首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Offshore structures, such as composite breakwaters, are generally vulnerable to strong seismic wave propagating through loose or medium-dense seabed foundation. However, the seismically induced failure process of offshore structures is not well understood. In this study, seismic dynamics of a composite breakwater on liquefiable seabed foundation is investigated using a fully coupled numerical model FSSI-CAS 2D. The computation results show that the numerical model is capable of capturing a variety of nonlinear interaction phenomena between the composite breakwater and its seabed foundation. The numerical investigation demonstrates a three-stage failure process of the breakwater under seismic loading. In this process, the far-field seabed can become fully liquefied first, inducing excessive settlement of the structure, followed by significant lateral movement and tilting of the structure when the near-field soil progressively liquefies. The study demonstrates great promise of using advanced numerical analysis in geotechnical earthquake design of offshore structures.  相似文献   

2.
The most recent high magnitude seismic events, e.g. the Mw 8.2 Iquique earthquake (April 1st, 2014) and the Mw 8.8 Maule earthquake (February 27th, 2010) are reminders of the pronounced vulnerability of the Chilean coast to the impact of natural hazards like earthquakes and tsunamis. Therefore it is crucial to understand the complex tsunami history of Chile which can be deciphered by studying the geological record of former tsunamis in the form of tsunami deposits.At the coastal locality of Tirúa (Central Chile) six distinct, successive tsunamigenic sand layers are intercalated in fine grained floodplain sediments. We present the optically stimulated luminescence (OSL) analysis of quartz from samples of this sedimentological river marsh profile of 1.5 m depth.After the assessment of the applicability of OSL to these samples, it could be noted that despite of an expected low OSL sensitivity of the quartz from the South American Cordillera, most of the sampled quartz yielded a detectable natural signal. After performance tests according to the SAR-protocol, the measurements of the different tsunami sand layers were conducted with small (2.5 mm) aliquots of quartz with the preheat temperature 180 °C. The calculation of De was provided by applying both the central age and minimum age models. All samples are heterogeneous in their De distributions due to incomplete or absent significant bleaching during transport by tsunami. The resulting ages of the tsunami sediments yield an offset of nearly 200 years for CAM ages and less than 50 years for MAM ages, consequently favouring MAM ages for true burial age determination. In some tsunami sand layers and their surrounding river marsh sediments age inversions occur. They were caused by the initial deposition of well bleached sediments derived from beach and dunes followed by older sediments redeposited from beach and intertidal environments during tsunami flow. Despite the offset and age inversion six different tsunami events were dated in the Tirúa profile. Three of these events extend the historical record to pre-Columbian time with the oldest tsunami dated to over 1500 years before present.  相似文献   

3.
在东海潜在震源区冲绳海槽假定了五个震源点,根据Steven地震海啸地震参数经验值作为初始条件,分别考虑6.5、7.0、7.5、8.0、8.5、9.0级地震条件下的30个震例,采用数值模拟的方法,对海啸在东海传播过程进行情境分析,特别是对上海沿岸地区可能会遭受的海啸灾害做了较为精细的研究.结果发现:小于8.0级的震例对上海地区几乎不会造成影响;8.0级震例只有最北端震源点震例会对上海地区有明显影响;8.5级以及9.0级震级基本上均会对上海沿岸地区造成较大的影响.特别是冲绳海槽北段9.0级震例可能会对上海沿岸局部地区造成危害,最大波高可达3.9m.  相似文献   

4.
The relation between tsunamis and sea-bottom deformations associated with the Kurile Islands earthquake of 1969 and the Tokachi-Oki earthquake of 1968 is studied on the basis of a fairly complete set of seismological and tsunami data. The seismic results are included in the calculation of static crustal deformations. The calculated deformations are compared with the tsunami source area as obtained by the inverse refraction diagram, the first motion of tsunami waves, and the height of the sea-level disturbance at the source. It is found that such deformations as predicted by the seismic results can quantitatively explain the source parameters of tsunamis. These findings strongly favor the idea that tsunamis are generated by tectonic deformations rather than by large submarine landslides and slumps. This conclusion is supported by additional analyses for the 1964 Niigata, 1944 Tonankai, 1933 Sanriku earthquakes. For the 1946 Nankaido earthquake, the source deformation responsible for the tsunami generation is of much greater magnitude than that for seismic waves.  相似文献   

5.
Soils with spatial variability are the product of natural history. The mechanical properties tested by soil samples from boreholes in the same soil layer may be different. Underground structure service in surrounding soils, their seismic response is controlled by the deformation of the surrounding soils. The variability of soil mechanical parameters was not considered in the current research on the seismic response of underground structures. Therefore, a random field model was established to describe the spatial variability of surrounding soils based on the random field theory. Then the seismic response of underground structures in the random field was simulated based on the time-domain explicit global FEM analysis, and the soil mechanical parameters and earthquake intensity influencing the seismic response of surrounding soils and underground structures were studied. Numerical results presented that, the randomness of soil parameters does not change the plastic deformation mode of surrounding soils significantly. The variation coefficients of inter-story deformation of structures and lateral deformation of columns are much smaller than that of mechanical parameters, and the randomness of soil parameters has no obvious effect on the structural deformation response.  相似文献   

6.
The fault parameters of the Guam earthquake of August 8, 1993 are estimated from seismological analyses, and the possibility of identifying the actual fault plane from tsunami waveforms is tested. The Centroid Moment Tensor solution of long-period surface waves shows one nodal plane shallowly dipping to the north and the other nodal plane steeply dipping to the south. The seismic moment is 3.5×1020 Nm and the corresponding moment magnitude is 7.7. The Moment Tensor Rate Function inversion ofP waves also yields a similar focal mechanism and seismic moment. The point source depth is estimated as 40–50 km.This earthquake generated tsunamis that propagated toward the Japanese coast along the Izu-Bonin-Mariana ridge system. The tsunamis are recorded on ocean bottom pressure gauges and tide gauges. Numerical computation of tsunamis shows that the computed waveforms from the two possible fault planes match well with the observed tsunami waveforms. The numerical computation also shows that the tsunami waveforms at Guam Island, just above the fault, should contain useful information regarding the identification of the actual fault plane. However, the current sampling rate of the tide gauges is so small that the records cannot help the identification.  相似文献   

7.
Japan’s 2011 Tohoku-Oki earthquake and the accompanying tsunami have reminded us of the potential tsunami hazards from the Manila and Ryukyu trenches to the South China and East China Seas. Statistics of historical seismic records from nearly the last 4 decades have shown that major earthquakes do not necessarily agree with the local Gutenberg-Richter relationship. The probability of a mega-earthquake may be higher than we have previously estimated. Furthermore, we noted that the percentages of tsunami-associated earthquakes are much higher in major events, and the earthquakes with magnitudes equal to or greater than 8.8 have all triggered tsunamis in the past approximately 100 years. We will emphasize the importance of a thorough study of possible tsunami scenarios for hazard mitigation. We focus on several hypothetical earthquake-induced tsunamis caused by M w 8.8 events along the Manila and Ryukyu trenches. We carried out numerical simulations based on shallow-water equations (SWE) to predict the tsunami dynamics in the South China and East China Seas. By analyzing the computed results we found that the height of the potential surge in China’s coastal area caused by earthquake-induced tsunamis may reach a couple of meters high. Our preliminary results show that tsunamis generated in the Manila and Ryukyu trenches could pose a significant threat to Chinese coastal cities such as Shanghai, Hong Kong and Macao. However, we did not find the highest tsunami wave at Taiwan, partially because it lies right on the extension of an assumed fault line. Furthermore, we put forward a multi-scale model with higher resolution, which enabled us to investigate the edge waves diffracted around Taiwan Island with a closer view.  相似文献   

8.
We examined the geochemical characteristics and temporal changes of deposits associated with the 2011 Tohoku‐oki tsunami. Stable carbon isotope ratios, biomarkers, and water‐leachable ions were measured in a sandy tsunami deposit and associated soils sampled at Hasunuma, Kujukuri coastal plain, Japan, in 2011 and 2014. At this site, the 2011 tsunami formed a 10–30 cm ‐thick layer of very fine to medium sand. The tsunami deposit was organic‐poor, and no samples contained any detectable biomarkers of either terrigenous or marine origin. In the underlying soil, we identified hydrocarbons and sterols derived from terrestrial plants, but detected no biomarkers of marine origin. In the samples collected in 2011, concentrations of tsunami‐derived water‐leachable ions were highest in the soil immediately beneath the tsunami deposit and then decreased gradually with depth. Because of its finer texture and higher organic content, the soil has a higher water‐holding capacity than the sandy tsunami deposit. This distribution suggests that ions derived from the tsunami quickly penetrated the sand layer and became concentrated in the underlying soil. In the samples collected in 2014, concentrations of water‐leachable ions were very low in both soil and sand. We attribute the decrease in ion concentrations to post‐tsunami rainfall, seepage, and seasonal changes in groundwater level. Although water‐leachable ions derived from seawater were concentrated in the soil beneath the tsunami deposit following the tsunami inundation, they were not retained for more than a few years. To elucidate the behavior of geochemical characteristics associated with tsunamis, further research on organic‐rich muddy deposits (muddy tsunami deposits and soils beneath sandy tsunami deposits) as well as sandy tsunami deposits is required.  相似文献   

9.
A field survey of the June 3, 1994 East Java earthquake tsunami was conducted within three weeks, and the distributions of the seismic intensities, tsunami heights, and human and house damages were surveyed. The seismic intensities on the south coasts of Java and Bali Islands were small for an earthquake with magnitudeM 7.6. The earthquake caused no land damage. About 40 minutes after the main shock, a huge tsunami attacked the coasts, several villages in East Java Province were damaged severely, and 223 persons perished. At Pancer Village about 70 percent of the houses were swept away and 121 persons were killed by the tsunami. The relationship between tsunami heights and distances from the source shows that the Hatori's tsunami magnitude wasm=3, which seems to be larger for the earthquake magnitude. But we should not consider this an extraordinary event because it was pointed out byHatori (1994) that the magnitudes of tsunamis in the Indonesia-Philippine region generally exceed 1–2 grade larger than those of other regions.  相似文献   

10.
地震海啸是一种极其严重的地震次生灾害。山东是世界上最早记录地震海啸的地区。收集整理了山东沿海地区记载的7次地震海啸史料,对每次地震海啸进行了信度评级,认为仅有一次可能是海啸。根据山东沿海地区历史地震海啸、地震类型、沿海地理环境、现代地震海啸记录资料等分析,表明山东沿海未来遭受破坏性地震海啸的可能性较小。  相似文献   

11.
香港海啸监测及警报系统的发展   总被引:1,自引:1,他引:0  
黄永德  李健威 《华南地震》2008,28(2):118-124
地震监测、海啸数值模拟和海平面监测是监测和预报海啸的主要工具。为了有效监测南海北部可能发生的地震海啸,香港天文台(HKO)正在香港筹建一个宽频地震站,同时通过太平洋海啸警报及减灾系统(PTWS)的框架取得美国加州综合地震网(CISN)显示系统的实时地震信息,并通过世界气象组织(WM0)的全球通信系统(GTS)接收南海和西北太平洋的验潮站和海啸浮标数据以监测海面的波动情况。香港天文台通过联合国教科文组织(UNESCO)政府间海洋学委员会(IOC)取得海啸漫滩模式交换计划(TIME)下的海啸数值模式,把香港本地的高分辨率水深和地形数据融合在模式之内,并利用这个模式计算南海多处地区在不同地震情景下的海啸传播,为海啸预报提供重要的参考数据。  相似文献   

12.
Rubble-mound breakwaters are subjected not only to water wave action but also to other types of environmental loading, such as earthquakes. The design of coastal structures should take into account the most relevant factors in each case, including seismic loading. The purpose of this study is to understand the dynamic response of breakwater materials in dry and water conditions. Hence, an experimental study was carried out for homogeneous breakwater structures subjected to different dynamic loadings with variable frequencies and amplitudes in a shaking tank. A shaking tank with a single degree of freedom was developed. The experiments were performed with rigid bottom conditions. The model scale was 1/50. The cyclic responses of the breakwater made of entirely armor material and another of entirely core material were examined separately, and their behaviors were then compared. The experimental results are also discussed with a numerical study, and the material properties and failure modes were thus defined. It is found that the settlement of the armor and core materials under cyclic loads increased with increasing base acceleration level. The cyclic deformation of the rubble mound breakwater in water was larger than that under dry conditions. The cyclic deformation of the rubble materials resulted in crest lowering and slumping. Dominant mode of the seismic failure was associated with the settlement of the crown of the structure accompanied by densification of the core material.  相似文献   

13.
2013年7月22日,甘肃省定西市岷县发生MS6.6地震,造成了严重的人员伤亡和经济损失.地震发生于青藏高原东北部边缘与甘肃东南部地区的交界处,是该区域一百多年以来发生的最大地震.分析本次地震观测数据显示,岷县MS6.6地震产生的地震地面运动呈现出明显的区域变化特征.为了研究这种区域变化特征,本文使用全球CRUST1.0和SRTM30模型数据建立了甘肃岷县及周边地区的地下三维传播介质模型,使用并行的三维有限差分方法进行了岷县地震的区域地震波传播模拟,并与研究区内数字地震台网记录的地震观测资料进行对比.通过分析地面运动的峰值速度和持续时间的区域分布特征,发现:在青藏高原东北部边缘,较大的地形起伏对地面运动的峰值速度分布起主要影响作用;在青藏高原外围地区,地形起伏较小,而沉积层主要影响地面运动的峰值速度和持续时间,从而导致了明显的盆地效应,如地面运动的振幅放大和持续时间加长.因此,研究区剧烈的地形起伏和表层沉积层是影响地面运动的重要因素.  相似文献   

14.
The accumulation of data sets of past tsunamis is the most basic but reliable way to prepare for future tsunamis because the frequency of tsunami occurrence and their magnitude can be estimated by historical records of tsunamis. Investigation of tsunami deposits preserved in geological layers is an effective measure to understand ancient tsunamis that occurred before historical records began. However, the areas containing tsunami deposits can be narrower than the area of tsunami inundation, thus resulting in underestimation of the magnitude of past tsunamis. A field survey was conducted after the 2010 Chile tsunami and 2011 Japan tsunami to investigate the chemical properties of the tsunami-inundated soil to examine the applicability of tsunami inundation surveys considering water-soluble salts in soil. The soil and tsunami deposits collected in the tsunami-inundated areas are rich in water-soluble ions (Na+, Mg2+, Cl?, Br? and SO 4 2? ) compared with the samples collected in the non-inundated areas. The analytical result that the ratios of Na+, Mg2+, Br? and SO 4 2? to Cl? are nearly the same in the tsunami deposits and in the tsunami-inundated soil suggests that the deposition of these ions resulting from the tsunami inundation does not depend on whether or not tsunami deposits exist. Discriminant analysis of the tsunami-inundated areas using the ion contents shows the high applicability of these ions to the detection of tsunami inundation during periods when the amount of rainfall is limited. To examine the applicability of this method to palaeotsunamis, the continuous monitoring of water-soluble ions in tsunami-inundated soil is needed as a future study.  相似文献   

15.
Twin Tsunamis Triggered by the 12 January 2010 Haiti Earthquake   总被引:2,自引:0,他引:2  
On 12 January 2010, a magnitude M w 7.0 earthquake occurred 25 km west–southwest of Haiti’s capital Port-au-Prince causing an estimated 316,000 fatalities, thereby exceeding any previous loss of life from a similar size earthquake. In addition, tsunami waves triggered by the earthquake caused at least three fatalities at Petit Paradis due to a complete lack of tsunami awareness. The International Tsunami Survey Team (ITST) was deployed within weeks of the event and covered the greater Bay of Port-au-Prince and more than 100 km of Hispaniola’s southern coastline. The collected survey data include more than 21 tsunami heights along with observations of coastal land level change. Maximum tsunami heights of 3 m have been measured for two independently triggered tsunamis.  相似文献   

16.
Based on the tsunami data in the Central American region, the regional characteristic of tsunami magnitude scales is discussed in relation to earthquake magnitudes during the period from 1900 to 1993. Tsunami magnitudes on the Imamura-Iida scale of the 1985 Mexico and 1992 Nicaragua tsunamis are determined to bem=2.5, judging from the tsunami height-distance diagram. The magnitude values of the Central American tsunamis are relatively small compared to earthquakes with similar size in other regions. However, there are a few large tsunamis generated by low-frequency earthquakes such as the 1992 Nicaragua earthquake. Inundation heights of these unusual tsunamis are about 10 times higher than those of normal tsunamis for the same earthquake magnitude (M s =6.9–7.2). The Central American tsunamis having magnitudem>1 have been observed by the Japanese tide stations, but the effect of directivity toward Japan is very small compared to that of the South American tsunamis.  相似文献   

17.
A fault model of the 1946 Nankaido earthquake (M = 8.2) is determined by the use of tsunami records of Uwajima, Shimotsu and Hososhima which were located within or near the area of major coseismic crustal deformation. Synthetic tsunamis computed for various fault models are matched with the observed tsunamis to determine the fault parameters. A low-angle thrust model slightly revised from a previous model by Ando is consistent with the observed tsunamis. The duration of faulting is constrained as less than 10 min based upon the tsunami. The fault is divided into an eastern and a western segment corresponding to areas associated with and without aftershocks, respectively. The fault area and dislocation for the western segment are 150 × 70 km2 and 6 m, and those for the eastern segment are 150 × 70 km2 and 3 m, respectively. The total seismic moment is 4.7 × 1028 dyn·cm, significantly smaller than that obtained from a geodetic model by Fitch and Scholz, but still larger than that of the seismic model by Kanamori. The discrepancy in seismic moment between the seismic and the present models (RAN2) could be interpreted in terms of a slow dislocation on the fault, but this interpretation does not match the seismic intensity distribution and damage pattern, and the slow-slip model for the Nankaido earthquake is rejected. The discrepancy between the two seismic moments is considered insignificant within error involved in data and modeling assumptions. If the revised geodetic model (RAN2) is modified, the seismic moment required to explain the observed tsunamis would be reduced further by ~30%. If we consider the uncertainties involved in the fault model of Kanamori and the fault-finiteness effect affecting the amplitude of seismic waves, the seismic moment required to interpret the seismic-wave data could be increased, possibly being more than twice that of Kanamori. Thus, the two seismic moments from the different data sets could be close to each other within allowable tolerance. This implies that the rise time of the Nankaido earthquake was short enough to generate short-period seismic waves from both the western and the eastern fault segments.  相似文献   

18.
Simplified approaches for examining structural system response under sequential earthquake and tsunami loading are helpful for understanding response trends. To aid understanding, nonlinear (constant‐ductility) response spectra are developed for elastoplastic single degree of freedom systems subjected to seismic loads followed by hydrodynamic tsunami loads. The forcing function is composed of long‐duration earthquake motion concatenated with a range of tsunami hydrodynamic forces that are proportional to the pseudo‐spectral acceleration produced by the earthquake motion. The constant‐ductility spectra are thus constructed for scenarios where the loading imposed by one hazard is not dominant over the other. The spectra and basic intensity measures indicate that the amplification of response for sequential earthquake and tsunami loading over the earthquake only case is most significant for systems with long natural periods and high‐ductility capacity under seismic loading. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

19.
Tsunami is one of the most devastating natural coastal disasters. Most of large tsunamis are generated by submarine earthquakes occurring in subduction zones. Tsunamis can also be triggered by volcano eruptions and large landslides. There are many records about "sea-overflow" in Chinese ancient books, which are not proved to be tsunamis. Tectonics and historical records analysis are import to forecast and prevention of tsunami. Consider the tectonic environment of the China sea, the possibility of huge damage caused by the offshore tsunami is very small. And the impact of the ocean tsunami on the Bohai sea, the Yellow sea, and the East China sea is also small. But in the South China Sea, the Manila subduction zone has been identified as a high hazardous tsunamigenic earthquake source region. No earthquake larger than MW7.6 has been recorded in the past 100a in this region, suggesting a high probability for larger earthquakes in the future. If a tsunamigenic earthquake were to occur in this region in the near future, a tragedy with the magnitude similar to the 2004 Indian Ocean tsunami could repeat itself. In this paper, based on tectonics and historical records analysis, we have demonstrated that potential for a strong future earthquake along the Manila subduction zone is real. Using a numerical model, we have also shown that most countries in the South China Sea will be affected by the tsunamis generated by the future earthquake. For China, it implies that the maximum wave height over 4.0 meter on China mainland, especially the Pearl River Estuary. But the island, local relief maybe influence the maximum wave. But it takes nearly 3 hours to attack China mainland, if there is the operational tsunami warning system in place in this region, should be greatly reduced losses. And the simulated results are conformable to historical records. It indicates that the tsunami hazards from Manila trench to China mainland worthy of our attention and prevention.  相似文献   

20.
采用球坐标系下非线性浅水波方程, 研究日本本州M9.0大地震引发的海啸对中国东南沿海的影响, 并计算了冲绳海槽构造带上3个不同段落可能发生潜在地震引发的海啸, 分析这些海啸与日本大海啸的浪高和走时关系. 结果表明, 日本地震海啸模拟结果与日本当地报道及中国东南沿海7个验潮站的报道结果相符. 冲绳海槽构造带中段可能发生的3次不同震级(M7.0, M7.5, M8.0)潜在地震引发的海啸到达中国东南沿海的时间比日本海啸提前约4个小时, 从震源区传播3个多小时即可到达华东沿海部分验潮站. 冲绳海槽M7.5潜在地震海啸在验潮站上计算的波高与日本海啸相当, 中冲绳海槽M8.0潜在地震海啸在大陈站的波高将超过0.9 m, 在坎门站波高将超过1.8 m. 北冲绳海槽的潜在地震海啸威胁主要集中在江苏盐城、 上海一带, 南冲绳海啸主要对台湾东北部和浙江沿海产生威胁. 本文对冲绳海槽构造带上潜在地震引发海啸的模拟结果, 可为中国东南沿海地区的防震减灾、 海啸预警提供有意义的参考.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号