首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
Early Archean (3.46 Ga) hydrothermally altered basaltic rocks exposed near Marble Bar, eastern Pilbara Craton, have been studied in order to reveal geological and geochemical natures of seafloor hydrothermal carbonatization and to estimate the CO2 flux sunk into the altered oceanic crust by the carbonatization. The basaltic rocks are divided into basalt and dolerite, and the basalt is further subdivided into type I, having original igneous rock textures, and type II, lacking these textures due to strong hydrothermal alteration. Primary clinopyroxene phenocrysts are preserved in some part of the dolerite samples, and the alteration mineral assemblage of dolerite (chlorite + epidote + albite + quartz ± actinolite) indicates that the alteration condition was typical greenschist facies. In other samples, all primary minerals were completely replaced by secondary minerals, and the alteration mineral assemblage of the type I and type II basalts (chlorite + K-mica + quartz + carbonate minerals ± albite) is characterized by the presence of K-mica and carbonate minerals and the absence of Ca-Al silicate minerals such as epidote and actinolite, suggesting the alteration condition of high CO2 fugacity. The difference of the alteration mineral assemblages between basalt and dolerite is probably attributed to the difference of water/rock ratio that, in turn, depends on their porosity.Carbonate minerals in the carbonatized basalt include calcite, ankerite, and siderite, but calcite is quite dominant. The δ13C values of the carbonate minerals are −0.3 ± 1.2‰ and mostly within the range of marine carbonate, indicating that the carbonate minerals were formed by seafloor hydrothermal alteration and that carbonate carbon in the altered basalt was derived from seawater. Whole-rock chemical composition of the basaltic rocks is essentially similar to that of modern mid-ocean ridge basalt (MORB) except for highly mobile elements such as K2O, Rb, Sr, and Ba. Compared to the least altered dolerite, all altered basalt samples are enriched in K2O, Rb, and Ba, and are depleted in Na2O, reflecting the presence of K-mica replacing primary plagioclase. In addition, noticeable CO2 enrichment is recognized in the basalt due to the ubiquitous presence of carbonate minerals, but there was essentially neither gain nor loss of CaO. This suggests that the CO2 in the hydrothermal fluid (seawater) was trapped by using Ca originally contained in the basalt. The CaO/CO2 ratios of the basalt are generally the same as that of pure calcite, indicating that Ca in the basalt was almost completely converted to calcite during the carbonatization, although Mg and Fe were mainly redistributed into noncarbonate minerals such as chlorite.The carbon flux into the Early Archean oceanic crust by the seafloor hydrothermal carbonatization is estimated to be 3.8 × 1013 mol/yr, based on the average carbon content of altered oceanic crust of 1.4 × 10-3 mol/g, the alteration depth of 500 m, and the spreading rate of 1.8 × 1011 cm2/yr. This flux is equivalent to or greater than the present-day total carbon flux. It is most likely that the seafloor hydrothermal carbonatization played an important role as a sink of atmospheric and oceanic CO2 in the Early Archean.  相似文献   

2.
Pervasive carbonatization of metabasalts is characteristic of many large gold-producing regions such as the Timmins district. Weight per cent CO2 however, does not readily identify specific potential gold-bearing targets. Molar CO2/CaO ratios, which reflect proportions of calcite and dolomite, and ppm arsenic are somewhat more effective than weight per cent CO2. The most effective indicator of gold mineralization is provided by a discriminant function involving both molar CO2/CaO and As.  相似文献   

3.
Software modeling flow multireservoir systems was used to study the dynamics of carbonatization of lithospheric mantle with flows of magmatic fluids directed from a chamber in the upper mantle to the permeable zone, which dissects continental lithosphere. It has been shown that the region of physicochemical conditions of carbonatization in depleted mantle rocks corresponds to the narrow range of the compositions of hypothetical fluids. If the total content of the fluid is ~ 4 wt.% and the contents of SiO2 and Ca are 0.5-0.1 moles, (1) the ratio of the molar fractions of Si to Ca is less than unity; (2) the ratios of molar fractions in the C-H-O system are 1:2:3 or 2:1:2; (3) -8 < log pO2 < -11; and (4) CO2 content in the fluid is higher than H2O content by a factor of 1.5-2, and chlorine significantly dominates over fluorine. If the content of the fluid phase is lower and this phase has a lower major-element content by an order of magnitude, the carbonatization becomes stronger as Ca content decreases.  相似文献   

4.
The Tongshan copper deposit at Guichi can be considered as a skarn-type copper deposit. Multi-stage carbonatization was well developed in the skarn zone and copper-bearing orebodies. Mineralogy, mineral chemistry and stable isotope data allow it to be divided into five stages: (1) carbonatization of single calcite crystals in the skarn stage; (2) calcite carbonatization in the oxide stage; (3) carbonatization in the early sulfide stage; (4) carbonatization in the late sulfide stage; and (5) carbonatization in the post-sulfide stage. Carbonatization in the early sulfide stage is, among other things, closely related to copper mineralization and is one of the alteration indicators of copper mineralization of this type. C. O, Rb and Sr isotopic studies indicate that the calcites of skarn and oxide stages were formed from hydrothermal solutions predominated by magmatic water, and those of sulfide stage were formed from hydrothermal solutions mainly involving heated meteoric water. The former was formed in the environment wherefO 2 (fO 2 < 10−33 and 10−33< fO2>10−36)(pH = 7–8) is high as compared with the latter (10−35< fO2< 10−38; pH = 5–7).  相似文献   

5.
The Larafella Au-prospect (Burkina Faso) lies within dacitic rocks of the Palaeoproterozoic Birimian greenstone belts. Gold mineralization is intimately associated with zones of cataclastic deformation. Whilst the lode-vein mineralization is closely associated with CO2-rich fluid inclusions, the barren quartz veins are characterized by H2O ± salt-bearing inclusions. Geochemical studies on the immediate wall-rock of the quartz veins have shown an increase of As in zones of gold enrichment, while alteration overprints such as carbonatization and chloritization cannot be correlated unequivocally with Au-mineralization. Consequently, fluid inclusion studies of quartz veins and As-anomalies constitute important exploration tools for mesothermal gold mineralization, since Au-rich zones can be distinguished from Au-depleted zones.  相似文献   

6.
The middle Ordovician Ascot Formation of southeastern Quebec consists of greenschist facies metamorphosed silicic to mafic pyroclastic rocks and lava flows and associated metasediments. Chemical analyses of lavas reveal a preponderance of metarhyolites and metabasalts, together with some porphyritic rocks with intermediate SiO2 contents. The metabasalts exhibit wide ranges in concentrations of TiO2 (0.25–2.0 wt.°), Y (9–46 ppm), and Zr (5–135 ppm). The extent of the ranges, and unusual interelement ratios, suggest that the concentrations of these normally immobile elements have been affected by secondary processes.There is a strong correlation between trace-element concentrations and the degree of carbonatization of the metabasalts. Low carbonate rocks are severely depleted in Ti, Y, and Zr whereas high carbonate rocks are depleted in Y and Zr and enriched in Ti. The differing movement of Ti can be explained in terms of variable chemical potential due to the various carbonatization reactions affecting titaniferous phases. Overall mobility of these generally immobile/rd elements is attributed to high CO2 levels in the fluid phase during metamorphism.Extrapolation of the two alteration trends to a common origin enables one to infer primary concentrations of the trace-elements. Primary inter-element ratios arrived at in this way are compatible with an island-arc origin for the Ascot Formation although TiO2 concentrations are a little high (1.5 wt/%).  相似文献   

7.
The Tongcun Mo(Cu) deposit in Kaihua city of Zhejiang Province,eastern China,occurs in and adjacent to the Songjiazhuang granodiorite porphyry and is a medium-sized and important porphyry type ore deposit.Two irregular Mo(Cu) orebodies consist of various types of hydrothermal veinlets.Intensive hydrothermal alteration contains skarnization,chloritization,carbonatization,silicification and sericitization.Based on mineral assemblages and crosscutting relationships,the oreforming processes are divided into five stages,i.e.,the early stage of garnet + epidote ± chlorite associated with skarnization and K-feldspar + quartz ± molybdenite veins associated with potassicsilicic alteration,the quartz-sulfides stage of quartz + molybdenite ± chalcopyrite ± pyrite veins,the carbonatization stage of calcite veinlets or stockworks,the sericite + chalcopyrite ± pyrite stage,and the late calcite + quartz stage.Only the quartz-bearing samples in the early stage and in the quartzsulfides stage are suitable for fluid inclusions(FIs) study.Four types of FIs were observed,including1) CO_2-CH_4 single phase FIs,2) CO_2-bearing two- or three-phase FIs,3) Aqueous two-phase FIs,and4) Aqueous single phase FIs.FIs of the early stages are predominantly CO_2- and CH_4-rich FIs of the CO_2-CH4-H_2O-NaCl system,whereas minerals in the quartz-sulfides stage contain CO_2-rich FIs of the CO_2-H_2O-NaCl system and liquid-rich FIs of the H_2O-NaCl system.For the CO_2-CH_4 single phase FIs of the early mineralization stage,the homogenization temperatures of the CO_2 phase range from 15.4 ℃ to 25.3 ℃(to liquid),and the fluid density varies from 0.7 g/cm~3 to 0.8 g/cm~3;for two- or three-phase FIs of the CO_2-CH_4-H_2O-NaCl system,the homogenization temperatures,salinities and densities range from 312℃ to 412℃,7.7 wt%NaCl eqv.to 10.9 wt%NaCl eqv.,and 0.9 g/cm~3 to 1.0 g/cm~3,respectively.For CO_2-H_2O-NaCI two- or threephase FIs of the quartz-sulfides stage,the homogenization temperatures and salinities range from255℃ to 418℃,4.8 wt%NaCl eqv.to 12.4 wt%NaCl eqv.,respectively;for H_2O-NaCl two-phase FIs,the homogenization temperatures range from 230 ℃ to 368 ℃,salinities from 11.7 wt%NaCl eqv.to16.9 wt%NaCl eqv.,and densities from 0.7 g/cm~3 to 1.0 g/cm~3.Microthermometric measurements and Laser Raman spectroscopy analyses indicate that CO_2 and CH_4 contents and reducibility(indicated by the presence of CH_4) of the fluid inclusions trapped in quartz-sulfides stage minerals are lower than those in the early stage.Twelve molybdenite separates yield a Re-Os isochron age of 163 ± 2.4 Ma,which is consistent with the emplacement age of the Tongcun,Songjiazhuang,Dayutang and Huangbaikeng granodiorite porphyries.The S18OSMow values of fluids calculated from quartz of the quartz-sulfides stage range from 5.6‰ to 8.6‰,and the JDSMOw values of fluid inclusions in quartz of this stage range from-71.8‰ to-88.9‰,indicating a primary magmatic fluid source.534SV-cdt values of sulfides range from+1.6‰ to +3.8‰,which indicate that the sulfur in the ores was sourced from magmatic origins.Phase separation is inferred to have occurred from the early stage to the quartz-sulfides stage and resulted in ore mineral precipitation.The characteristics of alteration and mineralization,fluid inclusion,sulfur and hydrogen-oxygen isotope data,and molybdenite Re-Os ages all suggest that the Tongcun Mo(Cu) deposit is likely to be a reduced porphyry Mo(Cu) deposit associated with the granodiorite porphyry in the Tongcun area.  相似文献   

8.
There are two main types of iron deposits in the Middle-Lower Yangtze Valley district.Both of them underwent post-magmatic hydrothermal processes during ore formation.Iron in the hydrothermal ore bodies was derived largely through mobilization from substantially consolidated diroitic intrusives.Wall-roch alteration zonation indicates that iron-mobilizing hydrothermal fluids evolved in a trend of decreasing alkalinity,which is suggested by regularly distributed wall-rock alterations formed by iron-mobilizing hydrothermal fluids and is in contradiction with the current chloride,chloride complex and bicarbonate models for iron mobilization.The close association of carbonatization with iron ores and the high concentrations of reduced gases such as CO,CH4 and H2 in fluid inclusions suggest that iron is most probably transported in the form of iron carbonyls during post-magmatic hydrothermal processes. In the light of the iron carbonyl mobilization model,explanations are made of the constraints on ores of some geologic factors such as melanocratic alteration,carbonatization,carbonate strata,structural fractures,cyptoexplosive pipes and embryo ores.  相似文献   

9.
Moreira Gomes is a recently discovered deposit (21.7 t Au) of the Cuiú-Cuiú goldfield, Tapajós Gold Province, Amazonian Craton. The mineralized zone is about 1200 m long, 30–50 m wide, and at least 400 m in depth. The zone is controlled by a subvertical, east–west-trending structure that is related to a left lateral strike-slip fault system. The host rocks are predominantly tonalites of the Creporizão Intrusive Suite (1997 ± 2 Ma) of uncertain tectonic setting (magmatic arc or post-collision). Hydrothermal alteration and mineralization are predominantly of the fissure-filling type and locally pervasive. Sericitization, chloritization, sulfidation, silicification, carbonatization and epidotization are the observed alteration types. Pyrite is the predominant sulfide mineral and bears inclusions of chalcopyrite, galena, sphalerite and minor hessite and bismuthinite. Gold occurs predominantly as inclusions in pyrite and subordinately in the free-milling state in quartz veins. Ag, Pb and Bi have been detected by semi-quantitative EDS analysis.Three types of fluid inclusions, hosted in quartz veins and veinlets, have been identified. (1) one- and two-phase CO2 inclusions; (2) two- and three-phase H2O–CO2-salt inclusions, and (3) two-phase H2O-salt inclusions. The CO2-bearing types are interpreted as the product of phase separation of an immiscible fluid. This fluid presents low to moderate density, low to moderate salinity (1.6–11.8 wt.% NaCl equivalent) and was trapped at 280° to 350 °C. The chemical system of the aqueous inclusions may contain CaCl2 and/or MgCl2, salinity varies from zero to 10.1 wt.% NaCl equivalent. Only locally salinities up to 25% have been recorded. This fluid was trapped between 120° and 220 °C and is interpreted as resulting from mixing of a hotter and more saline aqueous fluid (in part derived from phase separation of the H2O–CO2 fluid) with a cooler and dilute aqueous fluid.The δ34S values of pyrite (−0.3‰ to 3.9‰) are probably related to magmatic sulfur. The isotopic composition of inclusion fluids and of the fluid in equilibrium with hydrothermal minerals (quartz, chlorite, and calcite) show δ18O and δD values that range from +0.5 to +9.8‰, and from −49 to −8‰, respectively. Mineral pairs show equilibrium isotopic temperatures that are compatible with the fluid inclusion homogenization temperatures and with textural relationships of the hydrothermal minerals.Isotopic results combined with mineralogical and fluid inclusion data are interpreted to reflect a magmatic-hydrothermal system that evolved in at least three stages. (1) Exsolution of a CO2-bearing magmatic fluid between 400 °C and 320–350 °C and up to 2.1 kbar (6 km in depth) followed by phase separation and main precipitation of the hydrothermal assemblage composed of chlorite–sericite–pyrite–quartz-gold. (2) Cooling and continuous exsolution of CO2 produced a CO2-depleted and slightly more saline aqueous fluid that was trapped mainly at 250°–280 °C. The predominant hydrothermal assemblage of stage 1 continued to form, but epidote is the main phase at this stage. (3) Mixing of the stage 2 aqueous fluid with a cooler and dilute aqueous fluid of meteoric origin, which was responsible for the main carbonatization phase. The mineralizing fluid was neutral to slightly alkaline and relatively reduced. H2S (and/or HS-) might have been the main sulfur species in the fluid and Au(HS)2- was probably the gold transporting complex. Gold deposition occurred as a consequence of a combination of mechanisms, such as phase separation, mixing and fluid-rock interaction.The Moreira Gomes is a granite-hosted gold deposit that is interpreted to be a product of a magmatic-hydrothermal gold system. The age of ore formation (∼1.86 Ga) is consistent with the final stages of evolution of the widespread high-K, calc-alkaline Parauari Intrusive Suite, although the transitional to predominantly alkaline Maloquinha Intrusive Suite cannot be ruled out. Notwithstanding, the deposit does not show the classic features of (oxidized or reduced) intrusion-related gold deposits of Phanerozoic magmatic arcs.  相似文献   

10.
陈博  侯泉林  冯宏业  郭虎  许英霞 《岩石学报》2019,35(7):2086-2104
阿沙哇义金矿位于中国新疆南天山造山带,属于著名的中亚南天山锑-汞-金成矿带的东延部分。该矿床严格受断裂所控制,以浸染状黄铁矿化、毒砂化为特征。矿化可分为三个阶段:早期无矿或贫矿石英阶段,中期石英多金属硫化物阶段,晚期石英-碳酸盐阶段。其中,中期是主要成矿阶段。成矿流体气相成分以H_2O为主,摩尔含量为75%~93%,其次为CO_2,摩尔含量为6%~25%,其余为CH_4、C_2H_6、H_2S、N_2和Ar;液相成分阳离子以Na~+为主,含少量K~+、Ca~(2+)离子,阴离子以Cl~-为主,SO~(2-)次之;矿石的Au含量与其流体的CO_2含量呈反相关,与K~+含量呈正相关。硫化物成分分析结果表明:(1)围岩地层和矿石中的黄铁矿和毒砂是重要的载金矿物,黄铁矿Au含量为0~0. 09%,平均值0. 03%;毒砂Au含量为0~0. 28%,平均值0. 07%;(2)黄铁矿和毒砂Au含量与其自形程度没有明显的相关性;(3)环带状黄铁矿较均质结构黄铁矿具有更高的Au含量;(4)岩体中的黄铁矿几乎不含Au。在成矿构造环境、成矿流体特征及演化、金矿富集机制、成矿温压条件等方面,该矿床与世界上大多数造山型金矿显示出一致性,成矿类型应属于剥蚀程度较浅的造山型金矿。断层阀作用控制的断层愈合-破裂导致的流体不混溶作用是本区金富集、沉淀的最重要机制,但流体混合机制对金的富集沉淀也发挥了作用。黄铁矿、毒砂发育及较多的含炭物质三者共存是本区寻找富矿的关键标志。  相似文献   

11.
结合CO_2地质利用与封存技术机理,在国际权威潜力评估公式的基础上,系统地提出了适合中国地质背景的次盆地尺度CO_2封存潜力评估方法及关键参数取值。同时,以四川盆地为例,依次开展了枯竭油田地质封存与CO_2强化石油开采、枯竭气田与CO_2强化采气、不可采煤层地质封存与CO_2驱替煤层气,以及咸水层地质封存技术的CO_2地质封存潜力。结果表明,四川盆地利用深部咸水层与枯竭天然气田CO_2地质封存潜力最大,期望值分别达154.20×10~8t和53.73×10~8t。其中,枯竭天然气田因成藏条件好、勘探程度高、基础建设完善,为四川盆地及其周边利用枯竭气田CO_2地质封存技术实现低碳减排提供了早期示范机会。CO_2地质利用与封存潜力评估方法,对进一步开展全国次盆地尺度理论封存潜力评估与工程规划具有重要意义。  相似文献   

12.
Two kinds of mylonite series rocks, felsic and mafic, have been recognized in the NW-striking shear zone of the Jiapigou gold belt. During ductile deformation, a large amount of fluid interacted intensively with the mylonite series rocks: plagioclases were sericitized and theAn values declined rapidly, finally all of them were transformed to albites; dark minerals were gradually replaced by chlorites (mostly ripidolite). Meanwhile, large-scale and extensive carbonation also took place, and the carbonatization minerals varied from calcite to dolomite and ankerite with the development of deformation. The δ13C values of the carbonates are −3.0‰ – −5.6‰ suggesting a deep source of carbon. The ductile deformation is nearly an iso-volume one (f v≈1). With the enhancement of shear deformation, SiO2 in the two mylonite series rocks was depleted, while volatile components suchs as CO2 and H2O, and some ore-forming elements such as Au and S were obviously enriched. But it is noted that the enrichment of Au in both the mylonite series rocks did not reach the paygrade of gold. The released SiO2 from water-rock interactions occurred in the form of colloids and absorbed gold in the fluid. When brittle structures were formed locally in the ductile shear zone, the ore-forming fluids migrated to the structures along microfractures, and preciptated auriferous quartz because of reduction of pressure and temperature. Fluid inclusion study shows that the temperature and pressure of the ore-forming fluids are 245–292°C and 95.4–131.7 MPa respectively; the salinity is 12.88–16.33wt% NaCl; the fluid-phase is rich in Ca2+, K+, Na+, Mg2+, F and Cl, while the gaseous phases are rich in CO2 and CH4. The δD and δ18O, values of the ore-forming fluid are −84.48‰ – −91.73‰ and −0.247‰ – +2.715‰ respectively, suggesting that the fluid is composed predominantly of meteoric water. This project is financially supported by the National Natural Science Foundation of China (No. 9488010).  相似文献   

13.
为揭示尼日尔阿泽里克铀矿床成矿物质来源,文章研究了其蚀变特征、稀土元素特征、流体包裹体特征、方解石胶结物碳和氧同位素特征、沥青铀矿氧同位素特征等。阿泽里克铀矿床发育灰绿色还原蚀变、方沸石化、酸性火山玻璃脱玻化、碳酸盐化、黄铁矿化、重晶石化等。矿化砂岩稀土元素Eu强正异常。流体包裹体气体成分为H2+N2+CO2组合。方解石胶结物的δ13CV-PDB值为-7.45‰~-6.65‰,δ18OV-SMOW值为-0.74‰~1.26‰。沥青铀矿的δ18OV-SMOW值为-1.30‰~-0.8‰。灰绿色还原蚀变岩石呈灰绿色是因为绿泥石矿物充填粒间孔隙和包裹颗粒表面。矿化砂岩的Eu强正异常揭示有来自深部的强还原性流体参与成矿。H2为强还原物质,来自深部,可为铀成矿提供还原剂。矿化砂岩方解石胶结物碳同位素显示成矿流体有深部流体的作用,可能有地幔物质的加入;氧同位素显示成矿流体有表生流体的作用。沥青铀矿氧同位素值显示成矿流体受表生大气水作用影响。酸性火山物质方沸石化和酸性火山玻璃脱玻化为铀成矿提供铀。成矿流体为表生氧化性流体与深部的还原性流体的混合。总之,地层、阿伊尔花岗岩和火山物质可能为铀成矿提供了铀。  相似文献   

14.
15.
《Applied Geochemistry》1995,10(4):461-475
The storage of CO2(liquid) on the seafloor has been proposed as a method of mitigating the accumulation of greenhouse gases in the Earth's atmosphere. Storage is possible below 3000 m water depth because the density of CO2(liquid) exceeds that of seawater and, thus, injected CO2(liquid) will remain as a stable, density stratified layer on the seafloor. The geochemical consequences of the storage of CO2(liquid) on the seafloor have been investigated using calculations of chemical equilibrium among complex aqueous solutions, gases, and minerals. At 3000 m water depth and 4°C, the stable phases are CO2(hydrate) and a brine. The hydrate composition is CO2·6.3H2O. The equilibrium composition of the brine is a 1.3 molal sodium-calcium-carbonate solution with pH ranging from 3.5 to 5.0. This acidified brine has a density of 1.04 g cm−3 and will displace normal seawater and react with underlying sediments. Seafloor sediment has an intrinsic capacity to neutralize the acid brine by dissolution of calcite and clay minerals and by incorporation of CO2 into carbonates including magnesite and dawsonite. Large volumes of acidified brine, however, can deplete the sediments buffer capacity, resulting in growth of additional CO2(hydrates) in the sediment. Volcanic sediments have the greatest buffer capacity whereas calcareous and siliceous oozes have the least capacity. The conditions that favor carbonate mineral stability and CO2(hydrates) stability are, in general, mutually exclusive although the two phases may coexist under restricted conditions.The brine is likely to cause mortality in both plant and animal comunities: it is acidic, it does not resemble seawater in composition, and it will have reduced capacity to hold oxygen because of the high solute content. Lack of oxygen will, consequently, produce anoxic conditions, however, the reduction of CO2 to CH4 is slow and redox disequilibrium mixtures of CO2 and CH4 are likely. Seismic or volcanic activity may cause conversion of CO2(liquid) to gas with potentially catastrophic release in a Lake Nyos-like event. The long term stability of the CO2(hydrate) may be limited: once isolated from the CO2(liquid) pool, either through burial or through depletion of the CO2 pool, the hydrate will decopose, releasing CO2 back into the sediment-water system.  相似文献   

16.
The kinetics of the reactions of water, hydroxide ion and sulfide species with CO2, OCS and CS2 are investigated using the molecular orbital approach and available kinetic data. Although these reactions are symmetry allowed, the lowest unoccupied molecular orbital (LUMO) for CO2 is a poor electron accepting orbital as it has a positive potential energy. At low pH, hydration of CO2 requires that the waters interact with CO2 via hydrogen bonding for subsequent formation of H2CO3 in an effort to overcome the high energy of activation. These factors are significant for the slow kinetics of hydration and the persistence of CO2 in water. The reaction of hydroxide ion with CO2 has a much smaller energy of activation. For the isoelectronic species OCS and CS2, their LUMO orbitals are good electron acceptor orbitals, and the energy of activation is less than that for the corresponding CO2 reactions. The LUMO orbitals for OCS and CS2 have less carbon character whereas the LUMO for CO2 has more carbon character. The relative rates of these reactions (CO2 > OCS > CS2) reflect the increased carbon character of the π* LUMO orbital for CO2 over CS2 and the fact that the LUMO for OCS is σ*, which when filled can readily break the C—S bond leading to sulfide (even though the C character of the LUMO is less than those for CO2 and CS2). Also, the higher hydrogen bonding interactions with nearest water molecules is in the order CO2 > OCS > CS2 indicating that hydrolysis via water catalysis is retarded as the number of S atoms increases. Solid phase FeS has a highest occupied molecular orbital (HOMO) with a potential energy similar to that of CO2 and can activate (or bond with) the carbon atom in CO2 so that organic compounds can be produced under hydrothermal vent conditions.  相似文献   

17.
Abstract: Phosphorite deposits in Egypt, known as the Duwi Formation, are a part of the Middle East to North Africa phospho‐genic province of late Cretaceous to Paleogene age. Based on the petrographical observation, the phosphatic grains in the phosphorites are classified into phosphatic mudclasts and phosphatic bioclasts. Both of them are composed of francolite. The structural CO2 contents in the francolite range from 3.3 to 7.2 % with an average of 5.3 %. Results indicated that the substitution with CO32‐ of PO43‐ in the francolite decreases the unit cell volume and a‐cell dimension, and increases the c/a ratio. Effect is more obvious in the a‐cell dimension; therefore, it is more significant in distinction between the different apatite species. Lack of covariance between structural CO2 contents in the francolite and the carbonate minerals contents may render the supposition that the phosphorites formed as a result of replacement of preexisting calcareous sediments is doubtful. Similarity in CO2 content in both weathered and fresh samples indicates that the structural CO2 content in the phosphorites is not affected by weathering, and reflects the conditions and CO2 concentration of the depositional environment. Similarity in mineralogy and CO2 contents in the different phosphatic grains and higher CO2 content in the Egyptian phosphorites compared with the authigenic phosphates of Peru margin, which formed by the same mechanism as the Duwi phosphorites, suggest that the phosphatic grains in the Duwi Formation were francolitized during diagenesis by introducing CO2 from the surrounding pore water and diagenesis took place at an elevated temperature. Scattered values of structural CO2 contents suggest the reworking origin of the phosphatic grains in the late Cretaceous phosphorites in Egypt.  相似文献   

18.
An economic and environmentally friendly approach of overcoming the problem of fossil CO2 emissions would be to reuse it through fixation into biomass. Carbon dioxide (CO2), which is the basis for the formation of complex sugars by green plants and microalgae through photosynthesis, has been shown to significantly increase the growth rates of certain microalgal species. Microalgae possess a greater capacity to fix CO2 compared to C4 plants. Selection of appropriate microalgal strains is based on the CO2 fixation and tolerance capability together with lipid potential, both of which are a function of biomass productivity. Microalgae can be propagated in open raceway ponds or closed photobioreactors. Biological CO2 fixation also depends on the tolerance of selected strains to high temperatures and the amount of CO2 present in flue gas, together with SOx and NOx. Potential uses of microalgal biomass after sequestration could include biodiesel production, fodder for livestock, production of colorants and vitamins. This review summarizes commonly employed microalgal species as well as the physiological pathway involved in the biochemistry of CO2 fixation. It also presents an outlook on microalgal propagation systems for CO2 sequestration as well as a summary on the life cycle analysis of the process.  相似文献   

19.
This study investigates the potential risks associated with high levels and long term exposure of carbon dioxide (CO2) on the mobility and speciation of exchangeable metals in soils. CO2 incubation batch experiments at high pressure and temperature coupled with geochemical modelling were carried out to elucidate the behaviour and mobilisation of metals and the response of soil chemical parameters as a result of long term CO2 exposure. A t-Student analysis was performed to ascertain whether differences in the mean concentration of exchangeable metals in soils before and after CO2-incubations are attributable to increase of metal molibilisation because of the long term CO2 exposure. The t-Student revealed the CO2 long term incubation was statistically significant (p < 0.05) for the exchangeable concentration of Ni, Zn, and Pb. The CO2-soil incubation induces the acidification of the pore water of soils via CO2 hydrolysis and as a consequence, it increases the exchangeable concentration of Ni, Zn, and Pb in the soils. As, Al, Cr, Cu, and Fe show a different mobilisation pattern depending on the moisture content in soils. Al3+, Fe2+, Cr3+, and Cu2+ as free cations, As as HAsO2, Pb2+and PbHCO3, Zn2+ and ZnHCO3, are predicted to be the predominant aqueous complexes in the pore water of the incubated soils.  相似文献   

20.
Carbon dioxide (CO2) emission from the river-type reservoir is an hotspot of carbon cycle within inland waters. However, related studies on the different types of reservoirs are still inadequate. Therefore, we sampled the Three Gorges Reservoir (TGR), a typical river-type reservoir having both river and lake characteristics, using an online system (HydroCTM/CO2) and YSI-6600v2 meter to determine the partial pressure of carbon dioxide (pCO2) and physical chemical parameters in 2013. The results showed that the CO2 flux from the mainstream ranged from 26.1 to 92.2 mg CO2/m2 h with average CO2 fluxes of 50.0 mg/m2 h. The CO2 fluxes from the tributary ranged from ?10.91 to 53.95 mg CO2/m2 h with area-weighted average CO2 fluxes of 11.4 mg/m2 h. The main stream emits CO2 to the atmosphere the whole year; however, the surface water of the tributary can sometimes act as a sink of CO2 for the atmosphere. As the operation of the TGR, the tributary became more favorable to photosynthetic uptake of CO2 especially in summer. The total CO2 flux was estimated to be 0.34 and 0.03 Tg CO2/year from the mainstream and the tributaries, respectively. Our emission rates are lower than previous estimates, but they are in agreement with the average CO2 flux from temperate reservoirs estimated by Barros et al. (Nat Geosci 4(9):593–596, 2011).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号