首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 265 毫秒
1.
杨艳  周伟  常晓林  花俊杰 《岩土力学》2012,33(8):2513-2520
目前针对堆石或土石坝的心墙水力劈裂问题虽然已取得了不少成果,但现有的成果大多从宏观的角度进行研究,对心墙水力劈裂发生机制的认识尚未达成一致的观点。采用颗粒流方法从细观角度对心墙水力劈裂问题进行初步研究,模拟了心墙水力劈裂发生和发展的过程。计算结果表明,劈裂水压力Pf随着竖向应力的增大而增大,且两者基本呈线性关系,与室内成果的规律基本一致;心墙在高水力梯度作用下,形成的水楔效应降低了裂缝尖端区附近的最大主应力,当该值小于或接近心墙上游的外水压力时则会导致水力劈裂的发生。此外,计算结果还证明了心墙发生水力劈裂的主要力学原因是由于心墙中的张拉应力超过了土体的抗拉强度。  相似文献   

2.
袁俊平  王启贵 《岩土力学》2015,36(12):3360-3364
心墙是否会发生水力劈裂关系土石坝的安全,该问题的难点和关键之一是水力劈裂的发生机制和条件。利用自制模型,在2种不同加压速率条件下,对有无初始裂缝和5种不同初始裂缝深度的试样进行了水力劈裂试验;结合数值模拟和CT观测试验,验证了水力劈裂的楔劈效应机制-当水压力作用在初始裂缝形成的劈背上,引起劈刃上的力超过临界值时就可能导致发生水力劈裂。研究结果表明:初始裂缝深度越大、加压速率越高,越容易发生水力劈裂。为避免土石坝发生水力劈裂破坏,应注意心墙迎水面的施工质量和平整性,宜采用较慢的蓄水方案。  相似文献   

3.
各向异性对土质心墙坝水力劈裂的影响   总被引:4,自引:2,他引:2  
应力诱导各向异性对复杂应力状态下土体的应力-应变规律有重要影响,而建立在各向同性假设基础上的常用土体本构模型并不能反映土体的这种特性,因此需要分析土体各向异性对土质心墙坝水力劈裂的影响。采用各向异性非线性弹性模型,对水荷载作用下粘土心墙坝进行有限元数值分析,并与邓肯模型计算结果比较。结果表明,各向异性模型考虑了蓄水期间从小主应力方向加荷引起的土体应力各向异性,计算得出的小主应力σ3较邓肯模型的大,且相应抗水力劈裂能力亦大,则邓肯E-v模型由于不能模拟蓄水期土体各向异性特性,对于水力劈裂发生的评估可能偏于危险。  相似文献   

4.
张健  李良  陈亮 《江苏地质》2017,41(4):619-623
水力压裂是一个涉及多相材料相互作用的复杂问题。针对岩石固相提出岩石应力平衡有限元方程,建立液相流动方程和质量守恒微分方程,推导水力压裂岩石流固耦合系统有限元方程。阐述计算模型,对裂缝的发育和扩展过程进行分析,并与实际试验结果进行对比,证明了计算结果的合理性。分析弹性模量对裂缝的影响情况,计算结果表明,随着弹性模量的增加,裂缝高度越来越小。  相似文献   

5.
基于CT图像处理技术的岩土材料有限元模型   总被引:9,自引:0,他引:9  
提出了一种利用数字图像技术对岩土材料CT图像进行处理的有限元模型方法。该方法建立的有限元模型能充分考虑岩土材料的非均匀性,特别是可以考虑空隙分布对岩土材料力学性质的影响。应用该方法对沥青胶结颗粒材料的劈裂试验进行了数值模拟,结果表明:不同方向拉应力分布不均匀,最大拉应力出现在空隙与颗粒的交界处。  相似文献   

6.
李明  郭培军  梁力  李鑫 《岩土力学》2016,37(11):3130-3136
基于完全流-固耦合的弹塑性理论给出了水力压裂数值计算的弥散裂缝模型,其中材料的弹性部分采用线弹性本构关系,塑性部分采用摩尔-库仑破坏准则及强化准则。依据当前的有效应力状态修正渗透系数来模拟压裂液在裂缝中的流动。渗透系数的修改使用双曲正切函数,并采用平均有效应力作为水力裂缝的起裂判据。在ABAQUS软件中通过用户自定义程序添加了该模型。根据岩石的切面照片建立了含有硬包裹体分布的非均质岩石的有限元计算模型,模拟了中心点注水条件下的水力压裂传播过程,讨论了在常应力状态下非均质岩石中开裂区域、典型位置的应力路径变化和裂缝传播范围随时间变化的特点。进行了多种条件下含有硬包裹体分布的岩石材料的数值试验,得出了基岩材料的弹性模量、凝聚力和渗透系数以及注水速率对峰值注水压力、平均注水压力和裂缝开度的影响规律。  相似文献   

7.
土石坝心墙水力劈裂机制研究   总被引:9,自引:0,他引:9  
朱俊高  王俊杰  张辉 《岩土力学》2007,28(3):487-492
心墙的水力劈裂问题是土质心墙坝建设中亟需解决但尚未很好解决的重要岩土工程问题。从心墙受力变形方面探讨了水力劈裂发生、发展的机制。研究认为:水库蓄水初期是水力劈裂的危险期;完全均质的心墙内不会发生水力劈裂;“裂缝或局部的缺陷”及“迅速蓄水的初期”是土石坝心墙发生水力劈裂的两个重要条件,水力劈裂发生的根本原因是局部高水力梯度的存在。最后,对上述机制进行了简单的试验验证。为进一步研究水力劈裂发生的判定、水力劈裂计算模拟指出了研究方向与思路。  相似文献   

8.
水劈裂过程中岩体渗透性规律及机理分析   总被引:7,自引:0,他引:7  
唐红侠  周志芳  王文远 《岩土力学》2004,25(8):1320-1322
岩体的结构及其透水性直接关系到建筑物围岩的稳定及安全。通过水力劈裂试验,可以真实地反映高水压作用下岩体的结构和渗透性的变化规律。以某水电站工程坝址区岩体所作的水力劈裂试验资料为基础,分析了在水力劈裂过程中,岩体的结构和渗透性发生的变化及其规律以及在该过程中岩体裂隙形成的机理。  相似文献   

9.
章定文  刘松玉 《岩土力学》2006,27(Z2):66-70
土体中的水力劈裂破坏机理存在两种观点:张拉破坏机理和剪切破坏机理。前人已经对其进行了大量地研究,并分别基于两种破坏机理提出了起劈压力的理论计算式,但是对其适用性没有进一步探讨。分别分析三向应力状态下土体水力劈裂的张拉破坏和剪切破坏判定准则,并基于Mohr-Coulomb屈服准则分析两种破坏机理的适用条件。分析结果表明,土体的水力劈裂是张拉破坏还是剪切破坏与小主应力σ3和不排水抗剪强度cu的大小密切相关,当小主应力σ3较大且不排水抗剪强度cu较小时,土体的劈裂多受剪切破坏机理控制;反之,土体的劈裂为张拉破坏。最后通过已有文献中的试验结果验证了所提出的两种破坏机理适用条件的合理性。  相似文献   

10.
随着扩展有限元理论的深入研究,利用扩展有限元方法模拟水力压裂具有了一定的可操作性。相比于常规有限元方法,XFEM方法具有计算结果精度高和计算量小的优点。但是,如何模拟射孔孔眼、如何模拟流体与岩石相互作用以及分析水力裂缝的扩展规律仍然是难题。以研究水力压裂裂缝扩展规律为目的,建立了岩石多孔介质应力平衡方程、流体渗流连续性方程和边界条件。通过有限元离散化方法对耦合方程矩阵进行处理。通过富集函数定义初始裂缝(射孔孔眼),选择最大主应力及损伤变量D分别作为裂缝起裂和扩展判定准则,利用水平集方法模拟水力裂缝扩展过程。数值模拟结果显示:增加射孔方位角、压裂液排量和减小水平地应力差,起裂压力上升;黏度对起裂压力无明显影响。增加射孔方位角、压裂液排量、黏度和减小水平地应力差值有助于裂缝宽度的增加。增加水平地应力差值、压裂液排量和减小射孔方位角以及压裂液黏度有助于裂缝长度增加,反之亦然。基于ABAQUS的水力裂缝扩展有限元法可对不同井型和诸多储层物性参数及压裂施工参数进行分析,且裂缝形态逼真,裂缝面凹凸程度清晰,结果准确。此研究可作为一种简便有效研究水力压裂裂缝扩展规律的方法为油田水力压裂设计与施工提供参考与依据。  相似文献   

11.
石路杨  李建  许晓瑞  余天堂 《岩土力学》2016,37(10):3003-3010
建立了求解自然裂纹和水力裂纹扩展的扩展有限元法,对裂纹附近区域的节点采用广义形函数,并采用线增函数消除混合单元,以提高裂纹附近的精度。引入水力劈裂的非耦合模型,即假设裂纹中的水压力为均布力;用砂浆法(线段-线段接触法)结合增广型拉格朗日乘子法处理受压裂纹段的接触条件。并通过算例分析了以下内容:计算了受压裂纹和裂纹面分布均布水压力的水力裂纹的应力强度因子,并与解析解进行了比较,结果表明,提出的方法具有很高的精度;模拟了水力裂纹对自然裂纹面的影响,并分析了自然裂纹面上的接触力和接触状态。  相似文献   

12.
郑安兴  罗先启 《岩土力学》2018,39(9):3461-3468
危岩是三峡库区典型的地质灾害类型之一,而主控结构面受荷断裂扩展是危岩发育成灾的关键核心。将危岩主控结构面类比为宏观裂纹,利用扩展有限元法在模拟裂纹扩展方面的优势,基于考虑裂纹面水压力作用的虚功原理推导出了采用扩展有限元法分析水力劈裂问题的控制方程,给出了危岩主控结构面水力劈裂问题的扩展有限元实现方法,对重庆万州太白岩危岩主控结构面的水力劈裂进行了数值模拟分析。计算结果表明:暴雨是威胁危岩稳定性的最敏感因素,随着裂隙水压力上升,裂端拉应力会急剧升高,危岩的稳定性降低;I型裂纹扩展是危岩主要的结构面扩展形式,结构面一旦发生开裂,将处于非稳定扩展状态。  相似文献   

13.
Hydraulic fracturing is the method of choice to enhance reservoir permeability and well efficiency for extraction of shale gas. Multi‐stranded non‐planar hydraulic fractures are often observed in stimulation sites. Non‐planar fractures propagating from wellbores inclined from the direction of maximum horizontal stress have also been reported. The pressure required to propagate non‐planar fractures is in general higher than in the case of planar fractures. Current computational methods for the simulation of hydraulic fractures generally assume single, symmetric, and planar crack geometries. In order to better understand hydraulic fracturing in complex‐layered naturally fractured reservoirs, fully 3D models need to be developed. In this paper, we present simulations of 3D non‐planar fracture propagation using an adaptive generalized FEM. This method greatly facilitates the discretization of complex 3D fractures, as finite element faces are not required to fit the crack surfaces. A solution strategy for fully automatic propagation of arbitrary 3D cracks is presented. The fracture surface on which pressure is applied is also automatically updated at each step. An efficient technique to numerically integrate boundary conditions on crack surfaces is also proposed and implemented. Strongly graded localized refinement and analytical asymptotic expansions are used as enrichment functions in the neighborhood of fracture fronts to increase the computational accuracy and efficiency of the method. Stress intensity factors with pressure on crack faces are extracted using the contour integral method. Various non‐planar crack geometries are investigated to demonstrate the robustness and flexibility of the proposed simulation methodology. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

14.
Because of the advantages of integrating water pressure blasting and hydraulic fracturing, the use of hydraulic fracturing after water pressure control blasting is a method that is used to fully transform the structure of a coal-rock mass by increasing the number and range of hydraulic cracks. An experiment to study hydraulic fracturing after water pressure blasting on cement mortar samples (300 × 300 × 300 mm3) was conducted using a large-sized true triaxial hydraulic fracturing experimental system. A traditional hydraulic fracturing experiment was also performed for comparison. The experimental results show that water pressure blasting produces many blasting cracks, and follow-up hydraulic fracturing forces blasting cracks to propagate further and to form numerous multidirectional hydraulic cracks. Four macroscopic main hydraulic cracks in total were noted along the borehole axial and radial directions on the sample surfaces. Axial and radial main failure planes induced by macroscopic main hydraulic cracks split the sample into three big parts. Meanwhile, numerous local hydraulic cracks were formed on the main failure planes, in different directions and of different types. Local hydraulic cracks are mainly of three types: local hydraulic crack bands, local branched hydraulic cracks, and axial layered cracks. Because local hydraulic cracks produce multiple local layered failure planes and lamellar ruptures inside the sample, the integrity of the sample decreases greatly. The formation and propagation process of many multidirectional hydraulic cracks is affected by a combination of water pressure blasting, water pressure of fracturing, and the stress field of the surrounding rock. To a certain degree, the stress field of surrounding rock guides the formation and propagation process of the blasting crack and the follow-up hydraulic crack. Following hydraulic fracturing that has been conducted after water pressure blasting, the integrity of the sample is found to be far lower than after traditional hydraulic fracturing; moreover, both the water injection volume and water injection pressure for hydraulic fracturing after water pressure blasting are much higher than they are for traditional hydraulic fracturing.  相似文献   

15.
The improved element partition method (IEPM) is a newly developed fracture simulation approach. IEPM allows a fracture to run across an element without introducing extra degrees of freedom. It can also simulate any number of fractures in a prescribed mesh without remeshing. In this study, the IEPM is extended to hydraulic fracture simulation. First, the seepage and volumetric storage matrix of a cracked element are derived using virtual nodes (the intersection points of a crack with element edges). Subsequently, the fully coupled hydromechanical equation is derived for this cracked element. To eliminate the extra degrees of freedom (virtual nodal quantities), the water pressure and displacement of the virtual nodes are associated with their adjacent nodes through least squares interpolation. Finally, the fully coupled equation in terms of nodal quantities is obtained. The verification cases validate the method. By using this method, the field-scale hydraulic fracturing process is well simulated. The proposed approach is simple and efficient for field-scale hydraulic fracture simulation.  相似文献   

16.
Simulation of fracturing processes in porous rocks can be divided into two main branches: (i) modeling the rock as a continuum enhanced with special features to account for fractures or (ii) modeling the rock by a discrete (or discontinuous) approach that describes the material directly as a collection of separate blocks or particles, e.g., as in the discrete element method (DEM). In the modified discrete element (MDEM) method, the effective forces between virtual particles are modified so that they reproduce the discretization of a first-order finite element method (FEM) for linear elasticity. This provides an expression of the virtual forces in terms of general Hook’s macro-parameters. Previously, MDEM has been formulated through an analogy with linear elements for FEM. We show the connection between MDEM and the virtual element method (VEM), which is a generalization of FEM to polyhedral grids. Unlike standard FEM, which computes strain-states in a reference space, MDEM and VEM compute stress-states directly in real space. This connection leads us to a new derivation of the MDEM method. Moreover, it enables a direct coupling between (M)DEM and domains modeled by a grid made of polyhedral cells. Thus, this approach makes it possible to combine fine-scale (M)DEM behavior near the fracturing region with linear elasticity on complex reservoir grids in the far-field region without regridding. To demonstrate the simulation of hydraulic fracturing, the coupled (M)DEM-VEM method is implemented using the Matlab Reservoir Simulation Toolbox (MRST) and linked to an industry-standard reservoir simulator. Similar approaches have been presented previously using standard FEM, but due to the similarities in the approaches of VEM and MDEM, our work provides a more uniform approach and extends these previous works to general polyhedral grids for the non-fracturing domain.  相似文献   

17.
Recent attempts to couple discontinuous deformation analysis (DDA) blocks with finite element meshes have been regarded as fruitful. The hybrid model has been proven to be reliable in modeling continuum–discontinuum problems. In this paper, a hydraulic crack initiation–propagation extension complete with a coupled hydro-mechanical analysis algorithm is introduced to the hybrid model for the simulation of fracturing problems initiated by hydraulic pressure. Several simulation cases, of which the results appear to be consistent with existing theories of hydraulic fracturing mechanisms, are presented to demonstrate the capability of the proposed algorithm in modeling hydraulic fracturing processes.  相似文献   

18.
Two-dimensional hydraulic fracturing simulations using the cohesive zone model (CZM) can be readily found in the literature; however, to our knowledge, verified 3D cohesive zone modeling is not available. We present the development of a 3D fully coupled hydro-mechanical finite element method (FEM) model (with parallel computation framework) and its application to hydraulic fracturing. A special zero-thickness interface element based on the CZM is developed for modeling fracture propagation and fluid flow. A local traction-separation law with strain softening is used to capture tensile cracking. The model is verified by considering penny-shaped hydraulic fracture and plain strain Kristianovich‑Geertsma‑de Klerk hydraulic fracture (in 3D) in the viscosity- and toughness-dominated regimes. Good agreement between numerical results and analytical solutions has been achieved. The model is used to investigate the influence of rock and fluid properties on hydraulic fracturing. Lower stiffness tip cohesive elements tend to yield a larger elastic deformation around the fracture tips before the tensile strength is reached, generating a larger fracture length and lower fracture pressure compared with higher stiffness elements. It is found that the energy release rate has almost no influence on hydraulic fracturing in the viscosity-dominated regime because the energy spent in creating new fractures is too small when compared with the total input energy. For the toughness-dominated regime, the released energy during fracturing should be accurately captured; relatively large tensile strength should be used in order to match numerical results to the asymptotic analytical solutions. It requires smaller elements when compared with those used in the viscosity-dominated regime.  相似文献   

19.
In this paper, a fully coupled model is developed for numerical modeling of hydraulic fracturing in partially saturated weak porous formations using the extended finite element method, which provides an effective means to simulate the coupled hydro‐mechanical processes occurring during hydraulic fracturing. The developed model is for short fractures where plane strain assumptions are valid. The propagation of the hydraulic fracture is governed by the cohesive crack model, which accounts for crack closure and reopening. The developed model allows for fluid flow within the open part of the crack and crack face contact resulting from fracture closure. To prevent the unphysical crack face interpenetration during the closing mode, the crack face contact or self‐contact condition is enforced using the penalty method. Along the open part of the crack, the leakage flux through the crack faces is obtained directly as a part of the solution without introducing any simplifying assumption. If the crack undergoes the closing mode, zero leakage flux condition is imposed along the contact zone. An application of the developed model is shown in numerical modeling of pump‐in/shut‐in test. It is illustrated that the developed model is able to capture the salient features bottomhole pressure/time records exhibit and can extract the confining stress perpendicular to the direction of the hydraulic fracture propagation from the fracture closure pressure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号