首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
板泉盆地是郯庐断裂带新生代晚期右旋走滑运动产生的规模最大、结构最为典型的拉分盆地,其沉积历史记录着郯庐断裂带右旋走滑运动的起始时间和演化过程.文章利用地震反射勘探、钻孔探测和宇宙成因核素年代学方法揭示了板泉盆地的沉积-构造演化过程,解析了拉分盆地与走滑断裂之间的耦合关系,探讨了郯庐断裂右旋走滑的起始时间及构造意义.研究表明板泉盆地经历了前拉分弱裂陷、同拉分伸展和后拉分沉降三个演化阶段,反映了控制盆地发育的郯庐断裂带微弱活动、活动增强和活动性向盆地中央迁移的演化过程.盆地的沉积充填对盆地遭受的幕式拉分伸展作用有着明显的响应,盆地内白垩系基底之上保留了强烈拉分前因局部裂陷作用而缓慢堆积的薄层中新统泥岩,走滑拉分开始后盆地内依次充填了冲积扇相、河流相和泛滥平原相地层.华北地块内郯庐断裂带新生代晚期最新的构造运动以幕式右旋走滑为主,这种变形样式开始于(4.01±1.27)Ma.华北地区新生代晚期以来的最新构造变形受控于青藏高原东缘晚中新世以来的挤出造山作用,六盘山构造带向东推挤和秦岭断裂带的左旋剪切作用,使得华北地块区内次级地块发生“书斜式”推挤旋转变形,这种构造变形样式自~4.01Ma扩展至...  相似文献   

2.
拉分盆地是走滑断层系中受拉伸作用形成的断陷盆地.一般在两条平行断层控制下发育.盆地形似菱形,几何形态主要受两条主控走滑断层错距和叠接长度影响.本文以青藏高原东北缘海原断裂带老龙湾拉分盆地第四纪所处的构造环境为基础,参考盆地周围断层几何分布,建立了三维有限元数值模型,模拟该拉分盆地的演化过程;进一步分析了断层力学性质、地壳分层结构等各因素对盆地形成和演化的影响.模拟结果显示,盆地地表沉降伴随有下地壳物质的上涌,此上涌对盆地地表沉降存在阻碍作用.各因素的影响具体表现为:(1)断层力学性质(弹性模量和黏滞系数)越弱,其对构造应力较低的传递效率导致盆地两端差异性运动越明显,从而形成较大的盆地地表沉降和明显的上地壳减薄.(2)平行主控断层的叠接长度反映盆地形成的拉伸作用范围,叠接长度越大,相同的差异性运动在单位面积形成的拉伸应力越小,盆地地表沉降较小.(3)下地壳流变性影响其物质的上涌量,下地壳黏滞系数越小,其对上部拉伸作用的响应越明显,上涌量越大,此上涌对上地壳沉降形成的阻碍作用也越明显.根据老龙湾拉分盆地所处的构造格局,将平行断层的叠接长度取20km,当断层黏滞系数取值为周围基岩的1/10,参考该盆地第四纪构造演化历史,模拟得到的盆地第四纪下沉量与盆地内第四系沉积层厚度在规模上近似,下地壳黏滞系数取值在(2.5~5.0)×1021 Pa·s范围内时,盆地下沉量模拟结果与老龙湾拉分盆地第四系地层厚度吻合较好.  相似文献   

3.
阿尔金断裂带、东昆仑断裂带和海原断裂带是青藏高原北部的大型左旋走滑断裂带,具有相对高的地质和GPS滑动速率,地表破裂型地震频发。在阿尔金断裂带阿克塞老城西和半果巴、东昆仑断裂带西大滩和玛沁、海原断裂带松山等地点的探槽地质剖面揭露了这些走滑断裂带累积地质变形带的基本特征。阿尔金断裂带半果巴探槽和阿克塞老城西探槽、东昆仑断裂带西大滩探槽和玛沁探槽揭露出的地质变形带宽度约12m左右;海原断裂带松山拉分盆地边界单条走滑断层地质变形带宽度不足10m,考虑到地震期间拉分盆地可能会出现较严重的变形,则拉分盆地本身也应作为强变形带处理。由此可见,经历过多个地震地表破裂循环的东昆仑断裂带、海原断裂带和阿尔金断裂带其地质变形带的宽度是有限的,具有变形局部化特征。单条走滑断层的地质变形带宽度一般为10余米,比较保守地估计应<30m,走滑断层斜列阶区的地质变形带宽度取决于阶区本身的宽度  相似文献   

4.
划分了鲜水河——小江断裂带7级以上历史地震的强震构造区,分析了各强震构造区地质构造和构造地貌特征.认为强震构造区是沿断裂带的一些特殊构造段落,区内以断裂带主要分支断层的左阶斜列、并行排列或三叉构造组合为主体构造格局.强震构造区内发育了构造较复杂的盆地类型,如三叉区拉分盆地、双阶区拉分盆地和阶区 三叉区拉分盆地等.   相似文献   

5.
沿大型走滑断裂带经常发生导致多个断层段同时破裂的级联破裂地震事件。海原断裂带在1920年海原M 8地震时3个段同时发生破裂,干盐池拉分盆地即为其西段和中段的分段边界。沿该盆地内新生断层的古地震研究揭示了晚更新世末期以来的至少7次古地震事件证据,最新1次事件为1920年海原地震,1920年海原地震之前的1次事件可能与1092年历史地震对应。对比分析表明,这些事件可能均为超过8级的大地震,其复发呈现地震丛集与单个事件相间排列的规律,当前可能处于最近的1个地震丛集期内。该古地震序列与整个海原断裂带的大地震活动历史的对比表明,干盐池拉分盆地内新生断层在级联破裂地震事件发生时并非总是同时破裂,该断层是否参与破裂可能与该次级联破裂事件的震级大小有关。讨论整个走滑断裂带大地震活动历史时应避免仅依据具有一定规模的拉分盆地内部断层的破裂记录。  相似文献   

6.
海原断裂带内第三纪老龙湾拉分盆地的地质特征   总被引:10,自引:1,他引:9       下载免费PDF全文
在海原断裂带内部发现一个第三纪拉分盆地 ,命名为老龙湾拉分盆地。根据卫片解译结果和野外地质调查 ,对该盆地内的地层沉积序列、地层分布、相关断裂等特征进行了研究。结果表明 ,老龙湾拉分盆地发育于海原断裂内的最大斜列部位 ,盆地沉积受边界断裂控制 ;盆地内部沉积了巨砾岩、杂砾岩及紫红色 -灰绿色泥岩、桔红色角砾岩等地层 ,最大沉积厚度约 4 6 0 0m。老龙湾盆地内部地层不整合于不同的外围地层之上 ,根据对盆地内部沉积序列及外围第三系的区域对比 ,认为盆地沉积开始于中新世中期。由以上特征确定老龙湾盆地为海原断裂带内的第三纪拉分盆地。它为青藏高原东北缘第三纪的走滑断层活动的研究提供了地质证据  相似文献   

7.
张超  陈连旺 《地震地质》1993,15(1):21-27
应用边界单元法数值模拟了几种活动构造的地面形变效应。在此基础上,结合有关地质资料讨论了鲜水河断裂带西北段旦都隆起和中段惠远寺拉分盆地的形成机制。结果表明,前者是断层拐点对左旋走滑运动的障碍导致的水平应力集中所引起,后者则反映了左行羽列断层不等规模反扭造成的水平拉伸效应。这些特征地貌在某种程度上显示了该断裂带的分段性,并对地震破裂的起止具有某种控制作用  相似文献   

8.
剑川地震的余震与剑川盆地发震构造   总被引:1,自引:0,他引:1  
自1982年7月7日至1982年8月20日,用4台大动态范围的数字地震仪在剑川盆地内记录了7月3日16时13分剑川5.4级地震的余震。仔细地对这些余震定位的结果,显示了一个盆地下部向西倾斜的断裂带,定位的结果并与复合震源机制解相一致。这条断层明显地和盆地西部的断层区相联接。与美国西部的山区盆地区域相类似,这个盆地的形成是南北向的挤压与东西向拉张的应力作用的结果。  相似文献   

9.
热水—日月山断裂带在遥感影像上具有明显的线性构造特征,通过解译认为该断裂带由6条不连续的断裂段右阶羽列组成,活动特征很明显,造成一系列水系断错,最大水平位错940 m,并沿断裂带形成一系列小拉分盆地,认为该断裂带具有较强的右旋走滑特征。其中牧场部—大崖根段北西西向沿湟水河河谷发育,除其本身具有发生强震的构造能力外,其延伸是否与西宁市区中的沿湟水河谷地附近的地表断层相连,对西宁盆地的构造活动形式及地震构造特征有十分重要的意义。历史地震表明曾在热水煤矿与大通山构造复合部位于1927年连续发生多次M4.5~5.5级中强地震。  相似文献   

10.
拉分盆地与海原断裂带新生代水平位移规模   总被引:5,自引:0,他引:5  
沿海原断裂带发育3个级别的拉分盆地,其中,发育于中新世的老龙湾盆地是规模最大的拉分盆地,长度超过50km。为了估计盆地拉分量,本文建立了数学模型,相关参数包括盆地沉积厚度、盆地长度、滑脱面深度等。计算得到老龙湾盆地的拉分量为30km。对于另外两个较小规模的拉分盆地,本文利用前人资料和平均走滑速率方法得到盆地拉分量分别为22km和8km。这样,沿海原断裂带新生代以来的拉分总量约60km。该数值与景泰至靖远的黄河位错量接近。  相似文献   

11.
Ganyanchi (Salt Lake)basin, located in the central part of the Haiyuan Fault, northeastern corner of the Tibetan plateau, is the largest pull-apart basin along this fault. Due to its location in northeastern Tibet, the Ganyanchi Basin preserves an important sedimentary record of tectonism and climate change associated with progressive growth of the Tibetan plateau. The sediments of this basin also contain abundant information regarding the deformational history of the bounding strike-slip fault, i.e., the Haiyuan Fault. Therefore, a detailed study on the depository history of the Ganyanchi Basin is of great importance. Earlier studies only focused on regional geological mapping and paleoseismic research, however, no sedimentologic or chronological work has been done in the Ganyanchi pull-apart basin. To address this problem, we drilled a 328m-deep borehole, named HY-C8, at the south of the cross-basin fault and near the active depocenter, and employ magnetostratigraphic analyses and seismic reflection data to constrain the age and to deduce the evolving history of the basin. The deep borehole profile shows that the stratigraphy of the basin can be divided into three main units (Unit Ⅰ, Ⅱ and Ⅲ), which began to deposit at about 2.76, 2.33 and 1.78Ma, respectively. The grain size of the deposits manifests an upward thinning trend, which probably implies the profile is a characteristic retrogradational sequence. The magnetic susceptibility results indicate that the playa lake probably was formed at about 1.78Ma ago, the corresponding playa-lake deposits recorded more than eight high susceptibility sections, which are most likely due to the iron sulfides (such as melnikovite, pyrrhotine etc.)that were usually produced in high-lake-level and reduction conditions. A combination of boreholes and shallow seismic reflection data indicates that the Ganyanchi Basin is mainly controlled by the cross-basin fault and its northern boundary fault, and the depocenter, probably deeper than 550m, lies in between these two faults. Finally, the sedimentary facies of the Ganyanchi Basin experienced a four-stage evolving history:eluvial facies (before~2.76Ma)to alluvial fan facies (about 2.76~2.33Ma)to distal alluvial fan facies (2.33~1.78Ma)to playa lake facies (1.78Ma~present). Based on accumulation rates, the stage of playa lake can be divided into two subchrons, and the depositional rates of subchrons 2 (about 0.78Ma~present)is as high as 232.5m/Ma, which probably was caused by the activity along the cross-basin fault in the Ganyanchi Basin.  相似文献   

12.
Cascade rupture events often occur along large strike-slip fault zone.The 1920 AD M 81/2 earthquake ruptured all 3 segments of the Haiyuan Fault,and the Salt Lake pull-apart basin is the boundary between the west and middle segment of the fault.The data of trenching and drilling reveal 7 events occurring since last stage of late Pleistocene,and the two youngest events are associated with the historical records of 1092 AD (possibly) and 1920 AD respectively.These events are all large earthquakes with magnitude M>8,and the recurrence of them is characterized by earthquake clusters alternating with a single event.Now it is in the latest cluster which may last about 1000 years.Comparison of the paleoseismic sequence of this study and previous results reveals that the cross-basin fault in the Salt Lake pull-apart basin does not always rupture when cascade rupture events occur along the Haiyuan Fault,and likely ruptures only when the magnitude of the events is large (maybe M>8).Though there are many advantages in paleoseismic study in pull-apart basin,we should avoid getting the paleoseismic history of major strike-slip fault zones only depending on the rupture records of inner faults in pull-apart basins with large scale (maybe a width more than 3km).  相似文献   

13.
In this study, we described a 14km-long paleoearthquakes surface rupture across the salt flats of western Qaidam Basin, 10km south of the Xorkol segment of the central Altyn Tagh Fault, with satellite images interpretation and field investigation methods. The surface rupture strikes on average about N80°E sub-parallel to the main Altyn Tagh Fault, but is composed of several stepping segments with markedly different strike ranging from 68°N~87°E. The surface rupture is marked by pressure ridges, sub-fault strands, tension-gashes, pull-apart and faulted basins, likely caused by left-lateral strike-slip faulting. More than 30 pressure ridges can be distinguished with various rectangular, elliptical or elongated shapes. Most long axis of the ridges are oblique(90°N~140°E)to, but a few are nearly parallel to the surface rupture strike. The ridge sizes vary also, with heights from 1 to 15m, widths from several to 60m, and lengths from 10 to 100m. The overall size of these pressure ridges is similar to those found along the Altyn Tagh Fault, for instance, south of Pingding Shan or across Xorkol. Right-stepping 0.5~1m-deep gashes or sub-faults, with lengths from a few meters to several hundred meters, are distributed obliquely between ridges at an angle reaching 30°. The sub-faults are characterized with SE or NW facing 0.5~1m-high scarps. Several pull-apart and faulted basins are bounded by faults along the eastern part of the surface rupture. One large pull-apart basins are 6~7m deep and 400m wide. A faulted basin, 80m wide, 500m long and 3m deep, is bounded by 2 left-stepping left-lateral faults and 4 right-stepping normal faults. Two to three m-wide gashes are often seen on pressure ridges, and some ridges are left-laterally faulted and cut into several parts, probably owing to the occurrence of repetitive earthquakes. The OSL dating indicates that the most recent rupture might occur during Holocene.
Southwestwards the rupture trace disappears a few hundred meters north of a south dipping thrust scarp bounding uplifted and folded Plio-Quaternary sediments to the south. Thrust scarps can be followed southwestward for another 12km and suggest a connection with the south Pingding Shan Fault, a left-lateral splay of the main Altyn Tagh Fault. To the northeast the rupture trace progressively veers to the east and is seen cross-cutting the bajada south of Datonggou Nanshan and merging with active thrusts clearly outlined by south facing cumulative scarps across the fans. The geometry of this strike-slip fault trace and the clear young seismic geomorphology typifies the present and tectonically active link between left-lateral strike-slip faulting and thrusting along the eastern termination of the Altyn Tagh Fault, a process responsible for the growth of the Tibetan plateau at its northeastern margin. The discrete relation between thrusting and strike-slip faulting suggests discontinuous transfer of strain from strike-slip faulting to thrusting and thus stepwise northeastward slip-rate decrease along the Altyn Tagh Fault after each strike-slip/thrust junction.  相似文献   

14.
The northeastern margin of Tibetan plateau is an active block controlled by the eastern Kunlun fault zone, the Qilian Shan-Haiyuan fault zone, and the Altyn Tagh fault zone. It is the frontier and the sensitive area of neotectonic activity since the Cenozoic. There are widespread folds, thrust faults and stike-slip faults in the northeastern Tibetan plateau produced by the intensive tectonic deformation, indicating that this area is suffering the crustal shortening, left-lateral shear and vertical uplift. The Riyueshan Fault is one of the major faults in the dextral strike-slip faults systems, which lies between the two major large-scale left-lateral strike-slip faults, the Qilian-Haiyuan Fault and the eastern Kunlun Fault. In the process of growing and expanding of the entire Tibetan plateau, the dextral strike-slip faults play an important role in regulating the deformation and transformation between the secondary blocks. In the early Quaternary, because of the northeastward expansion of the northeastern Tibetan plateau, tectonic deformations such as NE-direction extrusion shortening, clockwise rotation, and SEE-direction extrusion occurred in the northeastern margin of the Tibetan plateau, which lead to the left-lateral slip movement of the NWW-trending major regional boundary faults. As the result, the NNW-trending faults which lie between these NWW direction faults are developed. The main geomorphic units developed within the research area are controlled by the Riyueshan Fault, formed due to the northeastward motion of the Tibet block. These geomorphic units could be classified as:Qinghai Lake Basin, Haiyan Basin, Datonghe Basin, Dezhou Basin, and the mountains developed between the basins such as the Datongshan and the Riyueshan. Paleo basins, alluvial fans, multiple levels of terraces are developed at mountain fronts. The climate variation caused the formation of the geomorphic units during the expansion period of the lakes within the northeastern Tibetan plateau. There are two levels of alluvial fans and three levels of fluvial terrace developed in the study area, the sediments of the alluvial fans and fluvial terraces formed by different sources are developed in the same period. The Riyueshan Fault connects with the NNW-trending left-lateral strike-slip north marginal Tuoleshan fault in the north, and obliquely connects with the Lajishan thrust fault in the south. The fault extends for about 180km from north to south, passing through Datonghe, Reshui coal mine, Chaka River, Tuole, Ketu and Xicha, and connecting with the Lajishan thrusts near the Kesuer Basin. The Riyueshan Fault consists of five discontinuous right-step en-echelon sub-fault segments, with a spacing of 2~3km, and pull-apart basins are formed in the stepovers. The Riyueshan Fault is a secondary fault located in the Qaidam-Qilian active block which is controlled by the major boundary faults, such as the East Kunlun Fault and the Qilian-Haiyuan Fault. Its activity characteristics provide information of the outward expansion of the northeastern margin of Tibet. Tectonic landforms are developed along the Riyueshan Fault. Focusing on the distinct geomorphic deformation since late Pleistocene, the paper obtains the vertical displacement along the fault strike by RTK measurement method. Based on the fault growth-linkage theory, the evolution of the Riyueshan Fault and the related kinetic background are discussed. The following three conclusions are obtained:1)According to the characteristics of development of the three-stage 200km-long steep fault scarp developed in the landforms of the late Pleistocene alluvial fans and terraces, the Riyueshan Fault is divided into five segments, with the most important segment located in the third stepover(CD-3); 2)The three-stage displacement distribution pattern of the Riyueshan Fault reveals that the fault was formed by the growths and connections of multiple secondary faults and is in the second stage of fault growth and connection. With CD-3 as the boundary, the faults on the NW side continue to grow and connect; the fault activity time on the SE side is shorter, and the activity intensity is weaker; 3)The extreme value of the fault displacement distribution curve indicates the location of strain concentration and stress accumulation. With the stepover CD-3 as the boundary, the stress and strain on NW side are mainly concentrated in the middle and fault stepovers. The long-term accumulation range of stress on the SE side is relatively dispersed. The stress state may be related to the counterclockwise rotation inside the block under the compression of regional tectonic stress.  相似文献   

15.
With the continuous collision of the India and Eurasia plate in Cenozoic, the Qilian Shan began to uplift strongly from 12Ma to 10Ma. Nowadays, Qilian Shan is still uplifting and expanding. In the northern part of Qilian Shan, tectonic activity extends to Hexi Corridor Basin, and has affected Alashan area. In the southern part of Qilian Shan, tectonic activity extends to Qaidam Basin, forming a series of thrust faults in the northern margin of Qaidam Basin and a series of fold deformations in the basin. The southern Zongwulong Shan Fault is located in the northeastern margin of Qaidam Basin, it is the boundary thrust fault between the southern margin of Qilian Shan and Qaidam Basin. GPS studies show that the total crustal shortening rate across the Qilian Shan is 5~8mm/a, which absorbs 20% of the convergence rate of the Indian-Eurasian plate. Concerning how the strain is distributed on individual fault in the Qilian Shan, previous studies mainly focused on the northern margin of the Qilian Shan and the Hexi Corridor Basin, while the study on the southern margin of the Qilian Shan was relatively weak. Therefore, the study of late Quaternary activity of southern Zongwulong Shan Fault in southern margin of Qilian Shan is of great significance to understand the strain distribution pattern in Qilian Shan and the propagation of the fault to the interior of Qaidam Basin. At the same time, because of the strong tectonic activity, the northern margin of Qaidam Basin is also a seismic-prone area. Determining the fault slip rate is also helpful to better understand the movement behaviors of faults and seismic risk assessment.Through remote sensing image interpretation and field geological survey, combined with GPS topographic profiling, cosmogenic nuclides and optically stimulated luminescence dating, we carried out a detailed study at Baijingtu site and Xujixiang site on the southern Zongwulong Shan Fault. The results show that the southern Zongwulong Shan Fault is a Holocene reverse fault, which faulted a series of piedmont alluvial fans and formed a series of fault scarps.The 43ka, 20ka and 11ka ages of the alluvial fan surfaces in this area can be well compared with the ages of terraces and alluvial fan surfaces in the northeastern margin of Tibetan Plateau, and its formation is mainly controlled by climatic factors. Based on the vertical dislocations of the alluvial fans in different periods in Baijingtu and Xujixiang areas, the average vertical slip rate of the southern Zongwulong Shan Fault since late Quaternary is(0.41±0.05)mm/a, and the average horizontal shortening rate is 0.47~0.80mm/a, accounting for about 10% of the crustal shortening in Qilian Shan. These results are helpful to further understand the strain distribution model in Qilian Shan and the tectonic deformation mechanism in the northern margin of Qaidam Basin. The deformation mechanism of the northern Qaidam Basin fault zone, which is composed of the southern Zongwulong Shan Fault, is rather complicated, and it is not a simple piggy-back thrusting style. These faults jointly control the tectonic activity characteristics of the northern Qaidam Basin.  相似文献   

16.
The 40km-long, NEE trending Reshui-Taostuo River Fault was found in the southern Dulan-Chaka highland by recent field investigation, which is a strike-slip fault with some normal component. DEM data was generated by small unmanned aerial vehicle(UAV)on key geomorphic units with resolution<0.05m. Based on the interpretation and field investigation, we get two conclusions:1)It is the first time to define the Reshui-Taostuo River Fault, and the fault is 40km long with a 6km-long surface rupture; 2)There are left-handed dislocations in the gullies and terraces cut by the fault. On the high-resolution DEM image obtained by UAV, the offsets are(9.3±0.5) m, (17.9±1.5) m, and(36.8±2) m, measured by topographic profile recovery of gullies. The recovery measurements of two terraces present that the horizontal offset of T1/T0 is(18.2±1.5) m and the T2/T1 is (35.8±2) m, which is consistent with the offsets from gullies. According to the historical earthquake records, a M5 3/4 earthquake on April 10, 1938 and a MS5.0 earthquake on March 21, 1952 occurred at the eastern end of the surface rupture, which may be related to the activity of the fault. By checking the county records of Dulan and other relevant data, we find that there are no literature records about the two earthquakes, which is possibly due to the far distance to the epicenter at that time, the scarcity of population in Dulan, or that the earthquake occurred too long ago that led to losing its records. The southernmost ends of the Eastern Kunlun Fault and the Elashan Fault converge to form a wedge-shaped extruded fault block toward the northwest. The Dulan Basin, located at the end of the wedge-shaped fault block, is affected by regional NE and SW principal compressive stress and the shear stress of the two boundary faults. The Dulan Basin experienced a complex deformation process of compression accompanying with extension. In the process of extrusion, the specific form of extension is the strike-slip faults at each side of the wedge, and there is indeed a north-east and south-west compression between the two controlling wedge-shaped fault block boundary faults, the Eastern Kunlun and Elashan Faults. The inferred mechanism of triangular wedge extrusion deformation in this area is quite different from the pure rigid extrusion model. Therefore, Dulan Basin is a wedge-shaped block sandwiched between the two large-scale strike-slip faults. Due to the compression of the northeast and southwest directions of the region, the peripheral faults of the Dulan Basin form a series of southeast converging plume thrust faults on the northeast edge of the basin near the Elashan Fault, which are parallel to the Elashan Fault in morphology and may converge with the Elashan Fault in subsurface. The southern marginal fault of the Dulan Basin(Reshui-Taostuo River Fault)near the Eastern Kunlun fault zone is jointly affected by the left-lateral strike-slip Eastern Kunlun Fault and the right-lateral strike-slip Elashan Fault, presenting a left-lateral strike-slip characteristic. Meanwhile, the wedge-shaped fault block extrudes to the northwest, causing local extension at the southeast end, and the fault shows the extensional deformation. These faults absorb or transform the shear stress in the northeastern margin of the Tibet Plateau. Therefore, our discovery of the Dulan Reshui-Taostuo River Fault provides important constraints for better understanding of the internal deformation mode and mechanism of the fault block in the northeastern Tibetan plateau. The strike of Reshui-Taostuo River Fault is different from the southern marginal fault of the Qaidam Basin. The Qaidam south marginal burial fault is the boundary fault between the Qaidam Basin and the East Kunlun structural belt, with a total length of ~500km. The geophysical data show that Qaidam south marginal burial fault forms at the boundary between the positive gravity anomaly of the southern East Kunlun structural belt and the negative gravity anomaly gradient zone of the northern Qaidam Basin, showing as a thrust fault towards the basin. The western segment of the fault was active at late Pleistocene, and the eastern segment near Dulan County was active at early-middle Pleistocene. The Reshui-Taostuo River Fault is characterized by sinistral strike-slip with a normal component. The field evidence indicates that the latest active period of this fault was Holocene, with a total length of only 40km. Neither remote sensing image interpretation nor field investigation indicate the fault extends further westward and intersects with the Qaidam south marginal burial fault. Moreover, it shows that its strike is relatively consistent with the East Kunlun fault zone in spatial distribution and has a certain angle with the burial fault in the southern margin of Qaidam Basin. Therefore, there is no structural connection between the Reshui-Taostuo River Fault and the Qaidam south marginal burial fault.  相似文献   

17.
Toshikazu  Yoshioka 《Island Arc》1996,5(4):407-419
Abstract Although the origins of pull-apart basins and push-up bulges have been discussed by numerous geologists, no discussion has been held on the development process of the basins based on recent active traces and Quaternary chronology. The author has investigated recent fault-active traces and fault topography in the Havza-Ladik, Erbaa-Niksar, Susehri-Golova and Erzincan sedimentary basins along the North Anatolian fault in northern Turkey and the Suwa basin along the Itoigawa-Shizuoka tectonic line (fault system) in central Japan. As a result of this investigation, the locations and sense of deformation of recent active traces seldom coincide with topographic scarps along basin margins in the studied basins. The fault traces have migrated from the basin margins to the center of the basins and become straight. Because of this migration, jogs are extinguished and basins stop subsiding as time passes. Fault topography formed by a strike-slip fault has a certain life span, and the life span is in proportion to the size of the topography. Fault topography formed by various sizes of jogs of a strike-slip fault is formed and extinguished in the corresponding time range, and this extinction is repeated in the course of migration of fault traces.  相似文献   

18.
Complex geometrical structures on strike-slip faults would likely affect fault behavior such as strain accumulation and distribution, seismic rupture process, etc. The Xianshuihe Fault has been considered to be a Holocene active strike-slip fault with a high horizontal slip rate along the eastern margin of the Tibetan plateau. During the past 300 years, the Xianshuihe Fault produced 8 earthquakes with magnitude≥7 along the whole fault and showed strong activities of large earthquakes. Taking the Huiyuansi Basin as a structure boundary, the northwestern and southeastern segments of the Xianshuihe Fault show different characteristics. The northwestern segment, consisting of the Luhuo, Daofu and Qianning sections, shows a left-stepping en echelon pattern by simple fault strands. However, the southeastern segment(Huiyuansi-Kangding segment)has a complex structure and is divided into three sub-faults: the Yalahe, Selaha and Zheduotang Faults. To the south of Kangding County, the Moxi segment of the Xianshuihe Fault shows a simple structure. The previous studies suggest that the three sub-faults(the Yalahe, Selaha and Zheduotang Faults of the Huiyuansi-Kangding segment)unevenly distribute the strain of the northwestern segment of the Xianshuihe Fault. However, the disagreement of the new activity of the Yalahe Fault limits the understanding of the strain distribution model of the Huiyuansi-Kangding segment. Most scholars believed that the Yalahe Fault is a Holocene active fault. However, Zhang et al.(2017)used low-temperature thermochronology to study the cooling history of the Gongga rock mass, and suggested that the Yalahe Fault is now inactive and the latest activity of the Xianshuihe Fault has moved westward over the Selaha Fault. The Yalahe Fault is the only segment of the Xianshuihe Fault that lacks records of the strong historical earthquakes. Moreover, the Yalahe Fault is located in the alpine valley area, and the previous traffic conditions were very bad. Thus, the previous research on fault activity of the fault relied mainly on the interpretation of remote sensing, and the uncertainty was relatively large. Through remote sensing and field investigation, we found the geological and geomorphological evidence for Holocene activity of the Yalahe Fault. Moreover, we found a well-preserved seismic surface rupture zone with a length of about 10km near the Yariacuo and the co-seismic offsets of the earthquake are about 2.5~3.5m. In addition, we also advance the new active fault track of the Yalahe Fault to Yala Town near Kangding County. In Wangmu and Yala Town, we found the geological evidence for the latest fault activity that the Holocene alluvial fans were dislocated by the fault. These evidences suggest that the Yalahe Fault is a Holocene active fault, and has the seismogenic tectonic condition to produce a large earthquake, just like the Selaha and Zheduotang Faults. These also provide seismic geological evidence for the strain distribution model of the Kangding-Huiyuansi segment of the Xianshuihe Fault.  相似文献   

19.
Jinta Nanshan Fault is an important fault in northeast front of Qing-Zang Plateau, and it is crucial for determining the eastern end of Altyn Tagh Fault. However, there is still debate on its significant strike-slip movement. In this paper, we study the Late Quaternary activity of Jinta Nanshan Fault and its geological and geomorphic expressions by interpreting aerial photographs and high-resolution remote sensing images, surveying and mapping of geological and geomorphic appearances, digging and clarifying fault profiles and mapping deformation characteristics of micro-topographies, then we analyze whether strike-slip activity exists on Jinta Nanshan Fault. We get a more complete fault geometry than previous studies from most recent remote sensing images. Active fault traces of Jinta Nanshan mainly include 2 nearly parallel, striking 100°~90° fault scarps, and can be divided into 3 segments. West segment and middle segment form a left stepover with 2~2.5km width, and another stepover with 1.2km width separates the middle and east segment. We summarize geomorphic and geologic evidence relating to strike slip activity of Jinta Nanshan Fault. Geomorphic expressions are as follows:First, fault scarps with alternating facing directions; second, sinistral offset of stream channels and micro-topographies; third, pull-apart basins and compressive-ridges at discontinuous part of Jinta Nanshan Fault. Geologic expressions are as follows:First, fault plane characteristics, including extremely high fault plane angle, unstable dip directions and coexistence of normal fault and reverse fault; second, flower structures. Strike-slip rate was estimated by using geomorphic surface age of Zheng et al.(2013)and left-lateral offset with differential GPS measurements of the same geomorphic surface at field site in Fig. 4e. We calculated a strike-slip rate of (0.19±0.05)mm/a, which is slightly larger than or almost the same with vertical slip rate of (0.11±0.03)mm/a from Zheng et al.(2013). When we confirm the strike-slip activity of Jinta Nanshan, we discuss its potential dynamic sources:First, eastern extension of Altyn Tagh Fault and second, strain partitioning of northeastward extension of Qilian Shan thrust belt. The first one is explainable when it came to geometric pattern of several E-W striking fault and eastward decreasing strike slip rate, but the former cannot explain why the Heishan Fault, which locates between the the Altyn Tagh Fault and Jinta Nanshan Fault, is a pure high angle reverse fault. The latter seems more explainable, because oblique vectors may indeed partition onto a fault and manifest strike-slip activity.  相似文献   

20.
The Youshashan Fault lies in the south flank of Yingxiongling anticline, southwestern margin of Qaidam Basin. The Yingxiongling anticline is one of the most active neotectonics, situated at the front of folds expanding southward in the Qaidam Basin. Research on the paleoseimology and Late Quaternary slip rate of this fault is important for hazard assessment and understanding tectonic deformation in this area. We excavated a 27-m-long trench across the Youshashan fault where a pressure bridge formed on the Holocene alluvial fans, measured a profile of the fold scarp created by the fault west of the Youshashan mountain, and collected several samples of finer sands for luminescence dating. Analysis of these data shows that(1) The Youshashan Fault is a Holocene active feature. The fold scarp in the basin indicates that this fault has been active along a same surface trace since at least mid-late Pleistocene. At least two paleoseismic events are revealed by trenching, both occurred in Holocene. The latest event Ⅱ in the trench happened after 500a. The current information fails to confidently support that it is the 1977 Mangya M6.4 earthquake, but cannot excludes the possibility of it is related to this earthquake. The other event Ⅰ occurred about between 1 000a to 4 000a. Erosion after the event Ⅰ prevents us to constrain the event age and to identify more events further. (2)The vertical slip rate of the Youshashan fault is about(0.38±0.06)mm/a since mid-late Pleistocene. Comparing with relative speeds of GPS sites across the Yingxiongling anticline suggests that the Youshashan fault is an important structure which is accommodating crustal shortening in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号