首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
基于非饱和土固结理论的有限元强度折减法   总被引:1,自引:0,他引:1  
周桂云  李同春 《岩土力学》2008,29(4):1133-1137
库水位下降使库岸坡体内产生饱和-非饱和非稳定渗流,非稳定渗流作用是边坡失稳的重要原因之一。为了分析非稳定渗流对边坡稳定性的影响,首先推导了固、液两相孔隙介质的固结方程,考虑了土体渗流与变形的耦合作用。在此基础上结合有限元强度折减法求解边坡稳定安全系数,将渗流、变形及稳定分析采用一套统一的有限元方法。并通过算例分析了库水位骤降情况下,坡体的渗透系数、水位降落比对稳定安全系数的影响,计算结果表明,所提的理论和方法是有效可行的,为饱和-非饱和非稳定渗流作用下边坡稳定问题的分析提供了实用工具。  相似文献   

2.
王环玲  徐卫亚  童富国 《岩土力学》2008,29(9):2397-2403
岩质滑坡除与地质条件、降雨等因素有关外,泄洪雾雨也成为其不可忽视的催化剂。通过裂隙岩体渗透性与应力关系,裂隙岩体的弹塑性本构关系以及渗流场的控制方程,建立起饱和非饱和渗流场与应力场耦合的等效连续介质模型。编制了有泄洪雾雨影响的饱和-非饱和渗流与应力耦合三维有限元程序,通过迭代求解达到两场耦合目的。以实际工程为例,根据边坡的地表信息、开挖信息、岩层分界信息以及排水洞和帷幕信息等,建立起边坡地质模型。通过耦合计算,详细分析了耦合后边坡岩体的变形、应力以及塑性区等。计算结果表明,雾雨区的边坡稳定与渗流场变化有着重要关系,在评价边坡稳定与否时,要考虑渗流场对其影响。计算成果为实际工程的安全评价提供了一定的科学依据。  相似文献   

3.
非饱和堤岸的渗流特征及其稳定性研究   总被引:2,自引:0,他引:2  
张芳枝  陈晓平 《岩土力学》2011,32(5):1561-1567
通过试验确定了非饱和黏土层的土-水特征曲线和强度参数,通过理论分析建立了非饱和堤岸渗流-应力耦合模型。在此基础上,利用耦合计算程序分析了非饱和土堤岸在河水位变动时的非稳定渗流场特征,结合强度折减有限元法分析了河水位反复升降后非饱和堤岸稳定性的变化。结果表明:水位快速上升时,堤脚渗透流速下降后又逐步上升并趋向稳定,河水位快速上升使堤岸边坡的稳定性降低,随着渗流场中孔隙水压力的调整,堤岸边坡的安全系数又有所回升;河水位骤降时,黏性土层饱和度变化相对滞后,水位骤降加大了堤岸的渗透流速,边坡的稳定性迅速降低,水位下降约120 h后堤岸边坡进入较危险时段;非饱和土的基质吸力提高了堤岸边坡整体稳定性,河水位反复升降降低了堤岸边坡整体稳定性,且河水位越低,水位反复升降对堤岸稳定性产生的影响越大  相似文献   

4.
陈曦  张训维  陈佳林  金锋  于玉贞 《岩土力学》2015,36(Z1):609-613
基于Richards方程,对坝体的饱和-非饱和渗流场进行了模拟,再根据饱和-非饱和渗流场和非饱和土抗剪强度公式,对坝体的稳定性进行了分析。结果表明,水位骤降过程中坝体的安全系数通常呈现先缓慢增加后迅速减小的变化过程,分析坝体失稳时塑性区和位移场发现,水位下降的初期,坝体左侧坡体的安全系数要低于坝体右侧坡体,但水位下降到一定程度,右侧坡体的安全系数迅速减小,并先于左侧坡体失稳;采用有限元强度折减法用于多坡面边坡稳定分析时,只能获得最小安全系数的包络线;心墙具有隔水防渗的作用,对水位变化渗流具有阻尼作用。  相似文献   

5.
以祥云县清水河水库为例,利用GeoStudio软件Seep模块,考虑各岩土层的非饱和特性,计算得稳态和瞬态的渗流场;再采用有限元SIGAM/W渗流-应力耦合分析,计算得耦合渗流场、应力场;将前述非耦合和耦合的渗流场、应力场分别导入Slope/W模块,计算得出库水上涨和下落时边坡的潜在滑动面和安全系数,结合最大剪应变云图进行分析,研究出耦合效应对边坡稳定性影响的相关规律为:由于此边坡表面为弱透水的黏土层,库水下降对土坡稳定影响更为不利;库水涨落时耦合分析土坡稳定系数均比非耦合分析大,耦合效应对非饱和土边坡稳定性影响不可忽略;库水上涨,耦合条件下潜在滑动面变深;库水下降时,耦合条件下浸润线更低,这均是由于渗流-应力耦合效应使得土体孔隙比发生改变,水沿岩土层入渗加快,导致土中基质吸力消散更快引起的;由于隔水层的存在,最大剪应变出现的位置一般出现在隔水带,且位于边坡前缘。  相似文献   

6.
库水位变化对库岸边坡稳定性的影响   总被引:3,自引:0,他引:3  
在假定坡体孔隙水水位为水平线且不考虑渗透作用影响的基础上,基于极限平衡法考察了水位上升及下降的快慢对边坡安全系数的影响。对比计算表明:在水位缓慢变化即坡体内外水位线等高的条件下,边坡的安全系数随着水位坡高比的增大先略减小后急剧增大,且在水位坡高比为0.3处取得最小值,在边坡完全淹没于水中时取得最大值。当边坡完全淹没于水中后,水位高于坡顶的多少对边坡安全系数没有影响;在水位骤降或陡升条件下,相同库水位对应的边坡安全系数基本上均小于水位缓慢变化情况下的安全系数,故工程实际中无论是排水还是蓄水,都应尽量保持水位缓慢变化,这样才能使边坡处于较安全的状态。  相似文献   

7.
研究可以同时考虑渗流、变形与稳定的非饱和土质边坡稳定性分析方法具有重要的理论意义及工程实用价值。基于Fredlund双应力变量理论进行非饱和非稳定渗流-应力耦合分析,同时与传统非耦合渗流方法确定的孔压场进行对比发现,两种方法确定的浸润线变化过程相近,堤底处孔压的最大相对误差为8.8%,验证了耦合分析结果的可靠性。将基质吸力对强度的贡献纳入黏聚力中得到坡体强度参数的空间分布规律,又基于滑面强度参数时空分布规律借助Matlab平台开发了非稳定渗流条件下非饱和土质边坡稳定性的矢量和法分析程序。以库水位下降条件下堤坡的稳定性分析为例,将不同方法的计算结果进行对比,发现文中方法搜索得到的滑面位置相对于传统方法要深缓,但总体位置相差不大,不同方法对应的安全系数相差不足0.096,验证了所提方法的合理性。  相似文献   

8.
探索考虑饱和-非饱和渗流场和应力场耦合的三维强度折减有限元技术,并研制成功一个考虑饱和-非饱和渗流场和应力场耦合的三维强度折减有限元程序,通过与传统极限平衡法分析结果对比研究,对抗剪强度折减有限元法分析边坡稳定问题的适用性进行了评价,得出采用三维强度折减有限元法确定考虑饱和-非饱和渗流场的边坡稳定性安全系数是可行的结论.  相似文献   

9.
引入非饱和-饱和的渗流分析方法,考虑渗透系数以及饱和度与基质吸力之间的非线性关系,分析渗流场-应力场耦合机理和相互影响关系,并采用渗流场-应力场耦合有限元法对水位骤降下堤坝边坡位移场、孔隙水压力、超孔隙水压力进行具体分析。分析结果表明,利用渗流场-应力场耦合有限元法,比不考虑基质吸力和双场耦合作用分析,更加真实可靠。  相似文献   

10.
为研究暴雨和库水位变化对三峡库区边坡变形和稳定的影响,选取重庆云阳县晒盐坝滑坡为研究对象.运用饱和非饱和渗流理论,采用有限元法,模拟该滑坡在暴雨和库水位升降中渗流场的变化,计算其稳定性系数.计算表明,库水位上升和下降中,该滑坡体的稳定性均先减小后增大.  相似文献   

11.
以某库区路基边坡为研究对象,建立库区边坡二维饱和-非饱和渗流模型,模拟水库不同工况下边坡渗流场演变规律并进行库岸路基的非饱和沉降计算,分析库水位变化对路基沉降或隆起的影响。分析表明,库岸路基边坡变形与库水位升降及其速率有关。当库水位上升时,库岸路基和边坡发生了隆起变形;当库水位下降时,库岸路基和边坡发生了沉降变形。且近库岸边坡和路基的沉降或隆起受库水位升降影响较大,远离库岸的边坡和路基的沉降或隆起受库水位升降影响较小,库岸路基沉降与库水位下降速率快慢成正相关关系。  相似文献   

12.
王环玲  徐卫亚  童富果 《岩土力学》2006,27(Z2):331-336
泄洪雾雨作用下的边坡岩体饱和非饱和渗流问题是目前我国西南地区在建和已建高坝所面临的一个共同问题。从理论上分析了雾雨作用下饱和非饱和介质中水分运动特征;根据饱和渗流和非饱和渗流的数学模型,建立起统一的岩体饱和非饱和非稳定渗流数学模型;编制了有地表入渗作用的饱和非饱和非稳定渗流三维有限元计算程序;对有限元求解中的容水度问题、非饱和水力参数问题以及初始水头场问题作了相应的优化处理;以实际工程为例进行了饱和非饱和渗流分析,计算结果表明,比天然降雨雨强大很多的雾雨入渗会形成对边坡稳定不利的暂态饱和区,并引起地下水位的抬高;暂态饱和区的大小和地下水位的增幅取决于边坡表面的护坡效应和排水、防渗帷幕等措施,因此应该加强边坡表面的保护以及合理的设置排水、帷幕等措施,以减少入渗和地下水位的抬高。  相似文献   

13.
考虑饱和-非饱和渗流的土坡极限分析   总被引:2,自引:1,他引:1  
给出了均质土坝的下游坝坡的安全系数的计算方法。均质土坝的下游坝坡有可能会通过滑裂面发生破坏。土坝中的土坡通常处于非饱和状态。非饱和土坡的安全系数计算需要考虑吸力对抗剪强度的贡献以及土坡中的非饱和渗流。给出处于饱和-非饱和渗流状态下的土坡的安全系数,有助于评价均质土坝的安全系数。下游坝坡的安全系数计算方法有:极限平衡法、上限解法和下限解法,该算法适用于非饱和土坡,且是在饱和土坡安全系数的计算方法上修正得到的。算例中非饱和土坡安全系数的计算考虑了吸力对抗剪强度的贡献。考虑非饱和渗流理论的土坡安全系数计算方法通常更加接近现场实际情况,并且对于同一坝坡,考虑非饱和渗流计算出的土坡安全系数要比饱和渗流理论计算出的安全系数大。  相似文献   

14.
库水位上升条件下边坡渗流场模拟   总被引:2,自引:0,他引:2  
库水位的上升将导致边坡体内渗流场的变化,进而引起边坡的失稳破坏。边坡体内的渗流场是饱和渗流与非饱和渗流共同作用的结果,通过对库水位上升过程中坡体内地下水位线的位置变化及相应的渗流场参数的计算表明:由于上部松散堆积体与基岩渗透系数的差异,基岩内地下水位线的抬升速度明显滞后于上部松散堆积体;体积含水量、压力水头、流速和水力梯度等渗流参量在基岩中的变化幅度较小,而在上部松散堆积体中的变化幅度则相对较大。这说明库水位上升对上部松散堆积体的影响相对来说还是比较明显的。  相似文献   

15.
降雨条件下软岩边坡渗流-软化分析方法及其灾变机制   总被引:2,自引:0,他引:2  
谢瑾荣  周翠英  程晔 《岩土力学》2014,35(1):197-203
降雨条件下软岩边坡的灾变问题是滑坡领域研究的热点与难点。采用间接耦合法进行软岩边坡降雨入渗分析,根据软岩边坡非饱和渗流-应力计算原理,建立了软岩边坡渗流效应分析方法;将软岩抗剪强度的遇水软化特征动态赋予暂态饱和区中对应的软岩体,模拟降雨渗流条件下软岩边坡的软化效应;将渗流与软化相结合,建立基于暂态饱和区的软岩边坡降雨-渗流-软化-灾变的数值分析方法,并用于实例边坡的降雨灾变机制分析。结果显示,软岩边坡潜在滑动面深度随时间逐渐变浅,安全系数-时程曲线呈反向复曲线形态,当边坡开始软化时曲线上出现拐点。边坡稳定性计算结果与实际情况基本相符,表明思路与方法具有一定正确性,可为软岩边坡治理方案设计提供理论依据。  相似文献   

16.
降雨入渗条件下非饱和土边坡稳定分析   总被引:25,自引:0,他引:25  
徐晗  朱以文  蔡元奇  朱方敏 《岩土力学》2005,26(12):1957-1962
针对降雨入渗土坡的稳定问题,建立一个考虑水力渗透系数特征曲线、土-水特征曲线以及修正的Mohr-Coulomb破坏准则的非饱和土流固耦合有限元计算模型,进行雨水入渗下非饱和土边坡渗流场和应力场耦合的数值模拟,得到非饱和土边坡变形与应力的若干重要规律。研究成果为降雨入渗条件下非饱和土边坡的稳定分析提供了基础。  相似文献   

17.
基于连续多孔介质原理与混合体原理引入流?固耦合模型,采用FISH语言编制程序,建立了初始渗流场设置函数、饱和?非饱和渗流分析模块、特殊应力修正模块以及非饱和单元抗剪强度修正模块,实现了利用FLAC3D进行饱和?非饱和渗流分析,同时基于饱和?非饱和渗流场修正非饱和区土体单元的有效应力以及抗剪强度,完成了将FLAC3D中饱和土流?固耦合计算原理扩展到非饱和土中。在二次开发的分析模块基础上对Liakopoulos砂柱排水试验进行数值模拟,验证了计算模型和计算程序的正确性。同时也研究了降雨入渗对土质边坡的渗流场、位移场以及稳定性演变过程的影响,揭示了降雨诱发边坡失稳的机制。  相似文献   

18.
沈振中  林伟斌  杨海林 《岩土力学》2006,27(Z2):269-274
由于断层和节理切割,边坡岩体一般具有非连续特性,降雨入渗是影响其稳定的重要因素之一。应用饱和与非饱和渗流理论建立了岩体边坡的非稳定饱和与非饱和渗流分析模型,并采用块体系统的非连续变形分析建立了降雨入渗非饱和渗流场影响的岩体边坡稳定分析和评价模型。作为应用实例,对某高速公路岩体边坡在降雨入渗条件下的非稳定饱和与非饱和渗流场及其对边坡稳定性的影响进行详细分析,并对边坡的稳定性进行评价。  相似文献   

19.
刘子振  言志信 《岩土力学》2016,37(2):350-356
考虑非饱和黏土边坡的基质吸力和渗流力,根据水位线位于滑面上、下的临界平衡状态,分别建立了滑体条块极限平衡状态下力和力矩平衡式,获得了降雨条件下非饱和黏土边坡稳定性的极限平衡条分法计算式。通过试验、参量变换以及作用力的位置关系可以确定相关参量,并采用数值计算求解临界平衡状态下滑体条块的相互作用力系数和非饱和边坡安全系数。案例结果表明:考虑渗流力时的非饱和黏土边坡安全系数比不考虑渗流力的安全系数降低约13.8%,且考虑渗流力作用的条间力作用系数变化率明显大于不考虑渗流力的结果;当降雨强度超过一定值时,坡面径流很快形成,边坡出现不稳定的时间基本相同。  相似文献   

20.
水位骤降时的非饱和坝坡稳定分析   总被引:2,自引:1,他引:2  
从非饱和土抗剪强度理论出发,应用极限平衡法和以有限元应力计算为基础的极限平衡法,分别对库水位骤降时的坝坡稳定进行了计算。分析中采用非饱和-非稳定渗流理论,模拟了孔隙水压力的消散过程,并考虑基质吸力对土体抗剪强度的影响,将每个渗流分析结果调入稳定分析模块计算其稳定性。最后将两类极限平衡法稳定分析结果进行了比较,结果表明,库水位的骤降,易引起坝坡的滑动,随着超静孔隙水压力的消散,坝坡稳定性逐渐提高;随着孔压消散,基质吸力对抗剪强度的贡献增大。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号