the traditionally used calcium alginate beads. Our adsorption experiments were carried out by the batch contact method. The optimal pH for removal was found to be pH 4. The equilibrium was established in 4 h, and the removal efficiency of chromium(VI) was found to be 95 %. The adsorption data were applied to Langmuir, Freundlich, Dubinin–Redushkevich (D–R), and Temkin isotherm equations. Both Langmuir and Freundlich isotherm constants indicated a favorable adsorption. The value of mean sorption energy calculated from D–R isoterm indicates that the adsorption is essentially physical. The high maximum chromium(VI) adsorption capacity was determined from the Langmuir isotherm as 36.5 mg/g dry alginate beads. The chromium(VI) adsorption data were analyzed using several kinetic models such as the pseudo-first-order, pseudo-second-order, intraparticle diffusion, and Elovich models, and the rate constants were quantified. Our study suggests that barium alginate beads can be used as cost-effective and efficient adsorbents for the removal of chromium(VI) from contaminated waters.  相似文献   

11.
In this study, the removal of free cyanide from aqueous solutions by activated carbon was investigated. Effects of metal impregnation (Cu and Ag), aeration, and concentrations of adsorbent and cyanide on the rate and extent of the removal of cyanide were studied. The results have shown that the capacity of activated carbon for the removal of cyanide can be significantly improved (up to 6.3-fold) via impregnation of activated carbon with metals such as copper and silver. Silver-impregnated activated carbon was found to be the most effective at the reduction of cyanide level in solution. This appeared to be coupled with its comparatively high metal content after impregnation process where silver (5.07%) could be more readily loaded on activated carbon than copper (0.43%). Kinetics and equilibrium data for cyanide removal by plain and metal-impregnated activated carbons were determined to be consistent with the pseudo second-order kinetics and the Langmuir adsorption isotherms, respectively. Aeration (0.27 l/min) was found to exert a profound effect on the process leading to a 5.5–49.1% enhancement in the performances of plain and metal-impregnated activated carbons. This enhancement could be attributed to the increase in the availability of active sites on activated carbon for adsorption and the catalytic oxidising activity of activated carbon in the presence of oxygen. Practical limiting capacity of plain, copper- and silver-impregnated activated carbons for the removal of cyanide were experimentally determined to be 19.7, 22.4 and 29.6 mg/g, respectively.  相似文献   

12.
Mine residue and leachate were sampled from an acid mine drainage site near Arroyo San Pedro, which is one of the oldest abandoned mine districts in San Luis Potosi, Mexico, and characterized by X-ray diffraction and inductively coupled plasma-optical emission spectroscopy, confirming the presence of Fe, As, and SO4 2?. To address this problem, chitosan network (net-CS) and chitosan network-N-vinylcaprolactam/N–N-dimethylacrylamide (net-CS)-g-NVCL/DMAAm hydrogels were synthesized and used as adsorbents of the different ions present in the aforementioned leachate by batch equilibrium procedure. Kinetics, isotherms, and ions dissolved in leachate were evaluated. The gels showed the highest adsorption capacity for As and Fe ions. The adsorption capacity of the net-CS hydrogels for As (V) and Fe(III) was 0.786 and 76.85 mg/g, respectively, attained after 50 h. The surface of the hydrogels was investigated by scanning electron microscopy and Fourier transform infrared spectroscopy, before and after the adsorption process, where the presence of a bond between the hydrogels and heavy metals ions, which is commonly observed in organic groups, was observed. In addition, Freundlich and Langmuir adsorption isotherms constants were determined for the As and Fe ions, and it was found that the Freundlich isotherm, with a first-order pseudo model, better fitted the adsorption process, indicating heterogeneous sorption, and the retention process occurred by chemisorption. The results from the Geochemist´s Workbench (GWB) software program revealed that arsenates, such as H3AsO4, H2AsO4 ?, as well as Fe++, FeSO4(aq) and FeOH+ were the common aqueous species found in the leachate at pH = 2.9.  相似文献   

13.
In this study, sepiolite-nano zero valent iron composite was synthesized and applied for its potential adsorption to remove phosphates from aqueous solution. This composite was characterized by different techniques. For optimization of independent parameters (pH = 3–9; initial phosphate concentration = 5–100 mg/L; adsorbent dosage = 0.2–1 g/L; and contact time = 5–100 min), response surface methodology based on central composite design was used. Adsorption isotherms and kinetic models were done under optimum conditions. The results indicated that maximum adsorption efficiency of 99.43 and 92% for synthetic solution and real surface water sample, respectively, were achieved at optimum conditions of pH 4.5, initial phosphate concentration of 25 mg/L, adsorbent dosage of 0.8 g/L, and 46.26 min contact time. The interaction between adsorbent and adsorbate is better described with the Freundlich isotherm (R 2 = 0.9537), and the kinetic of adsorption process followed pseudo-second-order model. Electrostatic interaction was the major mechanisms of the removal of phosphates from aqueous solution. The findings of this study showed that there is an effective adsorbent for removal of phosphates from aqueous solutions.  相似文献   

14.
This paper present the possible alternative removal options for the development of safe drinking water supply in the chromium-affected areas. The Cr (VI) state is of particular concern because of its toxicity. The mordenite has suitable mineralogical properties that enable them to be used for ion-exchange processes. This includes total cation exchange capacity. However, in the present work, the modified-natural zeolite was used as an adsorbent for the removal of Cr (VI) from aqueous solution. The ability of modified natural zeolite (mordenite) to remove inorganic anion was investigated. Laboratory experiments were conducted examining the effect of the sorption of cationic surfactants. On the basis of the results of this study, the HDTMA-HSO4 modified zeolite appears suitable as a sorbent for hexavalent chromium whereas EHDDMA-modified zeolite were not removed with the same efficiency. The sorption of chromate on HDTMA-zeolite results from a combination of entropic, coulombic, hydrophobic effects, and HDTMA counterion.  相似文献   

15.
16.
Poly(amidoamine)-graft-poly(methyl acrylate) magnetic nanocomposite was synthesized via radical polymerization of methyl acrylate onto modified magnetic nanoparticles followed by the functionalization of the methyl ester groups with poly(amidoamine) dendrimer. The resulting poly(amidoamine)-graft-poly(methyl acrylate) magnetic nanocomposite was then characterized by infrared spectroscopy, transmission electron microscopy, thermogravimetric analysis, scanning electron microscope and X-ray diffraction analysis. Its application as an adsorbent for the removal of Pb(II) ions was studied. The removal capability of the adsorbent was investigated in different pH values, contact time (kinetics) and initial concentration of lead. Moreover, adsorption isotherms were investigated to describe the mechanistic feature of this nanocomposite for adsorption. Accordingly, its high adsorption capacity (310 mg/g) and efficient adsorption toward lead ions in aqueous solution were shown. To further study of the chemistry behind the adsorption process, a comprehensive density functional theory-based study was performed, and a relatively strong interaction between metal ions and adsorbent was observed based on the calculated adsorption free energies.  相似文献   

17.
The use of suspensions of nanoparticles of titanium dioxide in photocatalytic degradation of dye solution has disadvantages of inconvenient separation of fine particles for reuse and limited penetration of light for effective degradation. These problems can be minimized by supporting titanium dioxide on various inert supports. The present study involves the preparation of immobilized titanium dioxide films by three different techniques and characterization of the prepared films. The immobilized films of nanocrystals of titanium dioxide were prepared using sol?Cgel technique, polyvinyl alcohol?Cformaldehyde binder and acrylic emulsion. The photocatalytic performance of the prepared films for degradation of amaranth dye has also been evaluated and compared. Combination of photodegradation and adsorption processes induces strong beneficial effects on removal of dyes. Addition of high adsorption capacity activated carbon to photoactive titanium dioxide in photodegradation of dyes improves the efficiency of dye mineralization. The activated carbon has also been immobilized along with titanium dioxide in the present work to examine the dual effect of photodegradation and adsorption in the removal of amaranth. The films formed with the help of polyvinyl alcohol?Cformaldehyde binder showed better dye degradation capabilities.  相似文献   

18.
The batch removal of copper(II) ions from aqueous solution under different experimental conditions using alkali-leached silica and activated charcoal was investigated in this study. The copper(II) uptake was dependent on varying time, pH, copper concentration and temperature. Copper sorption was found fast reaching equilibrium within 1 h with better performance for alkali-leached silica than charcoal. Copper sorption was low at low pH values and increased with rise in initial pH-value until 6.7. Sorption fits well the Langmuir and Freundlich equations with higher uptake by increasing temperature. According to Langmuir equation, the maximum uptake of Cu(II) ions by alkali-leached SiO2 and charcoal was found to be 242.5 and 94.4 mmol/g at temperature 60 °C and pH 6. Thermodynamic studies confirm that the process was spontaneous and endothermic nature. Kinetic data for Cu(II) sorption was found to follow pseudo-second-order model.  相似文献   

19.
The removal of poisonous Pb (II) from wastewater by different low-cost abundant adsorbents was investigated. Rice husks, maize cobs and sawdust, were used at different adsorbent/metal ion ratios. The influence of pH, contact time, metal concentration, adsorbent concentration on the selectivity and sensitivity of the removal process was investigated. The adsorption efficiencies were found to be pH dependent, increasing by increasing the solution pH in the range from 2.5 to 6.5. The equilibrium time was attained after 120 min and the maximum removal percentage was achieved at an adsorbent loading weight of 1.5 gm. The equilibrium adsorption capacity of adsorbents used for lead were measured and extrapolated using linear Freundlich, Langmuir and Temkin isotherms and the experimental data were found to fit the Temkin isotherm model.  相似文献   

20.
Multi-walled carbon nanotubes were used successfully for the removal of Copper(II), Lead(II), Cadmium(II), and Zinc(II) from aqueous solution. The results showed that the % adsorption increased by raising the solution temperature due to the endothermic nature of the adsorption process. The kinetics of Cadmium(II), Lead(II), Copper(II), and Zinc(II) adsorption on Multi-walled carbon nanotubes were analyzed using the fraction power function model, Lagergren pseudo-first-order, pseudo-second-order, and Elovich models, and the results showed that the adsorption of heavy metal ions was a pseudo-second-order process, and the adsorption capacity increased with increasing solution temperature. The binding of the metal ions by the carbon nanotubes was evaluated from the adsorption capacities and was found to follow the following order: Copper(II) > Lead(II) > Zinc(II) > Cadmium(II). The thermodynamics parameters were calculated, and the results showed that the values of the free energies were negative for all metals ions, which indicated the spontaneity of the adsorption process, and this spontaneity increased by raising the solution temperature. The change in entropy values were positives, indicating the increase in randomness due to the physical adsorption of heavy metal ions from the aqueous solution to the carbon nanotubes’ surface. Although the enthalpy values were positive for all metal ions, the free energies were negative, and the adsorption was spontaneous, which indicates that the heavy metal adsorption of Multi-walled carbon nanotubes was an entropy-driving process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号