首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
全球气候模式对未来中国风速变化预估   总被引:6,自引:0,他引:6  
江滢  罗勇  赵宗慈 《大气科学》2010,34(2):323-336
利用世界气候研究计划之第三次耦合模式比较计划 (WCRP/CMIP3) 提供的, 参加IPCC AR4的19个气候模式和国家气候中心为IPCC第五次报告研发的新一代气候模式 (BCC_CSM1.0.1) 及模式集成, 考虑高排放 (A2)、 中等排放 (A1B) 和低排放 (B1) 三种人类排放情景, 预估21世纪中国近地层 (离地10 m) 风速变化。预估结果表明: (1) 21世纪全国平均的年平均风速呈微弱的减小趋势, 且随着预估情景人类排放的增加, 中国年平均风速减小趋势越显著。 (2) 冬季 (夏季) 全国平均风速呈减小 (增大) 趋势, 人类排放量越多, 冬季 (夏季) 风速减小 (增加) 程度越大。21世纪我国风速夏季 (冬季) 增大 (减小) 与全球变暖的背景下未来亚洲夏季风 (冬季风) 增强 (减弱) 有一定关系。 (3) 与20世纪末期 (1980~1999年) 相比, 21世纪初期 (2011~2030年) 中国区域年平均风速A2情景下略偏小, A1B和B1情景下年平均风速无明显变化; 21世纪中期 (2046~2065年) 和后期 (2080~2099年), 三种排放情景下中国年平均风速均比20世纪末期风速小。 (4) 21世纪初期、 中期和后期均表现为冬季 (夏季) 平均风速比20世纪末期冬季 (夏季) 平均小 (大)。 (5) 夏季中国中北部和东北地区风速偏大, 其余地区风速无明显变化或略偏小; 冬季除了东北北部和西藏东南部外, 中国大部地区风速偏小。绝大部分地区超过50%模式一致地预估上述风速变化形式, 具有一定的可信度。  相似文献   

2.
基于2014-2017年的揭阳市4个环境监测站(东兴、西马、新兴和渔湖)的空气污染物(SO2、NO2、O3、PM10)数据和逐日平均风速资料,利用区域空气质量指数(RAQI)对揭阳市的空气污染特征及与风速的关系进行分析,结果表明:揭阳市的RAQI呈现逐年下降趋势,同时RAQI表现出明显的季节变化,在冬半年揭阳市的RAQI较大,空气污染较为严重,在夏半年的RAQI较小,空气质量较好;此外,揭阳市的RAQI主要是由于臭氧影响,其对于空气质量的贡献约有40%,PM10的影响次之,SO2的影响最小;揭阳市的空气质量与风速呈现为显著的负相关关系,当风速越强,空气质量越好,反之亦然。当风速强度约为0.19~0.29 m/s时,揭阳市容易出现空气污染情况,当风速>1.84 m/s时,无污染出现。  相似文献   

3.
近50年中国风速变化多气候模式模拟检验   总被引:3,自引:0,他引:3  
江滢  罗勇  赵宗慈 《气象学报》2009,67(6):923-934
近年来,随着气候模式研究的快速发展,全球气候模式在模拟20世纪气候和气候变化特征,尤其是在模拟温度、降水等要素特征和变化及其人类活动对这些要素的影响等方面取得了丰硕的成果.然而,全球气候模式对近地层风速的模拟情况如何,目前仍缺少分析和检验.本文利用中国区域近地层风速观测资料,检验评估了参与IPCC AR4"20世纪气候耦合模式模拟"(20C3M)的19个伞球气候模式和国家气候中心新一代伞球气候模式(BCC_CSM1.0.1)模拟的1956-1999年中国近地层(10m)风速及其变化的模拟能力.研究发现,20个伞球气候模式基本上都能模拟出中国多年年(或季)平均风速分布状况,但模式模拟的平均风速一般小于观测值,尤以观测风速较大的北部和西北部地区模拟值偏小显著.气候模式模拟秋冬季风速分布的能力强于模拟夏春季的能力.模式基本上能模拟出冬、春季平均风速大于夏、秋季平均风速,但是模拟不出春、冬、夏、秋季平均风速依次减小的季节变化特征.模式及模式集成难以模拟出观测到的近50年中国年(或季)平均风速明显减小的变化趋势,少数模式能模拟出年(或季)平均风速略呈减小的变化趋势,但与观测值比相差约一个量级.模式对北部和西南部地区平均风速的变化模拟效果较好,而模式难以模拟东南-南部地区风速变化特征.  相似文献   

4.
文章利用2013—2017年呼和浩特市冬季空气污染数据及同期气象观测数据,分析空气污染特征及各类气象条件下污染日数分布特征,结果表明:近5a来呼和浩特市冬季平均空气质量指数呈下降趋势,空气污染程度有所减缓。空气质量未达标日数呈减少趋势,特别是轻度和中度污染日数下降趋势最显著;首要污染物以PM10为主;冬季风速、气温、相对湿度与空气质量指数显著相关,降水量对空气质量的影响较小;S和SSW风向时污染日数出现概率较高,易出现中到重度空气污染。  相似文献   

5.
1960—2009年广西霾日时空变化特征   总被引:2,自引:1,他引:1       下载免费PDF全文
利用1960—2009年广西80个地面观测站资料,运用EOF、线性倾向估计等统计方法,分析了近50年广西霾日数的时空变化特征。结果表明:近50年广西霾日数总体呈上升趋势,与该地区人类活动和经济发展引起的污染排放增长密切相关;空间分布呈现出主要城市及其周边地区霾日多,边远地区及沿海地区霾日少的特点;广西霾天气主要发生在秋、冬季,以轻微霾 (能见度为5~10 km) 为主,且霾天气发生时的相对湿度8成以上介于70%~90%;除了空气污染之外,近50年风速呈下降趋势可能也导致更多的霾天气。  相似文献   

6.
利用世界气候研究计划的第五阶段模式比较计划(Coupled Model Intercomparison Project Phase 5,CMIP5)提供的参加政府间气候变化专门委员会第五次评估报告(The Fifth Assessment Report of Intergovernmental Panel on Climate Change,IPCC AR5)的23个全球气候模式和第三阶段模式比较计划/第四次评估报告CMIP3/AR4的19个全球气候模式,考虑高排放典型浓度路径RCP 8.5(Representative Concentration Pathway 8.5)和排放情景特别策划SRES A2(Special Report on Emission Scenarios A2)、中等排放(RCP 4.5和SRES A1B)和低排放(RCP 2.6和SRES B1)各3种温室气体排放情景,预估21世纪中国近地层(距地面10 m)风速变化。结果表明:21世纪中国区域近地层年平均风速呈减小的趋势,随着温室气体排放浓度的增加,年平均风速减小趋势的程度依次显著,模式预估风速减小趋势的一致性也依次增加。CMIP5和CMIP3模式的预估结果均表明21世纪中国西部地区(N和SW区)年平均风速呈减小的趋势,东部地区(NE和SE区)年平均风速呈增加的变化趋势。与21世纪前期(2006—2015年)相比,21世纪后期(2090—2099年)中国西部、华北北部至东北南部地区风速偏小,东北北部、华北南部至华南大部地区风速偏大。温室气体排放浓度越大,21世纪后期中国冬季(夏季)风速偏小(偏大)于21世纪前期的范围越大,偏小(偏大)程度越明显。  相似文献   

7.
天津市空气污染数值预报试验中的模式系统   总被引:9,自引:1,他引:8  
介绍了天津市空气污染数值预报实验中城市空气污染数值预报模式系统的构成及各模块的功能。在天津市空气污染预报实验期间, α中尺度气象模式对区域范围内的逐时风、温、湿及其降水预报取得了较好的效果, 且模式的计算时间短; β中尺度气象模式在边界层内具有较高的垂直分辨率, 模拟结果合理, 其中计算与观测的风向差小于60o的概率达到643% , 计算与观测的风速比值接近于1; 预报的地面SO2、NOx和TSP浓度与同步监测值相比, 城市空气污染预报模式对SO2和NOx的日平均浓度的预报效果较好, 预报准确率达640% , 而对TSP的预报则较差  相似文献   

8.
郑州市大气能见度变化特征及与空气污染的关系   总被引:12,自引:4,他引:8  
根据郑州市19802007年能见度及同期地面气象要素(风速、温度、气压和相对湿度)观测资料和2006年、2007年空气污染物(SO2、NO2、PM10)监测数据,分析了郑州市大气能见度的变化特征以及大气能见度与气象要素和空气污染之间的关系.分析表明,大气能见度呈逐年下降趋势.一年之中,能见度最小值出现在121月及78月,最大值出现在56月;一日之中,08时能见度最差,14时最好.能见度与温度、风速呈正相关,与气压、湿度呈负相关,与空气污染物质量呈负相关.  相似文献   

9.
大气污染系数概念的辩正及其在甘肃部分地区的初步应用   总被引:1,自引:0,他引:1  
1.引言工业污染源对环境的影响是长期的,在环境影响分析和城镇工业规划设计中,需要依据气候资料来分析污染浓度变化的长期统计规律,这就涉及到空气污染气候学的论题。影响空气污染的气象因子是很多的:如风向、风速、大气稳定度、混合层厚度、降水等。但不论哪类空气污染问题,风向、风速总是重要的因子,风向指示污染物的输送方向,风速决定污染物的稀释和输送速率。  相似文献   

10.
华北地区风速变化的分析   总被引:13,自引:1,他引:13  
荣艳淑  梁嘉颖 《气象科学》2008,28(6):655-658
本文利用华北地区1957-2006年共计50a 104个气象观测站的实测风速,分析了该地区年平均风速的空间分布特征、逐年代变化特征、近50a来的变化趋势以及风速突变现象,研究表明,华北地区风速呈西北和东南地区偏大、东北一西南向风速偏小的分布特征;风速有减小趋势,大部分台站风速减小趋势达到了-0.2~-0.5(m·s-1)/10a;华北南部风速最先开始突变,西部次之,北部和中部没有检测到突变时间.  相似文献   

11.
空气污染、天气和气候与大众生活息息相关,全球变化与可持续发展更是全人类面临的共同挑战。空气污染与气候变化对发展中国家带来的挑战更为显著。中国作为人口最多、发展飞速的国家,面临这两方面的挑战尤为严峻。因此,深入了解空气污染与气候变化的成因和发展机制,摸清两者相互关系对提高人们的生活质量和科学发展方针政策的制定具有指导意义。随着全球变化研究的深入,气溶胶与温室气体作为影响地球气候的两个最重要的人类排放物,在气候变化科学中起着至关重要的作用,气溶胶研究也成为地球科学发展最快的一个分支学科。中国天气、气候的变化特征,如高温增多、寒潮变少、风速减小、大气变稳、小雨减少、大雨增多、雷暴增强、季风减弱等,与空气污染都存在不同程度的联系。本文主要综述气溶胶对我国天气、气候的影响以及与气象因素相关的空气污染问题,侧重于气溶胶与极端天气事件之间包括影响程度和影响机理在内的错综复杂的关系。研究方法涉及星、地、空综合观测资料分析和模式模拟等。观测资料包括长时间历史观测资料、短时段强化观测实验资料、全球卫星资料等。  相似文献   

12.
基于呼和浩特市1981—2018年地面气象观测资料、2014—2018年的空气污染观测数据和1992—2013年夜间灯光指数,计算呼和浩特市大气自净能力指数ASI,分析大气自净能力与空气质量的关系,探讨近38 a呼和浩特市大气自净能力变化特征及其影响因素。结果表明:ASI与空气质量指数AQI呈幂函数的负相关关系,ASI越小,越容易出现空气污染。呼和浩特市年平均ASI呈显著下降趋势,特别是21世纪之后下降明显。风速、混合层高度对ASI的作用更大,而降水的作用较小。冷空气日数与ASI正相关关系显著,21世纪以后冷空气活动的明显偏弱对大气自净能力减弱造成一定影响;夜间灯光指数及夜间灯光区域面积均与通风量呈显著的负相关关系,大气自净能力的变化在一定程度上受到城市化进程的影响,特别是21世纪以后影响较大。  相似文献   

13.
为建立适合深圳的空气污染气象条件标准,对目前开展的空气污染气象条件预报进行客观的检验,基于2011—2013年地面常规气象观测资料和风廓线雷达资料,对能见度和影响因子(降雨、地面风速和低空风速)进行了相关分析。根据不同气象条件对空气污染的不同影响,将空气污染气象条件分为1—6级,等级越高,越有利于空气污染,并由此建立了深圳市空气污染气象条件等级的计算方法和流程。计算结果与实况基本相符,平均基本准确率达到75.0%,其中1级和4级基本准确率分别达到83.3%、85.2%,业务运行良好。该方法对于小概率事件(如热带气旋外围环流影响)的计算能力较差,6级的基本正确率仅为52.7%。所以针对特殊的低能见度小概率事件需要进行进一步的研究。  相似文献   

14.
利用汉中市环境监测站提供的空气污染资料和同期气象资料对2007年12月17—26日汉中市城区连续空气污染过程进行分析。结果表明,高空受高脊影响或平直西风气流控制,大气层结稳定,不利污染物垂直扩散;地面处于弱高压底部或均压场中,水平风速较小,不利污染物的水平扩散;近地层逆温更易造成地面空气污染;空气污染指数的变化与风速、气温日较差密切相关,相关系数分别为-0.59、0.85。  相似文献   

15.
1961~2010年黄河中下游地区24节气气候变化特征分析   总被引:2,自引:0,他引:2  
24节气是我国古代劳动人民的独特创造。全面掌握"24节气"的气候变化规律,不但有利于指导农事生产,提高气象服务质量和水平,而且在为人类预防和治疗疾病方面也有重要意义。在全球变暖的气候背景下,统计分析了1961~2010年黄河中下游地区24节气的气温、湿度、风速等6个气象要素的变化特征,得到以下结论:黄河中下游地区随节气变换气候变化显著,大暑、小暑节气高温高湿,小寒、大寒节气寒冷干燥,清明节气寒温反复大风将至,霜降节气天气渐凉秋燥加剧等。50年内,春季型节气(平均、最高、最低)气温显著升高,冬季型节气最低气温升高显著。气压随节气变化特征与气温大致相反,夏、秋季节气有升压趋势。相对湿度与降水均呈减少趋势,以秋季型节气减小趋势最明显。春季风速最大,夏、秋季风速最小,所有节气风速均呈减小趋势,冬夏季节气日照时间呈缩短趋势。  相似文献   

16.
兰州市低空风时空变化特征及其与空气污染的关系   总被引:7,自引:9,他引:7  
对1988年至1992年兰州市环境监测站自动监测系统监测到的近地面逐时风和空气污染浓度资料以及对应时段的兰州市低空风资料乃至城,郊近40年的地面风资料做了深入的分析,并将城区与郊区对照点(榆中站)进行对比研究,揭示了风向频率变化特征和风速日变化,年变化,年际变化以及风随高度的变化规律。同时分析了对应时段空气污染的分布状况及其与风速的相关关系,为研究兰州市边界层大气动力稳定度的时空变化规律和开展空气污染预报提供了一定的依据。  相似文献   

17.
根据洪雅地区近40a(1977—2016年)的日照时数和风向风速资料,分析了该地区日照时数和风向风速变化特征,结果表明:(1)洪雅地区近40a平均日照时数为921.2h,日照时数呈缓慢下降趋势,年日照时数变幅很大。通过M—K检验可知在2011、2015、2016年日照时数发生了突变,但日照时数没有明显的突变特征。从小波分析可以看出年日照时数存在7a的时间尺度变化特征。(2)洪雅地区近40a风向以西风和西北风为主,频率为11.2%。近40a平均风速为1.1m/s,风速呈缓慢上升趋势。近40a四季平均风速变化较小。  相似文献   

18.
利用吉林省1971—2018年最大风速及2005—2018年极大风速数据,采用阵风系数方法对1971—2004年极大风速进行估算,形成1971—2018年极大风速序列。在此基础上采用累积距平、极值Ⅰ型分布、Mann-Kendall检验等方法对极大风速的时空变化特征及其与气候变暖的关系进行分析。结果表明:(1)8级及以上大风随着风力级别的升高,出现站次迅速减少;(2)年内极大风速呈双峰双谷型特征,春、秋季为两峰,冬、夏季为两谷;(3)1970年代以来,吉林省年平均极大风速每10 a下降0.9 m·s~(-1),超过8级的大风站次呈减少趋势;(4)吉林省平均极大风速、10~50 a一遇的极大风速都呈西北高、东南低的空间分布,长春站10~50 a一遇的极大风速最大,达33.9~40.7 m·s~(-1);(5)年平均极大风速和气温呈明显的反相关和反位相关系,且在1988年前后发生突变,和东北地区气温突变同步;(6)尽管由于气候变暖,吉林省极大风速呈明显减小趋势,但仍有极端大风天气出现,2011—2018年10级以上大风出现95站次,还出现1站次13级以上大风,因此仍需加强大风灾害防御。  相似文献   

19.
南海西南季风爆发前后海-气通量交换系 数研究   总被引:7,自引:1,他引:7  
动量交换系数(CD)、感热交换系数(CH)和潜热(或水汽)交换系数(CE)是气候模式中参数化海-气通量必需的参数,不同地区、天气、海况的试验中计算结果各异。文章利用2002年4月24日至6月20日在西沙海区进行的第3次南海海-气通量观测试验资料,使用涡旋相关法和TOGA COARE2.5b版本通量计算方案,计算了西南季风爆发前后海-气界面动量、感热通量、潜热通量等的湍流交换系数,讨论了各通量交换系数的变化特征及其与气象要素变化的关系。结果表明:西南季风爆发前后,随着风向、风速、云量、降水、湿度及海面状态等变化,通量交换系数也发生变化:中性条件动量交换系数(CDn)在季风爆发前数值略小,季风爆发后数值增大;中性条件感热交换系数和潜热交换系数(CHn,CEn)对天气变化的反应不够敏感。动量交换系数主要受风速影响,但在不同风速区间相关关系有异。(CH)与海-气温差呈现正相关关系,和气温有明显的负相关关系。CE与风速的关系密切,但当风速>12 m/s,CE随风速的变化趋向一个稳定值。另外当海-气温差大约<2℃时,CE随着海-气温差增大相应增大,反映了通量交换系数不仅与风影响下的下垫面特性有关,而且还与稳定度参数有关。各通量交换系数与气象要素变化的关系可以拟合为多项式或者简单的线性关系式。  相似文献   

20.
利用朔州市气象局观测站1961~2009年日照、云量、风速及烟、霾、浮尘、扬沙、沙尘暴等气象资料,采用数理统计方法,初步分析了朔州市日照时数的年、季、月的变化特征、趋势及引起日照时数变化的因子。结果表明:朔州市年日照时数呈明显的减少趋势,其趋势变化率为-118.1h/10a,并呈现出阶段性变化的特征;1980年之前为日照时数偏多期,1980年后日照时数开始减少,1990年后减少趋势明显加快;从季节变化来看四季总的趋势是减少的,其中夏季比较明显,且变化幅度最大,对年日照时数的变化影响较大;各月日照时数变化趋势基本一致,呈不同速率的减少趋势,其中5月最为明显。近50a朔州市的年风速呈明显减小趋势,尤其是20世纪90年代以后快速减小,与朔州市自1990年代起经济规模的快速增长特别是煤炭行业的快速发展及城市化进程加快相对应,说明人类活动特别是工业排放污染物的急剧增长,导致大气气溶胶增加,空气污染逐年加重,加之风速逐年减小,利于大气气溶胶在低空积聚,造成大气透明度降低,日照时数减少。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号