首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Fluvial effects on nutrient and phytoplankton dynamics were evaluated in southern Kaneohe Bay, Oahu, Hawaii. Fluvial inputs occurred as small, steady baseflows interrupted by intense pulses of storm runoff. Baseflow river inputs only affected restricted areas around stream mouths, but the five storm events sampled during this study produced transient runoff plumes of much greater spatial extent. Nutrient loading via runoff generally led to an increase of the phytoplankton biomass and gross primary productivity in southern Kaneohe Bay, but the rapid depletion of nutrients resulted in a decline of the algal populations in the relatively short time of days. Under baseline conditions, water column primary productivity in southern Kaneohe Bay is normally nitrogen limited. Following storm events, the high ratio of dissolved inorganic nitrogen to dissolved inorganic phosphorus (DIN:DIP, 25–29) fluxes of runoff nutrients drove bay waters towards phosphorus limitation. A depletion of phosphate relative to DIN in surface waters was observed following all storm events. Due to high flushing rates, recovery times of bay waters from storm perturbations ranged from 3 to 8 d and appeared to be correlated with tidal range. Storm inputs have a significant effect on the water column ecosystem and biogeochemistry in southern Kaneohe Bay. The perturbations were only transient events and the system rapidly recovered to prestorm conditions.  相似文献   

2.
In order to investigate how monsoons influence biogeochemical fluxes in the ocean, twelve time-series sediment traps were deployed at six locations in the northern Indian Ocean. In this paper we present particle flux data collected during May 1986 to November 1991 and November 1987 to November 1992 in the Arabian Sea and Bay of Bengal respectively. Particle fluxes were high during both the SW and NE monsoons in the Arabian Sea as well as in the Bay of Bengal. The mechanisms of particle production and transport, however, differ in both the regions. In the Arabian Sea, average annual fluxes are over 50gm-2y-1 in the western Arabian Sea and less than 27gm-2 y-1 in the central part. Biogenic matter is dominant at sites located near upwelling centers, and is less degraded during peak flux periods. High particle fluxes in the offshore areas of the Arabian Sea are caused by injection of nutrients into the euphotic zone due to wind-induced mixed layer deepening. In the Bay of Bengal, average annual fluxes are highest in the central Bay of Bengal (over 50gm-2y-1) and are least in the southern part of the Bay (37gm-2y-1). Particle flux patterns coincide with freshwater discharge patterns of the Ganges-Brahmaputra river system. Opal/carbonate and organic carbon/carbonate carbon ratios increase during the SW monsoon due to variations in salinity and productivity patterns in the surface waters as a result of increased freshwater and nutrient input from rivers. Comparison of S years data show that fluxes of biogenic and lithogenic particulate matter are higher in the Bay of Bengal even though the Arabian Sea is considered to be more productive. Our results indicate that in the northern Indian Ocean interannual variability in organic carbon flux is directly related to the strength and intensity of the SW monsoon while its transfer from the upper layers to the deep sea is partly controlled by input of lithogenic matter from adjacent continents.  相似文献   

3.
Some chemical and biological parameters were analysed at sixteen stations in the mangrove ecosystem, of the neighbouring Gautami-Godavari (GG) river estuary and Kakinada (KKD) bay to understand the present status of water quality and the impact of external terrigenous inputs during southwest (SW) monsoon in the study areas. High concentrations of nutrients in the mangrove ecosystem compared to the bay and estuarine ecosystems reveal the importance of this zone as a source of nutrients to the adjacent coastal ecosystems. Low Si:N:P (29:4:1) ratios in these ecosystems are due to the enrichment of these nutrients through external anthropogenic inputs even after the utilization by phytoplankton in the biological cycle. The mean Chl b/Chla and Chl c/Chla ratios and high phaeopigments (Pp) concentrations compared to Chlb and high ratios of Chl a/Pp suggests the possibility of the potential growth of phytoplankton populations in lower light intensity and low turbulent areas of these mangrove ecosystems.  相似文献   

4.
A coupled coastal-bay estuarine numerical model is described and applied to investigate the combination of wind-estuarine driven circulation off the Orissa coast. The model is based on coupling of a 2-dimensional estuarine model with a 3-dimensional coastal-bay model. The models are linked through the elevation at the interface. Using the coupled model, the numerical experiments are carried out to elicit the dynamical linking between the estuarine outflow and the coastal ocean to simulate the ensuing adjoining coastal circulation. During the southwest monsoon, it is noticed that the estuarine discharge from the northern head-bay river system and the river systems that join the Bay of Bengal along the Orissa coast would sufficiently modify the coastal circulation along the coast. Numerical experiments are also carried for the model simulation of surges generated by the 1999 Orissa cyclone. It is shown that the estuarine system would influence significantly on surge development and associated inundation through the rivers.  相似文献   

5.
This paper presents a rather complete picture of conditions of stagnation, recirculation and ventilation factors in the main industrialized and urban areas in Oman, developed along the coastal area. This study focuses on four sites; Sohar, Muscat, Sur, and Salalah. Each site has a local emission sources from transportation, industry and energy production activities. For the calculation of the integral quantities of the ability of the atmosphere dilution, hourly data of the wind velocity measured at a height of 10 m during 5 years (2000–2005) were used in the analysis. The results show that in the northern coast of Oman, along the bay of Sea of Oman, where 56% of the total population is concentrated and the main heavy industries of the country are amassed, the atmosphere is prone to stagnations in 74.4% of the time, while in the southern and east part of Oman, they occur only 23% and 51%, respectively. The bay of sea of Oman is high affected by land–sea breeze circulation that plays a substantial role in the simultaneous occurrence of recirculation equally to stagnation. This meso-scale effect is altered gradually during the passage of the synoptic-scale flow of the southeasterly summer monsoon that enhances the occurrence of the ventilation in Salalah (24.6% of time) and Sur (15.5%). In the northern coast of Oman, where the Hajir mountains suppressed the effect of the summer monsoon, a very weak tendency towards ventilation is observed (less than 6%). The southern summer monsoon over Oman is a source of life in this arid area and as well a source of clean air.  相似文献   

6.
Long Island Sound (LIS), a large urban estuary in the northeastern USA, receives freshwater from many rivers along its northern shore. The size of these rivers varies widely in terms of basin area and discharge. The Regional Ocean Modeling System (ROMS) was applied with conservative passive tracers to identify the distribution, mixing, freshwater residence times, and storm response for all of LIS’s river systems during the summer of 2013. A watershed model was applied to overcome the lack of adequate river discharge observations for coastal watersheds. The Connecticut River was the largest contributor to riverine freshwater throughout the estuary despite its entry point near the mouth. The Connecticut River strengthened bulk stratification in the eastern LIS the most but acted to weaken stratification near the mouths of other rivers and in far western LIS by freshening waters at depth. The Housatonic and Hudson Rivers had the strongest influence on stratification in central and western LIS, respectively. Smaller coastal rivers were the most influential in strengthening stratification near the southwestern Connecticut shoreline. The influence of small coastal rivers was amplified after a major storm due to shorter storm response times relative to the larger rivers. Overall, river water was close to a well-mixed state throughout LIS, but more stratified near river mouths. Freshwater residence time estimates, meanwhile, indicated monthly to multi-seasonal time scales (43 to 180 days) and grew longer with greater distance from the LIS mouth.  相似文献   

7.
Usingin situ data collected during 1992–1997, under the Indian programme of Joint Global Ocean Flux Study (JGOFS), we show that the biological productivity of the Arabian Sea is tightly coupled to the physical forcing mediated through nutrient availability. The Arabian Sea becomes productive in summer not only along the coastal regions of Somalia, Arabia and southern parts of the west coast of India due to coastal upwelling but also in the open waters of the central region. The open waters in the north are fertilized by a combination of divergence driven by cyclonic wind stress curl to the north of the Findlater Jet and lateral advection of nutrient-rich upwelled waters from Arabia. Productivity in the southern part of the central Arabian Sea, on the other hand, is driven by advection from the Somalia upwelling. Surface cooling and convection resulting from reduced solar radiation and increased evaporation make the northern region productive in winter. During both spring and fall inter-monsoons, this sea remains warm and stratified with low production as surface waters are oligotrophic. Inter-annual variability in physical forcing during winter resulted in one-and-a-half times higher production in 1997 than in 1995.  相似文献   

8.
In this paper, we present the results of the first automated continuous multi-year high temporal frequency study of CO2 dynamics in a coastal coral reef ecosystem. The data cover 2.5?years of nearly continuous operation of the CRIMP-CO2 buoy spanning particularly wet and dry seasons in southern Kaneohe Bay, a semi-enclosed tropical coral reef ecosystem in Hawaii. We interpret our observational results in the context of how rapidly changing physical and biogeochemical conditions affect the pCO2 of surface waters and the magnitude and direction of air–sea exchange of CO2. Local climatic forcing strongly affects the biogeochemistry, water column properties, and gas exchange between the ocean and atmosphere in Kaneohe Bay. Rainfall driven by trade winds and other localized storms generates pulses of nutrient-rich water, which exert a strong control on primary productivity and impact carbon cycling in the water column of the bay. The “La Ni?a” winter of 2005–2006 was one of the wettest winters in Hawaii in 30?years and contrasted sharply with preceding and subsequent drier winter seasons. In addition, short-term variability in physical forcing adds complexity and helps drive the response of the CO2–carbonic acid system of the bay. Freshwater pulses to Kaneohe Bay provide nutrient subsidies to bay waters, relieving the normal nitrogen limitation of this system and driving phytoplankton productivity. Seawater pCO2 responds to the blooms as well as to physical forcing mechanisms, leading to a relatively wide range of pCO2 in seawater from about 250 to 650?μatm, depending on conditions. Large drawdowns in pCO2 following storms occasionally cause bay waters to switch from being a source of CO2 to the atmosphere to being a sink. Yet, during our study period, the southern sector of Kaneohe Bay remained a net source of CO2 to the atmosphere on an annualized basis. The integrated net annual flux of CO2 from the bay to the atmosphere varied between years by a factor of more than two and was lower during the wet “La Ni?a” year, than during the following year. Over the study period, the net annualized flux was 1.80?mol?C?m?2?year?1. Our CO2 flux estimates are consistent with prior synoptic work in Kaneohe Bay and with estimates in other tropical coral reef ecosystems studied to date. The high degree of climatological, physical, and biogeochemical variability observed in this study suggests that automated high-frequency observations are needed to capture the short-, intermediate-, and long-term variability of CO2 and other properties of these highly dynamic coastal coral reef ecosystems.  相似文献   

9.
Using the theory of plate tectonics and a concept of climate analogs, the paper speculates that a monsoon type of climate with warm and wet summer and cold and dry winter might have first appeared over the northern part of India when during its northward drift across the Tethys Ocean (now the Indian Ocean) it was located over the subtropical belt of the southern hemisphere some 60 million years before present (BP). The monsoon climate gradually evolved and extended to other parts of India as the Indian plate after crossing the equator about SO million years BP moved further northward and collided against the north Asian plate giving rise to the Himalayas along the northern boundary of India some 40 million years BP. Recent studies suggest that despite short and long period fluctuations, no major secular change or trend has taken place in the monsoon climate of India since then.  相似文献   

10.
The Suwannee River (USA) is an amber stained, nutrient rich, blackwater river which flows into relatively clear oceanic waters resulting in the formation of a coastal region with unique physical, chemical, and biological gradients. The intent of this study was to describe the spatial and temporal variability of phytoplankton as it relates to these gradients. Ten stations along a transect ranging from 5 km up river to 31 km offshore, were sampled during four different flow regimes. All four sampling periods included in our study of the Suwannee River and plume region exhibited a similar pattern of phytoplankton abundance; low phytoplankton biomass in the Suwannee River and offshore stations with an area of elevated biomass seaward of the Suwannee River outflow. The results of our analysis of light and nutrient limitation in the region support the hypothesis that this spatial pattern of phytoplankton abundance is strongly influenced by color dependent light limitation in the river and outflow area, combined with nutrient limitation offshore. Our results suggest that both light and nutrient availability control abundance and composition of phyto plankton in this coastal area.  相似文献   

11.
Algal blooms have been documented along the west and east coasts of India. A review of bloom occurrences in Indian waters from 1908 to 2009 points out that a total of 101 cases have been reported. A comparison of the bloom cases reported before and after the 1950s reveals that there is an increase in the number of bloom occurrences. The reports of algal blooms indicate their predominance along the west coast of India especially the southern part. Majority of the blooms reported along the west coast of India are caused by dinoflagellates, whereas diatom blooms prevail along the east coast. There have been 39 causative species responsible for blooms, of which Noctiluca scintillans and Trichodesmium erythraeum are the most common. Reporting of massive fish mortality in Indian waters has been associated with the blooming of Cochlodinium polykrikoides, Karenia brevis, Karenia mikimotoi, N. scintillans, T. erythraeum, Trichodesmium thiebautii and Chattonella marina. Most of the blooms occurred during withdrawal of the south-west monsoon and pre-monsoon period. In Indian waters, this process is mainly influenced by seasonal upwelling and monsoonal forcing that causes high riverine discharge resulting in nutrient-enriched waters that provides a competitive edge for blooming of phytoplankton species.  相似文献   

12.
The low-frequency transport processes in a small, shallow coastal lagoon (Indian River Bay, Delaware) are examined based on a set of data derived from tide gauges, near-bottom current meter measurements, and drifter releases. The subtidal sea-level fluctuations in the interior of the lagoon are forced primarily by the coastal sea-level fluctuations off the mouth of the inlet, which connects the lagoon with the coastal ocean. The effect of local wind plays a secondary role in modifying the coastally forced sea level inside the lagoon. Given the continuity constraint which links sea-level fluctuations to the depth and laterally integrated barotropic transport, the coastal pumping effect would be expected to be the dominant factor in controlling the subtidal barotropic exchange within the bay. However, the dominance of the coastal pumping effect on the barotropic exchange does not readily translate into the dominance of this effect on the transport and distribution of waterborne material in the bay at subtidal frequencies. The observed nearbottom subtidal current fluctuations are not coherent with the coastal sea-level fluctuations. The observed current is also much stronger than the barotropic current inferred from the continuity constraint. This suggests the presence of a depth-dependent flow field, with current in the upper layer fluctuating in opposite direction to that at depth. Furthermore, the observed near-bottom current also shows significant spatial variability within the bay. As for the mean current, the residual flow field shows distinctly different patterns between the surface and the bottom. The residual current at the surface exhibits a consistent mean flow out of the bay. At the bottom, the residual current shows a mean flow into the estuary in the upper part of the lagoon and a spatially variable flow in the lower part of the lagoon. A competition between gravitational circulation and tidally rectified current may contribute to the observed vertical and horizontal variabilities in the residual flow field.  相似文献   

13.
Analysis of summer monsoon (June to September) rainfall series of 29 subdivisions based on a fixed number of raingauges (306 stations) has been made for the 108-year period 1871–1978 for interannual and long-term variability of the rainfall. Statistical tests show that the rainfall series of 29 sub-divisions are homogeneous, Gaussian-distributed and do not contain any persistence. The highest and the lowest normal rainfall of 284 and 26 cm are observed over coastal Karnataka and west Rajasthan sub-divisions respectively. The interannual variability (range) varies over different sub-divisions, the lowest being 55 and the highest 231% of the normal rainfall, for south Assam and Saurashtra and Kutch sub-divisions respectively. High spatial coherency is observed between neighbouring sub-divisions; northeast region and northern west and peninsular Indian sub-divisions show oppositic correlation tendency. Significant change in mean rainfall of six sub-divisions is noticed. Correlogram and spectrum analysis show the presence of 14-year and QBO cycles in a few sub-divisional rainfall series.  相似文献   

14.
Estuaries located in the northern Gulf of Mexico are expected to experience reduced river discharge due to increasing demand for freshwater and predicted periods of declining precipitation. Changes in freshwater and nutrient input might impact estuarine higher trophic level productivity through changes in phytoplankton quantity and quality. Phytoplankton biomass and composition were examined in Apalachicola Bay, Florida during two summers of contrasting river discharge. The <20 μm autotrophs were the main component (92?±?3 %; n?=?14) of phytoplankton biomass in lower (<25 psu) salinity waters. In these lower salinity waters containing higher dissolved inorganic nutrients, phycocyanin containing cyanobacteria made the greatest contribution to phytoplankton biomass (69?±?3 %; n?=?14) followed by <20 μm eukaryotes (19?±?1 %; n?=?14), and phycoerythrin containing cyanobacteria (4?±?1 %; n?=?14). In waters with salinity from 25 to 35 psu that were located within or in close proximity to the estuary, >20 μm diatoms were an increasingly (20 to 70 %) larger component of phytoplankton biomass. Lower summer river discharges that lead to an areal contraction of lower (5–25 psu) salinity waters composed of higher phytoplankton biomass dominated by small (<20 μm) autotrophs will lead to a concomitant areal expansion of higher (>25 psu) salinity waters composed of relatively lower phytoplankton biomass and a higher percent contribution by >20 μm diatoms. A reduction in summer river discharge that leads to such a change in quantity and quality of estuarine phytoplankton available will result in a reduction in estuarine zooplankton productivity and possibly the productivity of higher trophic levels.  相似文献   

15.
Southern Egypt is mostly covered by clastic sediments belonging to the Paleozoic and the Mesozoic. The Precambrian basement rocks bound the Etbai area to the east and Gabgaba area to the west. The basement extends further west forming dissected small and major exposures in southern Egypt, south of latitude 23° 30′ N but are covered by Cretaceous-Lower Tertiary sediments further north, the Western Limestone Plateau. The clastic sediments in southeast Egypt, on the western side of the basement rocks in-between latitudes 22° N and 24° 35′ N, built two sub-basins, Kom Ombo (Garara) sub-basin in the north and south Nile Valley sub-basin in the south. These are separated by a dissected basement wall. The two sub-basins have different lithostratigraphic successions, Paleozoic (Early to Late) in the south Nile Valley sub-basin whereas Late Paleozoic-Mesozoic-Tertairy in the Kom Ombo sub-basin. The platform clastic sediments within both sub-basins were possibly supplied from an easterly located Paleotethys extending to North Gondwana. The Oxfordian opening of the Indian Ocean associated with rise in sea level supplied more waters to the north and sediments by passed the filled southern Nile Valley sub-basin and reached the adjacent Kom Ombo sub-basin defining a depositional shift. On the other hand, during the Jurassic, Northern Egypt received Neotethys waters that filled deeper sub-basins (e.g., the Maghara sub-basin), hence the difference in lithology between Jurassic northern and southern sediments. Since the Jurassic, most of Egypt received Tethys waters. In the drilled wells studied, the younger top sediments surrounding the well sites are related to the Tethys geostratigraphy. The sub-basins in southern Egypt are controlled by N-S faults defining constant subsiding basins. The E-W Guinea–Nubia Lineament bounds the northern side of the Kom Ombo sub-basin, where it is closed by a northern basement arch.  相似文献   

16.
Temporal and spatial variations in phytoplankton in Asan Bay, a temperate estuary under the influence of monsoon, were investigated over an annual cycle (2004). Phytoplankton blooms started in February (>20 μg chl l−1) and continued until April (>13 μg chl l−1) during the dry season, especially in upstream regions. The percentage contribution of large phytoplankton (micro-sized) was high (78–95%) during the blooms, and diatoms such as Skeletonema costatum and Thalassiosira spp. were dominant. The precipitation and freshwater discharge from embankments peaked and supplied nutrients into the bay during the monsoon event, especially in July. Species that favor freshwater, such as Oscillatoria spp. (cyanobacteria), dominated during the monsoon period. The phytoplankton biomass was minimal in this season despite nutrient concentrations that were relatively sufficient (enriched), and this pattern differed from that in tropical estuaries affected by monsoon and in temperate estuaries where phytoplankton respond to nutrient inputs during wet seasons. The flushing time estimated from the salinity was shorter than the doubling time in Asan Bay, which suggests that exports of phytoplankton maximized by high discharge directly from embankments differentiate this bay from other estuaries in temperate and tropical regions. This implies that the change in physical properties, especially in the freshwater discharge rates, has mainly been a regulator of phytoplankton dynamics since the construction of embankments in Asan Bay.  相似文献   

17.
Porewater (i.e., groundwater) samples were collected from multi-level piezometers across the freshwater-saltwater seepage face within the Indian River Lagoon subterranean estuary along Florida’s (USA) Atlantic coast for analysis of the rare earth elements (REE). Surface water samples for REE analysis were also collected from the water column of the Indian River Lagoon as well as two local rivers (Eau Gallie River, Crane Creek) that flow into the lagoon within the study area. Concentrations of REEs in porewaters from the subterranean estuary are 10-100 times higher than typical seawater values (e.g., Nd ranges from 217 to 2409 pmol kg−1), with submarine groundwater discharge (SGD) at the freshwater-saltwater seepage face exhibiting the highest REE concentrations. The elevated REE concentrations for SGD at the seepage face are too high to be the result of simple, binary mixing between a seawater end-member and local terrestrial SGD. Instead, the high REE concentrations indicate that geochemical reactions occurring within the subterranean estuary contribute substantially to the REE cycle. A simple mass balance model is used to investigate the cycling of REEs in the Indian River Lagoon and its underlying subterranean estuary. Mass balance modeling reveals that the Indian River Lagoon is approximately at steady-state with respect to the REE fluxes into and out of the lagoon. However, the subterranean estuary is not at steady-state with respect to the REE fluxes. Specifically, the model suggests that the SGD Nd flux, for example, exported from the subterranean estuary to the overlying lagoon waters exceeds the combined input to the subterranean estuary from terrestrial SGD and recirculating marine SGD by, on average, ∼100 mmol day−1. The mass balance model also reveals that the subterranean estuary is a net source of light REEs (LREE) and middle REEs (MREE) to the overlying lagoon waters, but acts as a sink for the heavy REEs (HREE). Geochemical modeling and statistical analysis further suggests that this fractionation occurs, in part, due to the coupling between REE cycling and iron redox cycling within the Indian River Lagoon subterranean estuary. The net SGD flux of Nd to the Indian River Lagoon is ∼7-fold larger than the local effective river flux to these coastal waters. This previously unrecognized source of Nd to the coastal ocean could conceivably be important to the global oceanic Nd budget, and help to resolve the oceanic “Nd paradox” by accounting for a substantial fraction of the hypothesized missing Nd flux to the ocean.  相似文献   

18.
The Pomeranian Bay is a coastal region fed by the Oder River, one of the seven largest Baltic rivers, whose waters flow through a large and complex estuarine system before entering the bay. Nutrients (NO3 , NO2 , NH4 +, Ntot, PO4 3−, Ptot, DSi), chlorophylla concentrations, oxygen content, salinity, and temperature were measured in the Pomeranian Bay in nine seasonally distributed cruises during 1993–1997. Strong spatial and temporal patterns were observed and they were governed by: the seasonally variable riverine water-nutrient discharges, the seasonally variable uptake of nutrients and their cycling in the river estuary and the Bay, the character of water exchange between the Pomeranian Bay and the Szczecin Lagoon, and the water flow patterns in the Bay that are dominated by wind-driven circulation. Easterly winds resulted in water and nutrient transport along the German coastline, while westerly winds confined the nutrient rich riverine waters to the Polish coast and transported them eastward beyond the study area. Two water masses, coastal and open, characterized by different chemical and physical parameters and chla content were found in the Bay independently of the season. The role of the Oder estuary in nutrient transformation, as well as the role of temperature in transformation processes is stressed in the paper. The DIN:DIP:DSi ratio indicated that phosphorus most probably played a limiting role in phytoplankton production in the Bay in spring, while nitrogen did the same in summer. During the spring bloom, predominated by diatoms, the DSi:DIN ratio dropped to 0.1 in the coastal waters and to 0.6 in the open bay waters, pointing to silicon limitation of diatom growth, similar to what is being observed in other Baltic regions.  相似文献   

19.
During the period from 1967 through 1972, a sampling programme was completed to determine the economic potential of heavy metals in the beach and river sands of the southern California coastal zone. These samples were employed to test the hypothesis that sand composition in a given beach cell is dominantly controlled by the provenance draining into that cell and is not strongly influenced by longshore leakage from upcurrent cells. Sample sets obtained before and after the exceptional flood of 1969 made it possible to compare the sediment supplied by normal river flow with that supplied by a major flood. Multivariate statistical analysis of the heavy mineral distribution of southern California beaches and rivers indicate that the sand composition of the two northern cells is controlled by the dominantly sedimentary Transverse Range provenance, whereas the composition of the three southern cells is controlled by the dioritic Peninsular Ranges. Some leakage occurs between the two northern cells around the Point Dume-Hueneme-Mugu Canyon Zone, whereas no important southward mixing occurs between cells around the Palos Verdes-Redondo Canyon Zone. Even though the Santa Clara River flows mostly through sedimentary terrains, samples from this river strongly reflect the granodioritic source present in its headlands. Although the basic sand composition within each cell persists during major flooding, leakage between cells may increase following flooding and the compositional packages present may show evidence of greater mixing.  相似文献   

20.
Elevated salinity in groundwater (over 250?mg/l chloride) in a fractured chalk aquifer in the municipality of Greve, Denmark, has been attributed to seawater intrusion from the Baltic Sea, resulting in the closure of a number of wells nearest to the coastline. However, a recent study in eastern Denmark shows that the salinity could also be from ancient connate pore waters. Historical chemistry data from bulk-water samples collected from wells have been used to determine the source. The sample data were studied with respect to their historical changes and temporal trends in chloride, carbonate, sulfate, sodium, potassium, magnesium, and calcium. Wells in the southern third of the municipality are relatively low in sodium and carbonate and high in chloride and calcium/magnesium, indicating waters undergoing saline intrusion. Wells in the northern two-thirds of the municipality are high in carbonate and sodium, but low in chloride and calcium/magnesium, indicating a freshening of the aquifer. This is confirmed by the temporal trends in chloride, where chloride levels in the northern wells remain constant, whereas in the south, chloride increases as abstraction continues. Therefore close monitoring for seawater intrusion should be conducted in the southern third of the municipality.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号