首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文建立了用于结构弹塑性时程分析的耗能机构参数优化方法,通过约束条件限制结构体系在整个地震时程中的最大层间位移角和层间侧移延性比,用多层复形法对摩擦耗能机构参数进行优化。本文方法可靠、实用,用于耗能机构的抗震结构参数设计非常有效。  相似文献   

2.
A methodology for the development of design tools for direct estimation of peak inelastic response in reduced-degree-of-freedom (RDOF) isolation and energy dissipation systems is presented. The suggested procedure is an extension of an earlier method addressing purely hysteretic isolation systems. Herein, the dynamic equation of motion is first normalised to reduce the number of design parameters that significantly affect the response. The sensitivity of normalised response quantities to the amplitude of the ground motion is then investigated through extensive parametric nonlinear dynamic analyses of isolated single-degree-of-freedom (SDOF) systems with linear viscous damping using code-based target spectra. Regression analysis is subsequently employed to develop generalised design equations (GDEs) suitable for design. Further investigations are made to address nonlinear viscous damping and the effect of the transverse component of seismic action in two-degree-of freedom (2DOF) systems under bidirectional excitation, making the procedure applicable to common bridge isolation schemes. GDEs constitute an alternative to equivalent linearisation approaches commonly adopted by codes, informing the selection among alternative isolation and energy dissipations schemes without requiring iterative analysis. The approach is incorporated in the Deformation-Based Design methodology for seismically isolated bridges in a forthcoming paper.  相似文献   

3.
结构隔震减震技术已经具有相对成熟的理论体系及工程应用经验,但由于木结构的飞速发展,对其在木结构中的应用技术提出了新的要求。在回顾过去几十年国内外木结构隔震减震技术的研究及其应用的基础上,总结木结构隔震减震技术在国内外研究现状以及新型阻尼器的应用等方面的成果,包括古建筑木结构的减震措施、现代木结构的隔震减震方法、木结构减震体系和耗能连接件等方面的成果;并进一步探讨木结构减震技术有待深入研究的问题。  相似文献   

4.
耗能减震技术研究及应用的新进展   总被引:18,自引:5,他引:18  
本文总结了耗能减震技术近年来的研究与应用情况,主要包括各种新型耗能减震装置的原理、性能及应用。文中介绍了有关国家耗能减振技术标准发展的情况,提出了该项技术今后应加强研究的若干问题,并预测了其发展前景。  相似文献   

5.
Active energy dissipation is proved to be very effective for abating seismic effects on buildings. The implementation of this concept in seismic design of buildings is studied by response simulations of a single storey building subjected to earthquake motion. Active energy dissipaters can be installed as part of the building lateral load bracing, and they regulate the strength and stiffness of the bracing during the building's response to the seismic events. The energy is dissipated when the bracing load exceeds the axial strength provided by the dissipater, and the bracing telescopes in and out. The design parameters of active energy dissipaters are described using the simulated response of a single storey building to ground pulse and harmonic ground excitation. The feasibility of the energy dissipater is demonstrated by the development and construction of a full-scale prototype device called an Active Slip Bracing Device (ASBD). The device utilizes Coulomb friction. The active characteristics are implemented by a computer controlled clamping mechanism on the friction interface. The ASBD's control of the strength and stiffness is investigated.  相似文献   

6.
This paper investigates the non-linear seismic behavior of structures such as slender unreinforced masonry shear walls or precast post-tensioned reinforced concrete elements, which have little hysteretic energy dissipation capacity. Even if this type of seismic response may be associated with significant deformation capacity, it is usually not considered as an efficient mechanism to withstand strong earthquakes. The objective of the investigations is to propose values of strength reduction factors for seismic analysis of such structures. The first part of the study is focused on non-linear single-degree-of-freedom (SDOF) systems. A parametric study is performed by computing the displacement ductility demand of non-linear SDOF systems for a set of 164 recorded ground motions selected from the European Strong Motion Database. The parameters investigated are the natural frequency, the strength reduction factor, the post-yield stiffness ratio, the hysteretic energy dissipation capacity and the hysteretic behavior model (four different hysteretic models: bilinear self-centring, with limited or without energy dissipation capacity, modified Takeda and Elastoplastic). Results confirm that the natural frequency has little influence on the displacement ductility demand if it is below a frequency limit and vice versa. The frequency limit is found to be around 2 Hz for all hysteretic models. Moreover, they show that the other parameters, especially the hysteretic behavior model, have little influence on the displacement ductility demand. New relationships between the displacement ductility demand and the strength reduction factor for structures having little hysteretic energy dissipation capacity are proposed. These relationships are an improvement of the equal displacement rule for the considered hysteretic models. In the second part of the investigation, the parametric study is extended to multi-degree-of-freedom (MDOF) systems. The investigation shows that the results obtained for SDOF systems are also valid for MDOF systems. However, the SDOF system overestimates the displacement ductility demand in comparison to the corresponding MDOF system by approximately 15%.  相似文献   

7.
To study the seismic behavior of high strength concrete fi lled double-tube(CFDT) columns,each consisting of an external square steel tube and an internal circular steel tube,quasi-static tests on eight CFDT column specimens were conducted.The test variables included the width-to-thickness ratio(β1) and the area ratio(β2) of the square steel tube,the wall thickness of the circular steel tube,and the axial force(or the axial force ratio) applied to the CFDT columns.The test results indicate that for CFDT columns with a square steel tube with β1 of 50.1 and 24.5,local buckling of the specimen was found at a drift ratio of 1/150 and 1/50,respectively.The lateral force-displacement hysteretic loops of all specimens were plump and stable.Reducing the width-to-thickness ratio of the square steel tube,increasing its area ratio,or increasing the wall thickness of the internal circular steel tube,led to an increased fl exural strength and deformation capacity of the specimens.Increasing the design value of the axial force ratio from 0.8 to 1.0 may increase the fl exural strength of the specimens,while it may also decrease the ultimate deformation capacity of the specimen with β1 of 50.1.  相似文献   

8.
As a result of rapid economic growth and urbanization in the past two decades,many tall buildings have been constructed in China Mainland,offering researchers and practitioners an excellent opportunity for research and practice in the field of structural engineering. This paper reviews progress by researchers throughout China Mainland on the seismic research of tall buildings,focusing on three major topics that impact the seismic performance of tall buildings. These are:(1) new types of steel-concrete composite structural members such as steel-concrete composite shear walls and columns,(2) earthquake resilient shear wall structures such as shear walls with replaceable structural components,self-centering shear walls and rocking walls,and(3) performance-based seismic design,including seismic performance index,performance level and design method. The paper concludes by presenting future research needs and directions in this field.  相似文献   

9.
我国建筑结构隔震技术的研究和应用   总被引:22,自引:3,他引:22  
本文首先简要回顾了国外隔震技术的发展历程,重点概述了我国建筑结构隔震技术多年来在研究、应用及技术立法等方面的进展情况.最后从我国的实际出发,对今后国内隔震技术的研究、应用等方面的进一步发展提出了若干建议.  相似文献   

10.
球面网壳结构是典型的大跨度空间结构,地震时水平和竖向地面运动分量对其地震响应的影响均十分显著。为了提高网壳结构的抗震性能,可采用支座型隔震装置形成分段式多维隔震机制。在这类多维隔震体系中,碟形弹簧支座可用于结构的竖向隔震,同时,可将其与适用于水平隔震的摩擦摆(FPS)或SMA-橡胶支座配合使用。基于上述概念设计,提出了水平和竖向隔震装置的构造和计算模型。进而,根据网壳结构多维隔震的动力方程,开展了El Centro波作用下双层球面网壳和单层球面网壳结构多维隔震控制的数值模拟。计算结果表明,多维隔震球面网壳结构的杆件内力、加速度和位移的减振效果能达到50%以上,验证了所提多维隔震技术对保护球面网壳结构免遭地震破坏的有效性。  相似文献   

11.
基于位移的减震结构设计方法研究   总被引:3,自引:0,他引:3  
针对减震结构的设计, 其振型分解反应谱方法不能反映阻尼器的非线性和结构在大震下的性能;时程分析法需要多次试算、十分繁琐的情况,采用以结构构件设计为主、线性粘滞阻尼器为强度补充的设计思想,将结构等效为单自由度体系,利用基于位移的设计方法对线性粘滞阻尼减震结构进行设计,并利用该方法设计1栋13层框架剪力墙结构,最后通过动力时程分析验证了该方法的可行性.  相似文献   

12.
变刚度滞变耗能与隔震联合控制框架结构实验研究   总被引:2,自引:0,他引:2  
对原有变刚度滞变-摩擦隔震支座进行了改进,提出一种多级变刚度滞变耗能器,并进行了初步的试验研究。在此基础上,对一纯框架结构(1:5)模型进行了耗能与隔震的联合控制试验研究,试验结果表明,采用这种联合控制技术能降低不同大小地震下的结构反应,具有很强的适应性。  相似文献   

13.
渡槽结构隔震耗能减振控制的试验研究   总被引:4,自引:0,他引:4  
本文在理论分析的基础上,对设计中的南水北调中线工程北京段南泉河水大型渡槽工程结构,按几何相似比1:10研制了结构模型及多组隔震耗能混合减振支座,在振动台上成功地进行了多工况的地震模拟试验。试验结果表明:将由隔震器与阻尼器组成的隔震耗能混合减振支座应用于渡槽结构,可以有效地减小渡槽结构的地震响应。此外,所研制的隔震耗能混合减振支座,在实际结构工程中的施工简单可行。  相似文献   

14.
The sensitivity of seismic energy dissipation to ground motion and system characteristics is assessed. It is found that peak ground acceleration, peak ground velocity to acceleration (V/A), dominant period of ground excitation and effective response duration are closely correlated with the energy dissipated by a SDOF system. Ductility ratio and damping ratio have no significant influence on the energy dissipation. An energy dissipation index is proposed for measuring the damage potential of earthquake ground motion records which includes the effects of basic excitation and response characteristics contributing to the seismic energy dissipation. The proposed index is compared with several intensity measures for the set of 94 ground motion records considered in the study.  相似文献   

15.
A simple analytical procedure is developed for calculating the seismic energy dissipated by a linear SDOF system under an earthquake ground excitation. The ground excitation is specified by its pseudo-velocity spectra and effective duration whereas the SDOF system is defined by its natural period of vibration and viscous damping ratio. However, the derived relationship for the energy dissipation demand under an earthquake excitation is sensitive neither to the viscous damping ratio nor the ductility ratio when the SDOF system undergoes inelastic response. Accordingly, the proposed relationship can be employed in an energy-based seismic design procedure for determining the required energy dissipation capacity of a structural system.  相似文献   

16.
将结构前两阶振型各自等效为单自由度,采用模态pushover分析确定各等效单自由度的屈服强度系数和延性系数,然后由反应谱计算各阶振型耗散能量需求,利用各振型能量分布曲线,求得各层耗散能量需求,叠加得到各层地震总能量需求,据此确定耗能装置的类型及设计参数.运用该方法对9层钢框架进行了设计,并通过非线性动力分析进行了验证,结果表明该方法精确度符合实际工程需求.  相似文献   

17.
为了从能量角度研究重力坝地震响应的时频特征,在重力坝非线性动力分析基础上,探讨了重力坝地震过程中振动能量的时域耗散机制;采用小波频域多层次分解技术研究了其动响应的分频段能量特征,得到了坝体典型位置动响应分频段振动能量随高程的变化规律.通过分析发现:结构地震能量耗散为时域上不可逆的增加,坝体损伤集中出现在地震过程的某个时间段,地震动峰值后坝体损伤状态基本稳定;小波分解可以较全面地描述结构动响应能量的分频段特征.对于本文算例,在坝踵和上游折坡附近,重力坝地震响应的振动能量以4~8 Hz频段为主,这与输入的地震信号分频段特征一致;而坝顶附近则以1 ~4 Hz的振动能量为主,高频能量分量的比重随高程增大而逐渐减小.  相似文献   

18.
Passive supplemental damping in a seismically isolated structure provides the necessary energy dissipation to limit the isolation system displacement. However, damper forces can become quite large as the passive damping level is increased, resulting in the requirement to transfer large forces at the damper connections to the structure which may be particularly difficult to accommodate in retrofit applications. One method to limit the level of damping force while simultaneously controlling the isolation system displacement is to utilize an intelligent hybrid isolation system containing semi-active dampers in which the damping coeffic ient can be modulated. The effectiveness of such a hybrid seismic isolation system for earthquake hazard mitigation is investigated in this paper. The system is examined through an analytical and computational study of the seismic response of a bridge structure containing a hybrid isolation system consisting of elastomeric bearings and semi-active dampers. Control algorithms for operation of the semi-active dampers are developed based on fuzzy logic control theory. Practical limits on the response of the isolation system are considered and utilized in the evaluation of the control algorithms. The results of the study show that both passive and semi-active hybrid seismic isolation systems consisting of combined base isolation bearings and supplemental energy dissipation devices can be beneficial in reducing the seismic response of structures. These hybrid systems may prevent or significantly reduce structural damage during a seismic event. Furthermore, it is shown that intelligent semi-active seismic isolation systems are capable of controlling the peak deck displacement of bridges, and thus reducing the required length of expansion joints, while simultaneously limiting peak damper forces. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

19.
Research engineers use two types of energy equations to study single-degree-of-freedom (SDOF) systems subject to earthquake induced ground motions. The first method uses an absolute energy formulation; the second method uses a relative energy formulation. While the relative energy formulation has been used in the majority of previous investigations, this study shows that the absolute energy equation is physically more meaningful. For a given ductility ratio, the input energy demands calculated by both methods are significantly different for both the short and long period ranges although the results are similar in the intermediate period range. A comparison between the analytically predicted absolute input energy of a SDOF system with the experimentally measured input energy of a six-storey braced steel frame shows good correlation.  相似文献   

20.
Seesaw energy dissipation system (SEDS), a vibration control system used to provide enhanced seismic protection, has been proposed and investigated numerically. Because of its complicated arrangement, verification experiments are necessary to demonstrate the SEDS damping capacity. This paper presents the results of experimental investigation of the SEDS using fluid viscous dampers. Free vibration tests are conducted to demonstrate the SEDS damping capacity. Results of the free vibration test show that the SEDS has sufficient damping capacity for reduction of the seismic response of the frames. Parametric experimental investigations of the SEDS were conducted, the results of which demonstrate the effects of the system parameter on the damping capacity. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号