首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
James M. Kaihatu   《Ocean Modelling》2009,26(3-4):190-205
The effect of ambient currents on nearshore nonlinear wave–wave energy transfer in random waves is studied with the use of a nonlinear frequency domain wave–current interaction model. We focus on the phenomenon of wave recurrence as a classical nonlinear phenomenon whose characteristics are well established for systems truncated to small numbers of frequency modes. The model used for this study is first extended to enhance accuracy; comparisons of permanent form solutions to analytical forms confirm the model accuracy. Application of the model to a highly truncated system confirmed the model’s consistency with published results for both positive (following) and negative (adverse) currents. Propagation of random wave spectra over a flat bottom was performed with the model, with the intent of determining the prevalence of recurrence between the spectral peak and its harmonics. For spectra of moderate Ursell number, it was found that positive currents extended the length scale of recurrence relative to the case with no currents; conversely, negative currents reduced the recurrence lengths. However, beyond a propagation distance of ≈40 wavelengths of the spectral peak, recurrence becomes almost completely damped as the spectra becomes broad and the spectral energies equilibrate. For spectra of high Ursell number, in contrast, recurrence is almost immediately damped, suggesting that the nonlinearity is sufficient to allow immediate spectral broadening and equilibration and overwhelming any preferential interactions among the spectral peak and its harmonics, regardless of current magnitude or direction.  相似文献   

2.
The effect of currents on the variation of cross-shore bound long waves forced by bichromatic waves over a plane slope was investigated in the laboratory. In still water the growth rate of the shoaling bound long waves over the slope is proportional to h– 5/2 (h is still-water depth). It was found that the opposing current makes the amplitudes of the bound long waves greater than those of still water for all cases. However, the amplitudes of bound long waves in a following current are reduced in the weakly modulated cases but are enhanced in the fully modulated case.  相似文献   

3.
A simple numerical model, based on the Reynolds stress equations and kε turbulence closure scheme, is developed for the coastal wave and current bottom boundary layer. The current friction velocity is introduced to account for the effect of currents on waves. The implicit Crank–Nicolson finite difference method discretizes the governing equations. Vertical changing step grids with the constant ratio for two adjacent spatial steps are used together with the equal time steps in the modeling. Vertical profiles of mean current velocity and wave velocity amplitude are obtained. These modeled results are compared with the laboratory experimental data of Van Doorn [1981. Experimental investigation of near bottom velocities in water waves with and without a current. Report M1423, Delft Hydraulics Laboratory, Delft, The Netherlands; 1982. Experimenteel onderzoek naar het snelheidsveld in de turbulente bodemgrenslaag in een oscillerende stroming in een golftunnel. Report M1562, Delft Hydraulics Laboratory, Delft, The Netherlands]. It has been shown that modeled and observed (Van Doorn, T., 1981. Experimental investigation of near bottom velocities in water waves with and without a current. Report M1423, Delft Hydraulics Laboratory, Delft, The Netherlands; 1982. Experimenteel onderzoek naar het snelheidsveld in de turbulente bodemgrenslaag in een oscillerende stroming in een golftunnel. Report M1562, Delft Hydraulics Laboratory, Delft, The Netherlands) mean velocity profiles within the wave and current bottom boundary layer are in better agreement than outside. Modeled and observed (Van Doorn, T., 1981. Experimental investigation of near bottom velocities in water waves with and without a current. Report M1423, Delft Hydraulics Laboratory, Delft, The Netherlands) wave velocity amplitude profiles within the wave and current bottom boundary layer are in better agreement than outside. Modeled wave velocity amplitudes are in good agreement with the laboratory experimental data of Van Doorn [1982. Experimenteel onderzoek naar het snelheidsveld in de turbulente bodemgrenslaag in een oscillerende stroming in een golftunnel. Report M1562, Delft Hydraulics Laboratory, Delft, The Netherlands].  相似文献   

4.
In the present paper, analytic solutions are derived for scattering of water waves obliquely incident to a partially reflecting semi-infinite breakwater or breakwater gap. In order to examine the correctness of the derived solutions, they are compared with the solutions derived by McIver (1999) and Bowen and McIver (2002) for a semi-infinite breakwater and a breakwater gap, respectively, in the case of perfect reflection. The derived analytic solutions are used to investigate the effect of reflection coefficient of the breakwater and wave incident angle upon the tranquility at harbor entrance. The tranquility is deteriorated by the reflected waves as the reflection coefficient increases and as waves are incident more obliquely.  相似文献   

5.
斜向入射波与反射波的分离   总被引:7,自引:0,他引:7  
孙昭晨  王利生 《海洋学报》1999,21(4):114-120
提出了一种分离斜向入射波和反射波的方法,波浪可以是规则波、不规则波,波向可以任意.在一定的限制条件下,采用两点浪高仪的波浪信号就可将斜向入射波和反射波分离.  相似文献   

6.
In this paper, a superposition of two periodic wave profiles in a finite water depth was investigated. This paper is focused on the improvement of a wave profile on the linear superposition of two waves. This improvement was realized by introducing an iterative method, which was based on a fixed point approach. Application of the fixed point approach to the wave superposition made it possible to obtain a wave profile of wave–wave interaction. The improved result of the wave profile was in good agreement with that of the nonlinear perturbation solution of the second order. It was interesting that the improved result revealed the higher-order nonlinear frequencies for two interacting Stokes waves while Dalzell's solution by a perturbation method could not predict them.  相似文献   

7.
The horizontal exchange of momentum due to the organized motion in combined waves and current has been analyzed. The combination of the vertical orbital wave motion and the mean current gives a periodic variation in the horizontal velocity in addition to the wave orbital motion. This periodic variation, combined with the wave orbital motion, gives a significant contribution to the momentum exchange. Two examples are considered, the interaction of a pure wave motion and a current normal to the direction of wave propagation, and a wave driven longshore current with an undertow velocity profile. It is demonstrated that the new contribution changes the resulting momentum exchange considerably.  相似文献   

8.
This paper describes a simple method for determining the wavelength of small amplitude waves under laboratory conditions where reflected wave components are present both with and without a mean current flow superimposed. It assumes a locally horizontal bed but requires no a priori assumption concerning the form of the dispersion relation with a coexisting current. Synchronous measurements of the water surface recorded along any straight line are analysed to yield Fourier coefficients at each location. It is then shown that for all practical conditions excluding a perfect standing wave, the average rate of change of wave phase in the chosen direction can be related directly to the component of incident wave number in that direction, irrespective of reflection coefficient or relative current strength. The technique has been applied to regular and bichromatic waves in a flume with an absorbing wave generator, and can also be applied in 3-D wave basins where waves and currents intersect at arbitrary angles. In combined wave–current experiments, by assuming the linear dispersion relation, it is also possible to estimate the effective current velocity.  相似文献   

9.
An existing 2D time-domain method for separating irregular incident and reflected waves by wavelet transform [Ma et al., 2010. A new method for separation of 2D incident and reflected waves by the Morlet wavelet transform. Coastal Eng., 57(6):597–603] is extended to account for obliquely incident irregular waves propagating over sloping bottoms. The linear shoaling and refraction coefficients are adopted to determine the amplitude and phase changes of waves. The optimal central frequency of the Morlet wavelet is determined by the minimum Shannon wavelet entropy. Numerical tests show that the present method can accurately separate waves over horizontal depths. For waves at sloping bottoms, however, the separation errors increase as bottom slope increases and are significant for waves with incident angle larger than π/3.  相似文献   

10.
A semi-analytical nonlinear wavemaker model is derived to predict the generation and propagation of transient nonlinear waves in a wave flume. The solution is very efficient and is achieved by applying eigenfunction expansions and FFT. The model is applied to study the effect of the wavemaker and its motion on the generation and propagation of nonlinear waves. The results indicate that the linear wavemaker theory may be applied to predict only the generation of waves of low steepness for which the nonlinear terms in the kinematic wavemaker boundary condition and free-surface boundary conditions are of secondary importance. For waves of moderate steepness and steep waves these nonlinear terms have substantial effects on wave profile and wave spectrum just after the wavemaker. A wave spectrum corresponding to a sinusoidally moving wavemaker possesses a multi-peak form with substantial nonlinear components, which disturbs or may even exclude physical modeling in wave flumes. The analysis shows that the widely recognized weakly nonlinear wavemaker theory may only be applied to describe the generation and propagation of waves of low steepness. This is subject to further restrictions in shallow and deep waters because the kinematic wavemaker boundary condition as well as the nonlinear interaction of wave components and the evolution of wave energy spectrum is not properly described by weakly nonlinear wavemaker theory. Laboratory experiments were conducted in a wave flume to verify the nonlinear wavemaker model. The comparisons show a reasonable agreement between predicted and measured free-surface elevation and the corresponding amplitudes of Fourier series. A reasonable agreement between theoretical results and experimental data is observed even for fairly steep waves.  相似文献   

11.
Jiankang Wu  Bo Chen 《Ocean Engineering》2003,30(15):1899-1913
Based on Green–Naghdi equation this work studies unsteady ship waves in shallow water of varying depth. A moving ship is regarded as a moving pressure disturbance on free surface. The moving pressure is incorporated into the Green–Naghdi equation to formulate forcing of ship waves in shallow water. The frequency dispersion term of the Green–Naghdi equation accounts for the effects of finite water depth on ship waves. A wave equation model and the finite element method (WE/FEM) are adopted to solve the Green–Naghdi equation. The numerical examples of a Series 60 (CB=0.6) ship moving in shallow water are presented. Three-dimensional ship wave profiles and wave resistance are given when the ship moves in shallow water with a bed bump (or a trench). The numerical results indicate that the wave resistance increases first, then decreases, and finally returns to normal value as the ship passes a bed bump. A comparison between the numerical results predicted by the Green–Naghdi equation and the shallow water equations is made. It is found that the wave resistance predicted by the Green–Naghdi equation is larger than that predicted by the shallow water equations in subcritical flow , and the Green–Naghdi equation and the shallow water equations predict almost the same wave resistance when , the frequency dispersion can be neglected in supercritical flows.  相似文献   

12.
Wave reflection from partially perforated-wall caisson breakwater   总被引:2,自引:0,他引:2  
In 1995, Suh and Park developed a numerical model that computes the reflection of regular waves from a fully perforated-wall caisson breakwater. This paper describes how to apply this model to a partially perforated-wall caisson and irregular waves. To examine the performance of the model, existing experimental data are used for regular waves, while a laboratory experiment is conducted in this study for irregular waves. The numerical model based on a linear wave theory tends to over-predict the reflection coefficient of regular waves as the wave nonlinearity increases, but such an over-prediction is not observed in the case of irregular waves. For both regular and irregular waves, the numerical model slightly over- and under-predicts the reflection coefficients at larger and smaller values, respectively, because the model neglects the evanescent waves near the breakwater.  相似文献   

13.
Jin-Bao Song   《Ocean Engineering》2006,33(17-18):2435-2453
Based on the second-order solutions obtained for the three-dimensional weakly nonlinear random waves propagating over a steady uniform current in finite water depth, the joint statistical distribution of the velocity and acceleration of the fluid particle in the current direction is derived using the characteristic function expansion method. From the joint distribution and the Morison equation, the theoretical distributions of drag forces, inertia forces and total random forces caused by waves propagating over a steady uniform current are determined. The distribution of inertia forces is Gaussian as that derived using the linear wave model, whereas the distributions of drag forces and total random forces deviate slightly from those derived utilizing the linear wave model. The distributions presented can be determined by the wave number spectrum of ocean waves, current speed and the second order wave–wave and wave–current interactions. As an illustrative example, for fully developed deep ocean waves, the parameters appeared in the distributions near still water level are calculated for various wind speeds and current speeds by using Donelan–Pierson–Banner spectrum and the effects of the current and the nonlinearity of ocean waves on the distribution are studied.  相似文献   

14.
This paper presents a mathematical model which computes the hydrodynamic characteristics of a curtainwall–pile breakwater (CPB) using circular piles, by modifying the model developed for rectangular piles by Suh et al. [2006. Hydrodynamic characteristics of pile-supported vertical wall breakwaters. Journal of Waterway, Port, Coastal and Ocean Engineering 132(2), 83–96]. To examine the validity of the model, laboratory experiments have been conducted for CPB with various values of draft of curtain wall, spacing between piles, and wave height and period. Comparisons between measurement and prediction show that the mathematical model adequately reproduces most of the important features of the experimental results. The mathematical model based on linear wave theory tends to over-predict the reflection coefficient as the wave height increases. As the draft of the curtain wall increases and the porosity between piles decreases, the reflection and transmission coefficient increases and decreases, respectively, as expected. As the relative water depth increases, however, the effect of porosity disappears because the wave motion is minimal in the lower part of a water column for short waves.  相似文献   

15.
A numerical solution is developed to investigate the generation and propagation of small-amplitude water waves in a semi-infinite rectangular wave basin. The three-dimensional wave field is produced by the prescribed “snake-like” motion of an array of segmented wave generators located along the wall at one end of the tank. The solution technique is based on the boundary element approach and uses an appropriate three-dimensional Green function which explicitly satisfies the tank-wall boundary conditions. The Green function and its derivatives which appear in the integral equation formulation can be shown to be slowly convergent when the source and field points are in close proximity. Therefore, when computing the velocity potentials on the wave generators, the source points are chosen outside the fluid domain, thereby ensuring the rapid convergence of these functions and rendering the integral equations non-singular. Numerical results are shown which illustrate the influence of the various wavemaker and basin parameters on the generated wave field. Finally, the complete wave field produced by the diffraction of oblique waves by a vertical circular cylinder in a basin is presented.  相似文献   

16.
The stochastic Lagrange wave model is a realistic alternative to the Gaussian linear wave model, which has been successfully used in ocean engineering for more than half a century. This paper presents exact slope distributions and other characteristic distributions at level crossings for symmetric and asymmetric Lagrange space and time waves. These distributions are given as expectations in a multivariate normal distribution, and they have to be evaluated by simulation or numerical integration. Interesting characteristic variables are: slopes obtained by asynchronous sampling in space or time, slopes in space or time, and horizontal particle velocity, when waves are observed when the water level crosses a predetermined level.  相似文献   

17.
18.
Recent work in the area of open-ocean aquaculture-system dynamics has focused either on the response of fish cages in waves or the steady drag response from ocean currents, not on them combined. In reality, however, the forces bearing on these open-ocean structures are a nonlinear, multidirectional combination of both waves and current profiles. In this paper, a numerical model has been developed to simulate the dynamic response of the gravity cage to waves combined with currents. When current flows are combined with regular waves, gravity-cage motion response (including heave, surge, and pitch) and mooring-line forces have been calculated. To examine the validity of simulated results, a series of physical model tests have been carried out. The results of our numerical simulation are all in close agreement with the experimental data.  相似文献   

19.
A spectral wind wave model SWAN (Simulation WAves Nearshore) that represents the generation, propagation and dissipation of waves was applied to Lake Okeechobee. This model includes the effects of refraction, shoaling, and blocking in wave propagation. It accounts for wave dissipation by whitecapping, bottom friction, and depth-induced wave breaking. The wave–wave interaction effect also is included in this model. Measurements of wind and wave heights were made at different stations and different time periods in Lake Okeechobee. Significant wave height values were computed from the recorded data. The correlation between wind stress and significant wave height also was analyzed. A 6-day simulation using 1989 data was conducted for model calibration. Another 6-day simulation using 1996 data was conducted for model verification. The simulated significant wave heights were found to agree reasonably well with measured significant wave heights for calibration and verification periods. Agreement between observed and simulated values was based on graphical comparisons, mean, absolute and root mean square errors, and correlation coefficient. Comparisons showed that the model reproduced both general observed trends and short term fluctuations.  相似文献   

20.
In this work, a combined immersed boundary (IB) and volume of fluid (VOF) methodology is developed to simulate the interactions of free-surface waves and submerged solid bodies. The IB method is used to account for the no-slip boundary condition at solid interfaces and the VOF method, utilizing a piecewise linear interface calculation, is employed to track free surfaces. The combined model is applied in several case studies, including the propagation of small-amplitude progressive waves over a submerged trapezoidal dike, a solitary wave traveling over a submerged rectangular object, and wave generation induced by a moving bed. Numerical results depicting the free-surface evolutions and velocity fields are in good agreement with either experimental data or numerical results obtained by other researchers. In addition, the simplification of the initial free-surface deformation used in most tsunami earthquake source study is justified by the present model application. The methodology presented in the paper serves as a good tool for solving many practical problems involving free surfaces and complex boundaries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号