首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We discuss the potential of ALMA for studying the formation of substellar objects. We first review briefly the various formation mechanisms proposed so far and stress the unique capability of ALMA to detect and study pre-brown dwarf cores and to confirm the core-collapse scenario to the lowest possible masses. We then discuss the properties of disks around substellar objects. We show how it will be possible to detect with ALMA most disks around objects with mass as low as few Jupiter masses, and to resolve spatially their emission in the more favorable cases.  相似文献   

2.
Dense cores are the simplest star-forming sites that we know, but despite their simplicity, they still hold a number of mysteries that limit our understanding of how solar-type stars form. ALMA promises to revolutionize our knowledge of every stage in the life of a core, from the pre-stellar phase to the final disruption by the newly born star. This contribution presents a brief review of the evolution of dense cores and illustrates particular questions that will greatly benefit from the increase in resolution and sensitivity expected from ALMA.  相似文献   

3.
The advent of ALMA is bound to improve our knowledge of OB star formation dramatically. Here, we present an overview of this topic outlining how high angular resolution and sensitivity may contribute to shed light on the structure of high-mass star forming regions and hence on the process itself of massive star formation. The impact of this new generation instrument will range from establishing the mass function of pre-stellar cores inside IR-dark clouds, to investigating the kinematics of the gas from which OB stars are built up, to assessing or ruling out the existence of circumstellar accretion disks in these objects.  相似文献   

4.
We report mapping observations of a 35 pc × 35 pc region covering the Sgr B2 molecular cloud complex in the 13CO (3-2) and the CS (7-6) lines using the ASTE 10 m telescope with high angular resolution. The central region was mapped also in the C18O (3-2) line. The images not only reproduce the characteristic structures noted in the preceding millimeter observations, but also highlight the interface of the molecular clouds with a large velocity jump of a few tens of km s−1. These new results further support the scenario that a cloud–cloud collision has triggered the formation of massive cloud cores, which form massive stars of Sgr B2. Prospects of exciting science enabled by ALMA are discussed in relation to these observations.  相似文献   

5.
In recent years there has been much debate, both observational and theoretical, about the nature of star formation at high redshift. In particular, there seems to be strong evidence of a greatly enhanced star formation rate early in the Universe’s evolution. Simulations investigating the nature of the first stars indicate that these were large, with masses in excess of 100 solar masses. By the use of a chemical model, we have simulated the molecular signature of massive star formation for a range of redshifts, using different input models of metallicity in the early Universe. We find that, as long as the number of massive stars exceeds that in the Milky Way by factor of at least 1000, then several ‘hot-core’ like molecules should have detectable emission. Although we predict that such signatures should already be partly detectable with current instruments (e.g. with the VLA), facilities such as ALMA will make this kind of observation possible at the highest redshifts.  相似文献   

6.
The results of a speckle imaging survey of T Tauri stars suggest that most, if not all, young low mass stars have companions. Repeated observations of these young binary stars have revealed orbital motion in the closest pairs (0.3), proving that these systems are indeed gravitationally bound and providing the basis for mass estimates in the upcoming years. These mass estimates are necessary to distinguish between the various binary star formation mechanisms that have been proposed to date.  相似文献   

7.
A review is presented of the progress that has been made in the last 3 years towards quantifying the properties of high-mass detached and semi-detached eclipsing binaries in Local Group galaxies. Comparisons between these observational results on masses, radii, temperatures and luminosities for stars in detached binaries and evolution models for single stars at the appropriate metallicity are found to be very good. New evolution models for interacting binaries passing through case A mass exchange are being calculated, and indicate a requirement for some mass loss to find agreement with the observational data. The observational data on such semi-detached systems show similar properties to those in the Milky Way galaxy. The directly-determined distances to all these eclipsing binaries are proving to be most valuable for strengthening the distance scale amongst the Local Group galaxies.  相似文献   

8.
We review molecular evolution in low-mass star-forming regions and discuss what we can observe with ALMA. Recent observations have revealed chemical fractionation, i.e. spatial variation of molecular abundances, in dense prestellar cores. In the central regions of cold prestellar cores, CO is heavily depleted, while the depletion of N-bearing species are rare. Models show that CO is frozen onto grains, while N-bearing species survive because of the CO depletion and slow formation of N2 in the gas phase. CO depletion also enhances the molecular D/H ratio. Chemical fractionation and its variation among cores can be an indicator of evolutionary stage and/or accumulation process of cores. As the core contracts, central region of the core is eventually heated by compressional heating and a new-born protostar. CO is sublimated back to the gas phase, if the temperature reaches 20 K. Warm temperature enhances the endothermic reactions which were negligible in the prestellar core stage, and also enhances grain-surface reactions among heavy-element species to form large organic molecules, which sublimate when the temperature reaches ~100 K. Warm regions with high abundances of the gaseous organic species are called hot corinos or low-mass hot cores. Adopting a theoretical model of core contraction, we present the temporal variation of the radius inside which CO and large organic species are sublimated. We also investigate the molecular evolution in infalling shells to derive molecular distribution in a protostellar core.  相似文献   

9.
The hypothesis advanced by V. A. Ambartsumyan according to which stars are formed from prestellar superdense objects-- protostars-- was an alternative to the hypothesis of the 1950's (and even now, not much changed) according to which stars are formed by accretion with subsequent collapse (in various modifications). Ambartsumyan's basic inferences were based on an analysis of the observational data available at that time. This paper presents both Ambartsumyan's pioneering ideas and some modern hypotheses of star formation. Some results from studies of molecular clouds and star formation regions are also discussed. One of the distinctive features of young stellar objects (YSO) is the outflow of matter from these objects (molecular, in the form of jets, etc.), a phenomenon whose importance for the evolution of stars was noted by Ambartsumyan as long ago as 1937. Radial systems of dark globules are examined, as well as H-H objects associated with star formation regions, cometary nebulae, and close Trapeziumtype systems (consisting of YSO). Translated from Astrofizika, Vol. 52, No. 2, pp. 185–202 (May 2009).  相似文献   

10.
Non-degenerate stars of essentially all spectral classes are soft X-ray sources. Their X-ray spectra have been important in constraining physical processes that heat plasma in stellar environments to temperatures exceeding one million degrees. Low-mass stars on the cooler part of the main sequence and their pre-main sequence predecessors define the dominant stellar population in the galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense, of X-ray spectra from the solar corona. The Sun itself as a typical example of a main-sequence cool star has been a pivotal testbed for physical models to be applied to cool stars. X-ray emission from cool stars is indeed ascribed to magnetically trapped hot gas analogous to the solar coronal plasma, although plasma parameters such as temperature, density, and element abundances vary widely. Coronal structure, its thermal stratification and geometric extent can also be interpreted based on various spectral diagnostics. New features have been identified in pre-main sequence stars; some of these may be related to accretion shocks on the stellar surface, fluorescence on circumstellar disks due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot stars clearly dominate the interaction with the galactic interstellar medium: they are the main sources of ionizing radiation, mechanical energy and chemical enrichment in galaxies. High-energy emission permits to probe some of the most important processes at work in these stars, and put constraints on their most peculiar feature: the stellar wind. Medium and high- resolution spectroscopy have shed new light on these objects as well. Here, we review recent advances in our understanding of cool and hot stars through the study of X-ray spectra, in particular high-resolution spectra now available from XMM-Newton and Chandra. We address issues related to coronal structure, flares, the composition of coronal plasma, X-ray production in accretion streams and outflows, X-rays from single OB-type stars, massive binaries, magnetic hot objects and evolved WR stars.  相似文献   

11.
In the 3 decades since winds from young stars were discovered, there have been many observations of bipolar molecular flows and ionized jets, and it has been recognized that outflows are intimately linked to star formation. Despite many observational clues and theoretical ideas, we still do not have a fully coherent picture of the outflow process.  相似文献   

12.
日冕是太阳大气活动的关键区域,是日地空间天气的源头.受观测限制,对日冕低层大气等离子体结构和磁场状态的研究非常欠缺,国际上对于可见光波段日冕低层大气的亮度分层研究很少.利用丽江日冕仪YOGIS(Yunnan Green-line Imaging System)的日冕绿线(FeⅩⅣ5303?)观测资料,对内日冕区域(1.03R-1.25R,R表示太阳半径)亮结构及其中冕环进行了有效的强度衰减分析.对亮结构的强度在太阳径向高度上进行了指数衰减拟合,比较这些拟合结果发现所得到的静态内冕环的衰减指数在一固定值附近.然后将比较明显的冕环提取出来,通过对不同高度的绿线强度进行指数拟合,得出的衰减指数与亮结构中也比较相近,这对进一步研究日冕中的各项物理参数演化提供了参考.  相似文献   

13.
We collected 55 galactic extreme carbon stars from the published literature in this paper. Observational data from IRAS, 2MASS and ISO were analyzed. The results show that the infrared properties of extreme carbon stars are quite different to those for ordinary visual carbon stars. It is shown from IRAS and 2MASS photometric data that extreme carbon stars have much redder infrared colors not only in the far infrared, but also in the near infrared, hence they have much thicker ciucumstellar envelopes and mass loss. It is also indicated from IRAS Low-Resolution Spectra (LRS) and ISO Short Wavelength Spectra (SWS) that they have much redder infrared spectra from 2 μm to 45 μm. The above results are believed to be the signature of undergoing the last stages of AGB evolution for extreme carbon stars.  相似文献   

14.
The discovery of isolated bodies of planetary mass has challenged the paradigm that planets form only as companions to stars. To determine whether 'isolated planets', brown dwarfs and stars can have a common origin, we have made deep submillimetre observations of part of the ρ Oph B star formation region. Spectroscopy of the 9-Jupiter-mass core Oph B-11 has revealed carbon monoxide line wings such as those of a protostar. Moreover, the estimated mass of outflowing gas lies on the force versus core-mass relation for protostars and protobrown dwarfs. This is evidence for a common process that can form any object between planetary and stellar masses in a molecular cloud. In a submillimetre continuum map, six compact cores in ρ Oph B were found to have masses presently below the deuterium-burning limit, extending the core mass function down to  0.01 M  with the approximate form  d N /d M ∝ M −3/2  . If these lowest-mass cores are not transient and can collapse under gravity, then isolated planets should be very common in ρ Oph in the future, as is the case in the Orion star formation region. In fact, the isolated planetary objects that may form from these cores would outnumber the massive planets that have been found as companions to stars.  相似文献   

15.
We present an overview of recent X-ray observations of Wolf-Rayet (WR) stars with XMM-Newton and Chandra. These observations are aimed at determining the differences in X-ray properties between massive WR + OB binary systems and putatively single WR stars. A new XMM spectrum of the nearby WN8 + OB binary WR 147 shows hard absorbed X-ray emission (including the Fe Kα line complex), characteristic of colliding wind shock sources. In contrast, sensitive observations of four of the closest known single WC (carbon-rich) WR stars have yielded only non-detections. These results tentatively suggest that single WC stars are X-ray quiet. The presence of a companion may thus be an essential factor in elevating the X-ray emission of WC + OB stars to detectable levels.  相似文献   

16.
Carbon-enhanced metal-poor (CEMP) stars are considered to be related to the first generation of stars, and responsible for the chemical evolution of the early Galaxy. More than half of them are in binaries, and could be explained by the binary evolution, but the formation channel of them is still not fully understood. Among the hundreds of CEMP stars, there are nine CEMP RR Lyrae stars identified, and at least seven of which are very likely not binaries. The usual binary star evolution channel is difficult to produce such a single star, particularly that of carbon enrichment. One way in which such a single star might be produced is the merger of a helium white dwarf with a Hertzsprung gap (HG) star. We use a stellar evolution program to calculate the models of the merger remnants, and find that the models can reproduce the observed distribution of these CEMP single RR Lyrae stars in terms of surface temperature, gravity, and carbon abundance. Hence, it is extremely possible that the helium white dwarf and HG star merger model is one of the formation channels of the metal-poor carbon-rich RR Lyrae stars.  相似文献   

17.
Using the MegaCam imager on the Canada–France–Hawaii Telescope, we have resolved individual stars in the outskirts of the nearby large spiral galaxy M81 (NGC 3031) well below the tip of the red giant branch of metal-poor stellar populations over  ∼60 × 58 kpc2  . In this paper, we report the discovery of new young stellar systems in the outskirts of M81. The most prominent feature is a chain of clumps of young stars distributed along the extended southern H  i tidal arm connecting M 81 and NGC 3077. The colour–magnitude diagrams of these stellar systems show plumes of bright main sequence stars and red supergiant stars, indicating extended events of star formation. The main sequence turn-offs of the youngest stars in the systems are consistent with ages of ∼40 Myr. The newly reported stellar systems show strong similarities with other known young stellar systems in the debris field around M81, with their properties best explained by these systems being of tidal origin.  相似文献   

18.
Recent theoretical calculations of stellar evolutionary tracks for rotating high-mass stars suggests that the chemical composition of the surface layers changes even whilst the star is evolving on the Main Sequence. The abundance analysis of binary components with precisely known fundamental stellar quantities allows a powerful comparison with theory. The observed spectra of close binary stars can be separated into the individual spectra of the component stars using the method of spectral disentangling on a time-series of spectra taken over the orbital cycle. Recently, Pavlovski and Hensberge (2005, A&A, 439, 309) have shown that, even with moderately high line-broadening, metal abundances can be derived from disentangled spectra with a precision of 0.1 dex. In a continuation of this project we have undertaken a detailed abundance analysis of the components of another two high-mass binaries, V453 Cyg, and V380 Cyg. Both binaries are well-studied systems with modern solutions. The components are close to the TAMS and therefore very suitable for an observational test of early mixing in high-mass stars.  相似文献   

19.
Concatenating data from the millimetre regime to the infrared, we have performed spectral energy distribution (SED) modelling for 227 of the 405 millimetre continuum sources of Hill et al. which are thought to contain young massive stars in the earliest stages of their formation. Three main parameters are extracted from the fits: temperature, mass and luminosity. The method employed was the Bayesian inference, which allows a statistically probable range of suitable values for each parameter to be drawn for each individual protostellar candidate. This is the first application of this method to massive star formation.
The cumulative distribution plots of the SED modelled parameters in this work indicate that collectively, the sources without methanol maser and/or radio continuum associations (MM-only cores) display similar characteristics to those of high-mass star formation regions. Attributing significance to the marginal distinctions between the MM-only cores and the high-mass star formation sample, we draw hypotheses regarding the nature of the MM-only cores, including the possibility that the population itself comprises different types of source, and discuss their role in the formation scenarios of massive star formation. In addition, we discuss the usefulness and limitations of SED modelling and its application to the field. From this work, it is clear that within the valid parameter ranges, SEDs utilising current far-infrared data cannot be used to determine the evolution of massive protostars or massive young stellar objects.  相似文献   

20.
The birth process and (early) evolution of massive stars is still poorly understood. Massive stars are rare, their birthplaces are hidden from view and their formation timescale is short. So far, our physical knowledge of these young massive stars has been derived from near‐IR imaging and spectroscopy, revealing populations of young OB‐type stars, some still surrounded by a (remnant?) accretion disk, others apparently “normal” main sequence stars powering H II regions. The most important spectral features of OB‐type stars are, however, located in the UV and optical range. With VLT/X‐shooter it is possible to extend the spectral coverage of these young massive stars into the optical range, to better determine their photospheric properties, to study the onset of the stellar wind, and to characterize the physical structure of the circumstellar disk (© 2011 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号