首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
悬挂式止水帷幕在基坑工程中得到了广泛应用.采用地下水渗流软件GMS对室内地下水渗流模型试验进行数值模拟,数值模拟结果与试验结果相互对比,进而验证地下水数值模拟软件的可靠性.在确定软件准确性的基础上,进一步研究在相同悬挂式止水帷幕插入深度下,不同形状基坑中地下水渗流变化规律,为实际工程降水设计提供参考依据.结果表明:数值...  相似文献   

2.
为确定悬挂式止水帷幕插入深度和基坑内涌水量、基坑外最大水位降深的关系,从而得出在预定基坑外最大水位降深和基坑内涌水量下的较优悬挂式帷幕的插入深度,根据达西定律和大井简化的均质含水层潜水非完整井的基坑涌水量计算公式,推导出帷幕插入深度、基坑涌水量、基坑外最大水位降深的关系式。将推导的公式进行基坑实例计算并与大卫登可夫和佛兰克的方法进行对比,分析两种计算方法结果的异同点。采用室内模型试验和Midas/GTS/NX数值模拟对悬挂式帷幕基坑地下水渗流进行模拟,对公式推导的结果进行验证,证明文中提出的计算公式与实际情况更接近,并得出结论:基坑外最大水位降深随着帷幕插入深度的增加略有降低,但变化不大,基坑涌水量随着帷幕插入深度的增加逐渐减小。  相似文献   

3.
基坑采用悬挂式帷幕减压降水时,因隔水帷幕局部存在缺陷,而导致坑内承压含水层水头抬升所诱发的基坑底侧突涌事件常有发生。为研究这种现象,以某地铁线风井基坑为范例,建立了三维非稳定流的地下水数值模型,重点考虑了渗透系数的各向异性,对隔水帷幕无缺陷,28~33m、33~38m、38~43m深度的缺陷,加大流量抽取等7种情况,进行了模拟和比较分析。研究结果表明,悬挂式帷幕降水帷幕无缺陷时,帷幕内外的水头差在含水层顶最大,并沿帷幕向下递减;在帷幕缺陷形成的渗流通道附近,渗流场的等势线非常密集,补给的地下水抬升了坑内水头,并加剧了坑外的水头下降;经缺陷处的渗流通道流入坑内的地下水,渗流速度矢量以水平向为主;帷幕缺陷位于渗透系数较大的含水层时,相应补给量也较大;加大流量抽取,可以减小水头抬升的平面范围,但缺陷附近过大的流速也会诱发地层流土;缺陷位置与帷幕底竖向距离越远,坑内水头的抬升率越大,缺陷位置与帷幕底竖向距离越近,抬升率越小。研究成果对分析承压水底侧突涌的致灾机制、预测预警以及基坑动态风险评估等有一定的参考意义。  相似文献   

4.
浅部厚层粉性土分布区的浅基坑工程,由于围护体系不能有效隔断含水层,致使基坑坑内降水具有三维渗流特性,当土质较差或周边环境复杂时,基坑设计与施工将面临严峻挑战。以上海市崇明区某大面积浅基坑工程为例,探讨了基坑降水与围护结构体系在基坑安全方面的相互关系,据此推出将基坑围护结构、止水帷幕与基坑降水统筹考虑的一体化设计思路。介绍了围护结构、降水管井及悬挂式止水帷幕深度确定的方法和依据,强调了围护方案技术交底的重要性。基坑开挖及监测数据表明,采用悬挂式止水帷幕+坑内管井降水结合放坡或重力式挡墙进行基坑地下水控制与围护的方案是可行的,能够取得良好的工程效果。  相似文献   

5.
降水条件对基坑开挖的变形特性具有重要影响。为了研究悬挂式止水帷幕结合承压非完整井组成的墙井系统条件下基坑开挖过程中的变形问题,以某悬挂式止水帷幕深基坑为例,通过定义降水井和地表渗流边界条件建立了考虑分级降水和基坑开挖实际工况的三维流固耦合有限元数值分析模型,使用现场监测数据与数值模拟结果互相验证的方法研究了悬挂式止水帷幕情况下基坑开挖过程中地下连续墙变形和地表沉降的变化特征,对比分析了悬挂式止水帷幕和落底式止水帷幕条件下的地表沉降。结果表明:在不同分级降水情况下,降水深度初次达到场地第一承压水含水层降水期间产生的地下连续墙水平位移增量最大,地表沉降也主要在这一期间产生;悬挂式止水帷幕情况下的地表沉降最大值约为落底式止水帷幕的2.7倍,最大值位置距地下连续墙边缘的距离比落底式止水帷幕大0.85 m;地下连续墙水平位移峰值处,降水期间产生的位移占28%,地表沉降峰值处,降水期间产生的沉降占49%;使用悬挂式止水帷幕时,距地下连续墙边缘12倍开挖深度处,地表沉降与地表沉降峰值的比值为0.1、该距离比落底式止水帷幕大13 m左右。研究成果对确定深基坑降水方案、保证深基坑开挖施工安全具有一定的参...  相似文献   

6.
基坑工程降水引发的渗流场对周围环境的影响是不容忽视的。本文以安庆市某社区改造项目为依托,通过Midas GTS软件建立三维渗流-应力模型研究悬挂式止水帷幕在不同的插入深度下对基坑支护结构及周围建筑物的变形影响。研究结果表明:止水帷幕从0.0 m增加至15.0 m时,支护结构的最大水平位移变化较小,最大水平位移减小为9.1%~28.8%;而对于周围建筑物沉降变形则有明显的影响,竖向位移减少为57.8%~69.9%。综合考虑周围建筑物沉降变形规律和工程造价,本项目止水帷幕设计深度最终取值为12.0 m。将数值分析结果与场实际测量值对比分析,两者较为吻合。  相似文献   

7.
采用悬挂式止水帷幕结合坑内减压降水的墙-井系统可有效减小坑内降水量或坑外水头降深。将基坑按面积相等等效为井壁进水的大直径承压水非完整井,幵令流入井内的水量等于止水帷幕内坑底承压水含水层内的竖直向渗流量,以此建立坑内减压抽水量与坑外承压水头降深的关系式。该理论公式计算结果在止水帷幕插入比大于0.6且基坑半径与承压含水层厚度之比小于2.0时与有限元计算结果比较接近。因未考虑渗流方向变化时的水头损失,数值计算结果和工程案例实测数据均表明理论公式计算结果偏大。利用参数分析研究承压含水层渗透系数各向异性、基坑平面面积、止水帷幕插入长度等因素对减压降水的影响规律。坑内减压抽水量或坑外水头降深与墙-井系统三维渗流场有关,渗流场越接近竖向渗流,坑外水头降深越小,水位接近初始状态。相比数值分析,理论公式简便直观,可用于减压降水的初步分析。  相似文献   

8.
在基坑工程中,为合理保护地下水资源和节约工程成本,悬挂式止水帷幕在工程中的应用越来越广泛.为更好地研究悬挂式止水帷幕基坑涌水量及影响半径的影响范围,依托北京市东城区第一人民医院基坑项目,进行了悬挂式止水帷幕基坑涌水量的数值模拟,并现场进行数据监测,从而对数值计算结果进行验证.结果表明:(1)利用有限元数值模拟软件分析的...  相似文献   

9.
余俊  张扬  郑靖凡  张志中 《岩土力学》2023,(11):3109-3116+3164
对考虑潜水面悬挂式止水帷幕支护下的基坑二维稳态渗流场进行了解析研究,并给出一种求解潜水面的解析方法。根据对称性取基坑半截面,并根据边界的连续条件将其分为3个规则区域,使用分离变量法分别将3个区域的水头分布表示为级数解的形式,结合区域之间的连续性条件及级数正交条件得到各区域渗流场的显式解,根据潜水面所满足的总水头等于位置水头的条件确定潜水面。将解析解方法计算结果与室内试验、有限元分析结果进行比对分析,结果验证了解析解的正确性,解析方法相较于有限元数值方法具有更高效的计算效率。对潜水面位置进行参数分析,发现止水帷幕插入深度、基坑宽度及深度对潜水面位置有不可忽视的影响。随着过水断面厚度的增加,潜水面位置逐渐降低,不考虑极端状态的情况下可认为帷幕底部至不透水层顶面的距离与潜水面在止水帷幕上的位置呈线性关系;随着基坑尺寸的增加,潜水面位置呈下降趋势,基坑内侧半宽度对潜水面的影响明显小于帷幕底部至不透水层顶面的距离,且随着基坑内侧半宽度的增加影响越来越小;潜水面位置随着基坑深度的增大而降低,基坑深度对潜水面位置的影响相对较大。  相似文献   

10.
海太过江通道公路段工作井基坑采用悬挂式止水帷幕,其帷幕深度对基坑开挖施工安全有重要影响。根据承压水抽水试验实测数据,采用数值反演法获取了承压含水层相关水文地质参数;基于研究区地层结构特征,建立了三维地下水流运动数学模型,确定了帷幕最优深度、井群位置和降水井数量。计算结果显示,设计的降水方案能够保证施工场地干燥、基坑底部不发生突涌、土体不发生渗透变形和基坑周围沉降量在允许值内。因此,本建议方案优化了承压降水井群,降低了悬挂式止水帷幕深度,节约了降水成本,为设计部门提供了依据和技术支撑。  相似文献   

11.
以北京地铁8号线永定门外站为例,提出悬挂式帷幕阻水条件下基坑排水量计算方法以及悬挂式帷幕阻水中存在的问题。介绍了3种结合悬挂式帷幕采取的封底阻水措施,即水下灌注混凝土封底,深孔注浆封底以及超高压旋喷桩封底,并分别探讨了其优缺点。提出了悬挂式帷幕阻水结合基坑底部封底阻水的最佳建议方案,以达到有效节约地下水资源、降低工程施工难度和工程造价之目的。  相似文献   

12.
悬挂式帷幕防渗作用的有限元模拟   总被引:8,自引:1,他引:7  
建立了二维渗流方程的有限元表达式,比较了某工程实例防渗帷幕建造前、后渗流速度和出溢处水力坡降的变化情况。计算表明,除帷幕底部小范围内渗流速度有所上升外,其它地区的渗流速度及下游出溢处的水力梯度均显著降低。在运用悬挂式防渗帷幕时,要注意提高帷幕底部的抗冲刷能力。  相似文献   

13.
水平面渗流有限元中利用接触单元模拟悬挂式阻水结构   总被引:1,自引:0,他引:1  
骆冠勇  曹洪  房营光 《岩土力学》2007,28(12):2691-2697
区域性渗流场由于范围大,通常忽略掉竖向的水头损失而用水平面二维有限元进行分析,但在城区区域渗流场中悬挂式阻水结构物量多,竖向绕流现象突出,用一般水平面二维有限元进行分析将产生较大的偏差。针对这一问题在悬挂式结构体周边引入一层无厚度界面接触单元。在水平面有限元中利用它考虑因竖向绕流产生的局部水头损失。利用阻力系数的方法和二维状态下截面突变流道流动的解析解,同时考虑防渗墙本身的弱透水性,推导了接触单元的导水矩阵。应用接触单元编制了相关程序,在水平面有限元中利用接触单元对悬挂式阻水结构进行分析,并将结果与三维有限元进行比较,两者的计算结果在流量上保持一致,在水头上前者是后者在同一位置处沿高程方向平均值。提出的该计算方法,对于用水平面二维有限元分析含有悬挂式阻水结构的大区域渗流问题,是一个有效的手段。  相似文献   

14.
在长江Ⅰ级阶地区域,深基坑设计面临土质情况差、地下水丰富等问题,邻近地铁的基坑设计常设置落底式竖向止水帷幕。某基坑紧邻武汉地铁2号线范湖站,采用半落底半悬挂式地下连续墙做竖向支挡结构兼作止水帷幕,设置二层混凝土圆环支撑,辅以基坑内降水。基坑使用期间未对周边道路、地铁等构筑物造成不利影响,对比全落底式帷幕(或地连墙)经济效益显著,可供类似工程参考。  相似文献   

15.
随着声纳渗流检测技术在水文地质勘探中的应用,其测量结果精度的高低对获取的水文地质参数的准确性起着至关重要的作用。文章依托南宁某基坑工程,采用现场试验方法,同时考虑天然流场和人工流场,分三个阶段对基坑止水帷幕进行声纳渗流检测,对比不同阶段渗漏缺陷暴露的情况,同时根据渗透流速量级变化判断其检测结果精度的高低,并在实际工程中验证其准确性。研究结果表明:不同降水阶段的渗透流速大小变化显著,基坑地下水位降深每增加10 m,声纳检测到的渗透流速平均提高1~2个量级。其原因为降水导致基坑内外水头差增大,水力坡度的增加使渗漏缺陷附近的渗流场发生变化,高水头作用下渗透流速变化明显,渗漏缺陷定位更加精准,声纳检测精度也越高。可见,抬高基坑内外水头差对墙体渗漏缺陷的精准定位十分必要。因此,在对基坑止水帷幕采取声纳渗流检测时,建议将地下水位降至基坑底板以下,以提高检测结果的精度,有效探测止水帷幕渗漏风险。  相似文献   

16.
随着城市地下综合体、轨道交通和海绵城市等实体和概念的发展,建筑空间日益向地下延伸,地下水控制在施工中的地位越发突出,其对环境和水安全的影响也越来越受到重视,特别是对多层地下水逐层研究控制方案,优先选用截水帷幕结合少量降水的组合式控制方法成为深基坑设计的发展方向。通过对实际案例分析,对上层地下水采用落底式帷幕进行阻挡,对下层地下水采用悬挂式帷幕方法进行控制,并对悬挂式截水帷幕基坑内涌水量计算的经验系数进行研究和统计。  相似文献   

17.
如何判定落底式止水帷幕的止水效果,定量计算坑外地下水通过落底式止水帷幕向基坑内的涌漏量,是对于设置了落底式止水帷幕的基坑进行降水设计的重要依据.通过对存在落底式止水帷幕的基坑进行现场抽水试验及连通试验,总结落底式止水帷幕建立前后试验井流量、降深变化的规律,定义落底式止水帷幕的综合止水系数,探讨止水效果等级划分方法,在此基础上,提出了基坑岩土体表观渗透系数的概念,从而计算基坑涌漏量,在一定程度上,填补了落底式止水帷幕对基坑降水影响定量评价的空白,为存在落底式止水帷幕的基坑降水设计提供了一定的理论依据.  相似文献   

18.
刘智君 《岩土工程技术》2011,25(1):53-54,F0003
通过渗流理论分析及数值计算的方法,论证了在丰富地下水补给的深厚砂层中,基坑支护采用悬挂式止水方案的可行性及适用条件,以期用于指导中粗砂层内深基坑的设计与施工实践。  相似文献   

19.
骆冠勇  曹洪  房营光  范雨 《岩土力学》2007,28(1):173-178
为解决城区渗流场中缝隙多、区域的大尺度与物体的小尺寸相差了几个数量级,有限元分析上存在的困难,根据缝隙流动的解析解,经适当地简化,将缝隙附近的渗流场分为缝外区和缝内区两部分,将缝外区流动简化为一个半径为半缝宽的井流,缝内区流动简化为一个均匀流。引入附加阻力系数,考虑缝隙出入口附近的由于过水断面突然变化而引的局部水头损失,并得到附加阻力系数的表达式。利用该式,结合渗流场中井点水头的修正公式,得到了能有效模拟渗流场中建筑物间缝隙的修正线单元公式。利用该线单元编制了相关程序模拟城区渗流场中的缝隙,使得缝隙出入口处的网格尺寸为缝隙两边的建筑物边长1/3~1/4时就能得到较为准确的结果,避免了区域性渗流场中小尺寸物体的网格划分问题,通过算例验证了该公式的精度和边界适应性。  相似文献   

20.
李春忠  陈国兴  樊有维 《岩土力学》2006,27(Z1):741-745
基于Biot固结理论和Terzaghi有效应力原理,采用有限元法对深基坑工程降水渗流场进行应力场与渗流场耦合的数值模拟。结合南京九华山隧道基坑工程降水实例,分析了基坑降水水位线的形状、流速分布及地表沉降规律;比较了降水井不同布置、井深对基坑渗流场及周围地表沉降的影响,其结果有助于进一步了解地下水与土体相互作用机理,并为基坑工程降水井的设计提供可靠的指导。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号