首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mixed siliciclastic‐carbonate deep‐marine systems (mixed systems) are less documented in the geological record than pure siliciclastic systems. The similarities and differences between these systems are, therefore, poorly understood. A well‐exposed Late Cretaceous mixed system on the northern side of the Eastern Greater Caucasus, Azerbaijan, provides an opportunity to study the interaction between contemporaneous siliciclastic and carbonate deep‐marine deposition. Facies analysis reveals a Cenomanian–early Turonian siliciclastic submarine channel complex that abruptly transitions into a Mid Turonian–Maastrichtian mixed lobe‐dominated succession. The channels are entrenched in lows on the palaeo‐seafloor but are absent 10 km towards the west where an Early Cretaceous submarine landslide complex acted as a topographic barrier to deposition. By the Campanian, this topography was largely healed allowing extensive deposition of the mixed lobe‐dominated succession. Evidence for irregular bathymetry is recorded by opposing palaeoflow indicators and frequent submarine landslides. The overall sequence is interpreted to represent the abrupt transition from Cenomanian–early Turonian siliciclastic progradation to c. Mid Turonian retrogradation, followed by a gradual return to progradation in the Santonian–Maastrichtian. The siliciclastic systems periodically punctuate a more widely extensive calcareous system from the Mid Turonian onwards, resulting in a mixed deep‐marine system. Mixed lobes differ from their siliciclastic counterparts in that they contain both siliciclastic and calcareous depositional elements making determining distal and proximal environments challenging using conventional terminology and complicate palaeogeographic interpretations. Modulation and remobilisation also occur between the two contemporaneous systems making stacking patterns difficult to decipher. The results provide insight into the behaviour of multiple contemporaneous deep‐marine fans, an aspect that is challenging to decipher in non‐mixed systems. The study area is comparable in terms of facies, architectures and the presence of widespread instability to offshore The Gambia, NW Africa, and could form a suitable analogue for mixed deep‐marine systems observed elsewhere.  相似文献   

2.
We analyzed the latest Early Cretaceous to Miocene sections (~110–7 Ma) in 11 New Jersey and Delaware onshore coreholes (Ocean Drilling Program Legs 150X and 174AX). Fifteen to seventeen Late Cretaceous and 39–40 Cenozoic sequence boundaries were identified on the basis of physical and temporal breaks. Within‐sequence changes follow predictable patterns with thin transgressive and thick regressive highstand systems tracts. The few lowstands encountered provide critical constraints on the range of sea‐level fall. We estimated paleowater depths by integrating lithofacies and biofacies analyses and determined ages using integrated biostratigraphy and strontium isotopic stratigraphy. These datasets were backstripped to provide a sea‐level estimate for the past ~100 Myr. Large river systems affected New Jersey during the Cretaceous and latest Oligocene–Miocene. Facies evolved through eight depositional phases controlled by changes in accommodation, long‐term sea level, and sediment supply: (1) the Barremian–earliest Cenomanian consisted of anastomosing riverine environments associated with warm climates, high sediment supply, and high accommodation; (2) the Cenomanian–early Turonian was dominated by marine sediments with minor deltaic influence associated with long‐term (107 year) sea‐level rise; (3) the late Turonian through Coniacian was dominated by alluvial and delta plain systems associated with long‐term sea‐level fall; (4) the Santonian–Campanian consisted of marine deposition under the influence of a wave‐dominated delta associated with a long‐term sea‐level rise and increased sediment supply; (5) Maastrichtian–Eocene deposition consisted primarily of starved siliciclastic, carbonate ramp shelf environments associated with very high long‐term sea level and low sediment supply; (6) the late Eocene–Oligocene was a starved siliciclastic shelf associated with moderately high sea‐level and low sediment supply; (7) late early–middle Miocene consisted of a prograding shelf under a strong wave‐dominated deltaic influence associated with major increase in sediment supply and accommodation due to local sediment loading; and (8) over the past 10 Myr, low accommodation and eroded coastal systems were associated with low long‐term sea level and low rates of sediment supply due to bypassing.  相似文献   

3.
Five 3rd-order depositional sequences are interpreted from the early Albian to late Campanian interval in the Potiguar Basin. An integrated analysis of seismic interpretations, well logs, cores and biostratigraphic data provides a stratigraphic framework composed by stratigraphic surfaces, systems tracts and sequences. Depositional Sequence 1 and 2 are, respectively, Albian and early to mid-Cenomanian aged and are composed by the falling stage, low stand, transgressive and high stand systems tracts. Depositional Sequence 3 is late Cenomanian to mid-Turonian aged and is composed by the transgressive and high stand systems tracts. Depositional sequences 4 and 5 are, respectively, late Turonian to mid-Santonian and late Santonian to mid-Campanian aged and are composed only by transgressive and high stand systems tracts. The lack of falling stage and low stand systems tracts in depositional sequences 3, 4 and 5, as well the increasing in transgressive and highstand systems tracts thickness as depositional sequences get younger, are reflection of an overall transgressive trend of a 2nd-order sequence. The interpretation proposed in this paper correlates onshore with offshore deposits within a seismic scale (3rd-order) sequence stratigraphy framework. This approach allows a better understanding of the Açu Formation, the primary oil-bearing formation of the Potiguar Basin. The Açu Formation is part of depositional sequences 1, 2 and 3 and is characterized by lateral and vertical variations of depositional systems instead of being associated to a specific depositional system. This sequence stratigraphy analysis can be used as a low-resolution framework for future high-resolution (4th-order scale) studies.  相似文献   

4.
ABSTRACT The tectonic evolution of a collisional hinterland sourcing the Ha?eg Basin, a Late Cretaceous syn‐orogenic sedimentary basin in the South Carpathians (Romania), is revealed through fission track thermochronology of detrital apatite and zircon grains. This basin formed on the upper plate (Getic unit) in response to Late Cretaceous collision with the lower plate (Danubian unit), an allochtonous continental block of the Moesian Platform, upon closure of a narrow oceanic basin (Severin Basin). The fission track results suggest that Turonian to lower Maastrichtian sediments of the Ha?eg Basin have been dominantly derived from pre‐Late Cretaceous sources. The age components they contain relate to pre‐Cretaceous tectonothermal events such as the Variscan orogenic cycle, Jurassic rifting and Severin Basin formation, and to Early Cretaceous compressional tectonics. These results are compatible with the tectonic evolution of the upper plate that is identified as the primary source. From the onset of sedimentation (late Albian) until the early Campanian the Ha?eg Basin resembles a piggy‐back basin formed on the upper plate concomitant with underthrusting and internal stacking of the lower plate. In contrast, important tectonic subsidence during the late Campanian and early Maastrichtian reflects a shift to extensional tectonics causing the unroofing of the collision zone and the exhumation of lower plate rocks back to the surface. Our fission track data place important constraints on the timing of lower plate erosion that must have commenced during the late Maastrichtian, as documented by the completely reset Late Cretaceous age component within upper Maastrichtian sediments (Sînpetru Formation). Late Maastrichtian uplift of the basin and the formation of positive relief at the site of the collision zone is an expression of continuous convergence. The mismatch between the amount of denudation and the amount of sediments trapped in the Ha?eg Basin underlines the importance of concomitant extensional unroofing.  相似文献   

5.
6.
Although fault growth is an important control on drainage development in modern rifts, such links are difficult to establish in ancient basins. To understand how the growth and interaction of normal fault segments controls stratigraphic patterns, we investigate the response of a coarse-grained delta system to evolution of a fault array in a Miocene half-graben basin, Suez rift. The early Miocene Alaqa delta complex comprises a vertically stacked set of footwall-sourced Gilbert deltas located in the immediate hangingwall of the rift border fault, adjacent to a major intrabasinal relay zone. Sedimentological and stratigraphic studies, in combination with structural analysis of the basin-bounding fault system, permit reconstruction of the architecture, dispersal patterns and evolution of proximal Gilbert delta systems in relation to the growth and interaction of normal fault segments. Structural geometries demonstrate that fault-related folds developed along the basin margin above upward and laterally propagating normal faults during the early stages of extension. Palaeocurrent data indicate that the delta complex formed a point-sourced depositional system developed at the intersection of two normal fault segments. Gilbert deltas prograded transverse into the basin and laterally parallel to faults. Development of the transverse delta complex is proposed to be a function of its location adjacent to an evolving zone of fault overlap, together with focusing of dispersal between adjacent fault segments growing towards each other. Growth strata onlap and converge onto the monoclinal fold limbs indicating that these structures formed evolving structural topography. During fold growth, Gilbert deltas prograded across the deforming fold surface, became progressively rotated and incorporated into fold limbs. Spatial variability of facies architecture is linked to along-strike variation in the style of fault/fold growth, and in particular variation in rates of crestal uplift and fold limb rotation. Our results clearly show that the growth and linkage of fault segments during fault array evolution has a fundamental control on patterns of sediment dispersal in rift basins.  相似文献   

7.
The structural evolution of the Miocene to Recent Gediz Graben is intimately related to the evolution of its southern margin. This margin is shaped by a time‐transgressive, composite structure that possesses flat‐ramp geometry with three separate dip domains: a low‐angle shallow segment; a steeper middle segment; and a low‐angle deeper segment. This geometry was probably produced by one of two mechanisms, which operated perpendicular to the general trend of the graben, resulting in gradual back‐rotation followed by abandonment of the shallow segment as it was dissected by the high‐angle normal fault(s). The geometry of the southern margin structure is not simple along‐strike. It includes broad undulations and discrete fault segments, developed by large‐scale fault growth processes through segment linkage. The along‐strike growth of the southern margin‐bounding structure is responsible for the composite character of the Gediz Graben and controls the observed stratigraphic variability. Two sub‐basins aligned with the major segments of the southern graben margin structure have been investigated. The Salihli and Ala?ehir sub‐basins comprising 3000 m sedimentary thickness are separated by an intervening basement high, that is covered by a thin veneer of post‐Miocene sediments. The two sub‐basins, which evolved as isolated basins during most of the graben history, amalgamated during post‐Miocene time to form the composite configuration of the graben. There is a general east to west trend of growth for the Gediz Graben.  相似文献   

8.
A series of analogue models are used to demonstrate how the multistage development of the Mid‐Polish Trough (MPT) could have been influenced by oblique basement strike–slip faults. Based on reinterpretation of palaeothickness, facies maps and published syntheses of the basin development, the following successive stages in the Mesozoic history of the south eastern part of the MPT were simulated in the models: (1) Oblique extension of the NW segment of the MPT connected with sinistral movement along the Holy Cross Fault (HCF, Early Triassic–latest Early Jurassic). (2) Oblique extension of both NW and SE segment of the MPT, parallel to the HCF (latest Early and Middle Jurassic). (3) Oblique extension of the SE segment of the MPT and much lesser extension of its NW segment connected with dextral movement along the HCF (Early Oxfordian–latest Early Kimmeridgian). (4) Oblique extension of the SE segment of the MPT and much lesser extension of its NW segment connected with dextral movement along the Zawiercie Fault (ZF, latest Early Kimmeridgian–Early Albian). (5) Oblique inversion of the NW segment of the MPT connected with dextral movement along the HCF (Early Albian–latest Cretaceous). (6) Oblique inversion of the SE segment of the MPT along the W–E direction (latest Cretaceous–Palaeogene). The different sense of movements of these two basement strike–slip faults (HCF and ZF) resulted in distinct segmentation of the basin and its SW margin by successive systems of extensional en‐echelon faults. The overall structure of this margin is controlled by the interference of the border normal faults with the en‐echelon fault systems related to successive stages of movement along the oblique strike–slip faults. This type of en‐echelon fault system is absent in the opposite NE‐margin of the basin, which was not affected by oblique strike–slip faults. The NE‐margin of the basin is outlined by a typical, steep and distinctly marked rift margin fault zone, dominated by normal and dip–slip/strike–slip faults parallel to its axis. Within the more extended segment of the basin, extensive intra‐rift faults and relay ramps develop, which produce topographic highs running across the basin. The change in the extension direction to less oblique relative to the basin axis resulted in restructuring of the fault systems. This change caused shifting of the basin depocentre to this margin. Diachronous inversion of the different segments of the basin in connection with movement along one of the oblique basement strike–slip faults resulted in formation of a pull‐apart sub‐basin in the uninverted SE‐segment of the basin. The results of the analogue models presented here inspire an overall kinematic model for the southeastern segment of the MPT as they provide a good explanation of the observed structures and the changes in the facies and palaeothickness patterns.  相似文献   

9.
Extensional faults and folds exert a fundamental control on the location, thickness and partitioning of sedimentary deposits on rift basins. The connection between the mode of extensional fault reactivation, resulting fault shape and extensional fold growth is well‐established. The impact of folding on accommodation evolution and growth package architecture, however, has received little attention; particularly the role‐played by fault‐perpendicular (transverse) folding. We study a multiphase rift basin with km‐scale fault displacements using a large high‐quality 3D seismic data set from the Fingerdjupet Subbasin in the southwestern Barents Sea. We link growth package architecture to timing and mode of fault reactivation. Dip linkage of deep and shallow fault segments resulted in ramp‐flat‐ramp fault geometry, above which fault‐parallel fault‐bend folds developed. The folds limited the accommodation near their causal faults, leading to deposition within a fault‐bend synclinal growth basin further into the hangingwall. Continued fold growth led to truncation of strata near the crest of the fault‐bend anticline before shortcut faulting bypassed the ramp‐flat‐ramp structure and ended folding. Accommodation along the fault‐parallel axis is controlled by the transverse folds, the location and size of which depends on the degree of linkage in the fault network and the accumulated displacement on causal faults. We construct transverse fold trajectories by tracing transverse fold hinges through space and time to highlight the positions of maximum and minimum accommodation and potential sediment entry points to hangingwall growth basins. The length and shape of the constructed trajectories relate to the displacement on their parent faults, duration of fault activity, timing of transverse basin infill, fault linkage and strain localization. We emphasize that the considerable wavelength, amplitudes and potential periclinal geometry of extensional folds make them viable targets for CO2 storage or hydrocarbon exploration in rift basins.  相似文献   

10.
The stratigraphic, subsidence and structural history of Orphan Basin, offshore the island of Newfoundland, Canada, is described from well data and tied to a regional seismic grid. This large (400 by 400 km) rifted basin is part of the non‐volcanic rifted margin in the northwest Atlantic Ocean, which had a long and complex rift history spanning Middle Jurassic to Aptian time. The basin is underlain by variably thinned continental crust, locally <10‐km thick. Our work highlights the complex structure, with major upper crustal faults terminating in the mid‐crust, while lower crustal reflectivity suggests ductile flow, perhaps accommodating depth‐dependent extension. We describe three major stratigraphic horizons connected to breakup and the early post‐rift. An Aptian–Albian unconformity appears to mark the end of crustal rifting in the basin, and a second, more subdued Santonian unconformity was also noted atop basement highs and along the proximal margins of the basin. Only minor thermal subsidence occurred between development of these two horizons. The main phase of post‐rift subsidence was delayed until post‐Santonian time, with rapid subsidence culminating in the development of a major flooding surface in base Tertiary time. Conventional models of rifting events predict significant basin thermal subsidence immediately following continental lithospheric breakup. In the Orphan Basin, however, this subsidence was delayed for about 25–30 Myr and requires more thinning of the mantle lithosphere than the crust. Models of the subsidence history suggest that extreme thinning of the lithospheric mantle continued well into the post‐rift period. This is consistent with edge‐driven, small‐scale convective flow in the mantle, which may thin the lithosphere from below. A hot spot may also have been present below the region in Aptian–Albian time.  相似文献   

11.
The upper Campanian–Lower Eocene synorogenic sedimentary wedge of the Ranchería Basin was deposited in an intraplate basin resting on a tilted continental crustal block that was deformed by collision and subsequent subduction of the Caribbean Plate. Upper Cretaceous–Lower Eocene strata rest unconformably upon Jurassic igneous rocks of the Santa Marta Massif, with no major thrust faults separating the Santa Marta Massif from the Ranchería Basin. The upper Campanian–Lower Eocene succession includes, from base to top: foraminifera‐rich calcareous mudstone, mixed carbonate–siliciclastic strata and mudstone, coal and immature fluvial sandstone beds. Diachronous collision and eastward tilting of the plate margin (Santa Marta Massif and Central Cordillera) favoured the generation of accommodation space in a continuous intraplate basin (Ranchería, Cesar and western Maracaibo) during the Maastrichtian to Late Palaeocene. Terrigenous detritus from the distal colliding margin filled the western segments of the continuous intraplate basin (Ranchería and Cesar Basins); in the Late Paleocene, continental depositional systems migrated eastwards as far as the western Maracaibo Basin. In Early Eocene time, reactivation of former extensional structures fragmented the intraplate basin into the Ranchería‐Cesar Basins to the west, and the western Maracaibo Basin and Palmar High to the East. This scenario of continent–oceanic arc collision, crustal‐scale tilting, intraplate basin generation and fault reactivation may apply for Upper Cretaceous–Palaeogene syntectonic basins in western Colombia and Ecuador, and should be considered in other settings where arc–continent collision is followed by subduction.  相似文献   

12.
《Basin Research》2018,30(4):688-707
Investigations of syn‐sedimentary growth faults in the Last Chance delta (Ferron Sandstone, Utah, USA) show that fault‐bounded half‐grabens arrested high amounts of sand in the mouth bar and/or distributary channel areas. Fault‐controlled morphology causes changes in routing of the delta top to delta front drainage towards the long axis of half‐grabens. Faulting was spatially and temporally non‐systematic, and polyphase, with 3D cusp/listric fault geometries instigated by linkage of variously oriented segments. Hanging wall rollover folds consisting of wedge‐shaped syn‐kinematic sand attest to rapid <1‐m slip increments on faults followed by mild erosion along crests of fault blocks and sedimentary infill of adjacent accommodation. Triangle‐zones in prodelta to delta front muds are located underneath steeper faults and interconnected rotated fault‐flats. Their geometry is that of antiformal stack duplexes, in an arrangement of low‐angle‐to‐bedding normal faults at the base, replaced by folded thrusts upwards. These faults show a brittle, frictional flow deformation mechanism ascribed to early compaction of mud. For syn‐kinematic sand, there is a change from general granular/hydroplastic flow in shear zones to later brittle failure and cataclasis, a transition instigated by precipitation of calcite cement. Extensional faulting in the Last Chance delta was likely controlled by gravity driven collapse towards the delta slope and prodelta, as is commonly observed in collapsing deltas. The trigger and driving mechanism is envisioned as localized loads from sand deposited within distributary channels/mouth bars and fault‐controlled basins along the delta top. A regional tilt and especially displacement of compacted mud below sand bodies towards less compacted muds also contributed to the faulting.  相似文献   

13.
Along‐strike structural linkage and interaction between faults is common in various compressional settings worldwide. Understanding the kinematic history of fault interaction processes can provide important constraints on the geometry and evolution of the lateral growth of segmented faults in the fold‐and‐thrust belts, which are important to seismic hazard assessment and hydrocarbon trap development. In this study, we study lateral structural geometry (fault displacement and horizon shortening) of thrust fault linkages and interactions along the Qiongxi anticline in the western Sichuan foreland basin, China, using a high‐resolution 3D seismic reflection dataset. Seismic interpretation suggests that the Qiongxi anticline can be related to three west‐dipping, hard‐linked thrust fault segments that sole onto a regional shallow detachment. Results reveal that the lateral linkage of fault segments limited their development, affecting the along‐strike fault displacement distributions. A deficit between shortening and displacement is observed to increase in linkage zones where complex structural processes occur, such as fault surface bifurcation and secondary faulting, demonstrating the effect of fault linkage process on structural deformation within a thrust array. The distribution of the geometrical characteristics shows that thrust fault development in the area can be described by both the isolated fault model and the coherent fault model. Our measurements show that new fault surfaces bifurcate from the main thrust ramp, which influences both strain distribution in the relay zone and along‐strike fault slip distribution. This work fully describes the geometric and kinematic characteristics of lateral thrust fault linkage, and may provide insights into seismic interpretation strategies in other complex fault transfer zones.  相似文献   

14.
《Basin Research》2018,30(5):1042-1073
The Late Triassic outcrops on southern Edgeøya, East Svalbard, allow a multiscale study of syn‐sedimentary listric growth faults located in the prodelta region of a regional prograding system. At least three hierarchical orders of growth faults have been recognized, each showing different deformation mechanisms, styles and stratigraphic locations of the associated detachment interval. The faults, characterized by mutually influencing deformation envelopes over space‐time, generally show SW‐ to SE‐dipping directions, indicating a counter‐regional trend with respect to the inferred W‐NW directed progradation of the associated delta system. The down‐dip movement is accommodated by polyphase deformation, with the different fault architectural elements recording a time‐dependent transition from fluidal‐hydroplastic to ductile‐brittle deformation, which is also conceptually scale‐dependent, from the smaller‐ (3rd order) to the larger‐scale (1st order) end‐member faults respectively. A shift from distributed strain to strain localization towards the fault cores is observed at the meso to microscale (<1 mm), and in the variation in petrophysical parameters of the litho‐structural facies across and along the fault envelope, with bulk porosity, density, pore size and microcrack intensity varying accordingly to deformation and reworking intensity of inherited structural fabrics. The second‐ and third‐order listric fault nucleation points appear to be located above blind fault tip‐related monoclines involving cemented organic shales. Close to planar, through‐going, first‐order faults cut across this boundary, eventually connecting with other favourable lower‐hierarchy fault to create seismic‐scale fault zones similar to those imaged in the nearby offshore areas. The inferred large‐scale driving mechanisms for the first‐order faults are related to the combined effect of tectonic reactivation of deeper Palaeozoic structures in a far field stress regime due to the Uralide orogeny, and differential compaction associated with increased sand sedimentary input in a fine‐grained, water‐saturated, low‐accommodation, prodeltaic depositional environment. In synergy to this large‐scale picture, small‐scale causative factors favouring second‐ and third‐order faulting seem to be related to mechanical‐rheological instabilities related to localized shallow diagenesis and liquidization fronts.  相似文献   

15.
Seismic reflection and well stratigraphic data are used to investigate the post‐Jurassic evolution of the Northern Lusitanian Basin, offshore west Iberia. Stratigraphic correlations between 11 exploration wells were attained in order to characterize the variations in depositional facies associated with salt tectonics. Latest Triassic–Hettangian salt, which generated multiple salt pillows during the Jurassic rifting, was reactivated after the early Aptian in two main phases. The first phase stretches from the late Turonian to the Maastrichtian. The second relates to Miocene tectonic inversion. The compression of the post‐salt overburden caused the amplification of Jurassic detachment folds, forming barriers to the westward progradation of sediment into distinct salt‐withdrawal sub‐basins. Particularly during the Miocene, thin‐skinned overburden shortening was accommodated by growing salt structures that suffered thrusting and extrusion. This structural style contrasts with that of salt‐scarce areas where a simple westerly tilted, fault‐bounded monocline was generated.  相似文献   

16.
The Emme Delta is a small glacilacustrine delta, which developed on the southern flank of the Wesergebirge Mountains in NW Germany. Shallow shear‐wave seismic surveys allow a detailed assessment of the structural style of the delta body. Two different fault systems are developed within the delta, both showing syn‐sedimentary activity. The faults have planar to slightly listric geometries and show vertical offsets in a range of 2–15 m. They form small graben and half‐graben systems, which locally show roll‐over structures. The fill of the half‐grabens has a wedge‐shaped geometry, with the greatest sediment thickness close to the fault. The fault system in the upper portion of the Emme Delta is restricted to the delta body and probably gravity induced. In the lower portion of the delta, normal faults occur that originate in the underlying Jurassic basement rocks and penetrate into the delta deposits. The grid of seismic lines shows that the normal faults are trending E–W. This fits to a late Triassic–early Jurassic deformation phase in the Central European Basin System. We hypothese that these faults were reactivated during the Pleistocene by the advancing ice‐sheet, water and sediment loading. Based on the seismic data set, an overall model for the reactivation of the basement fault was developed. The advancing ice‐sheet caused far field extension, which might have reactivated pre‐existing normal faults. Later, the fault activity was enhanced due to sediment and water loading. In addition, high pore pressure due to lake formation might have supported the slip processes along the faults. After glacial unloading and lake drainage, the fault activity stopped.  相似文献   

17.
The thrust sheets of the Northern Calcareous Alps were emplaced during Late Cretaceous thrust‐dominated transpression expressed by thrust sheets segmented by closely spaced tear faults. Thrust sheet‐top sediments were deposited during thrusting and associated fold growth and were controlled by active folding and tearing. We observe two types of angular unconformities: (1) Angular unconformities above folds between tear faults conform with the model of progressive unconformities. Across these unconformities dip decreases upsection. (2) Here, we define progressive unconformities that are related to tear faults and are controlled by both folding and tearing. Across these unconformities both strike and dip change. In growth strata overlying folds dissected by high‐angle faults, such unconformities are expected to be common. We used analogue modelling to define the geometry of the tear faults and related unconformities. Within the syn‐tectonic sediments, a steep, upward flattening thrust within a broader, roughly tulip‐shaped drag zone develops. The thrust roots in the tear fault in pre‐tectonic deposits and is curved upward toward the downthrown block. Vertical offset on the thrust is related to differential vertical uplift caused by, for example, growth of folds with different wavelength and amplitude on either side of the tear fault. Formation of progressive unconformities is governed by the relationship between the rates of deposition and vertical growth of a structure. Fault‐related progressive unconformities are additionally controlled by the growth of the vertical step across the tear fault. When the rates of vertical growth of two neighbouring folds separated by a tear fault are similar, the rate of growth across the tear fault is small; if the first differ, the latter is high. Episodic tear fault activity may create several angular unconformities attached to a tear fault or allow the generation of angular unconformities near tear faults in sedimentary systems that have a rate of deposition too high to generate classical progressive unconformities between the tear faults.  相似文献   

18.
Studies of salt‐influenced rift basins have focused on individual or basin‐scale fault system and/or salt‐related structure. In contrast, the large‐scale rift structure, namely rift segments and rift accommodation zones and the role of pre‐rift tectonics in controlling structural style and syn‐rift basin evolution have received less attention. The Norwegian Central Graben, comprises a complex network of sub‐salt normal faults and pre‐rift salt‐related structures that together influenced the structural style and evolution of the Late Jurassic rift. Beneath the halite‐rich, Permian Zechstein Supergroup, the rift can be divided into two major rift segments, each comprising rift margin and rift axis domains, separated by a rift‐wide accommodation zone – the Steinbit Accommodation Zone. Sub‐salt normal faults in the rift segments are generally larger, in terms of fault throw, length and spacing, than those in the accommodation zone. The pre‐rift structure varies laterally from sheet‐like units, with limited salt tectonics, through domains characterised by isolated salt diapirs, to a network of elongate salt walls with intervening minibasins. Analysis of the interactions between the sub‐salt normal fault network and the pre‐rift salt‐related structures reveals six types of syn‐rift depocentres. Increasing the throw and spacing of sub‐salt normal faults from rift segment to rift accommodation zone generally leads to simpler half‐graben geometries and an increase in the size and thickness of syn‐rift depocentres. In contrast, more complex pre‐rift salt tectonics increases the mechanical heterogeneity of the pre‐rift, leading to increased complexity of structural style. Along the rift margin, syn‐rift depocentres occur as interpods above salt walls and are generally unrelated to the relatively minor sub‐salt normal faults in this structural domain. Along the rift axis, deformation associated with large sub‐salt normal faults created coupled and decoupled supra‐salt faults. Tilting of the hanging wall associated with growth of the large normal faults along the rift axis also promoted a thin‐skinned, gravity‐driven deformation leading to a range of extensional and compressional structures affecting the syn‐rift interval. The Steinbit Accommodation Zone contains rift‐related structural styles that encompass elements seen along both the rift margin and axis. The wide variability in structural style and evolution of syn‐rift depocentres recognised in this study has implications for the geomorphological evolution of rifts, sediment routing systems and stratigraphic evolution in rifts that contain pre‐rift salt units.  相似文献   

19.
《Basin Research》2018,30(Z1):363-381
Inversion of pre‐existing extensional fault systems is common in rift systems, back‐arc basins and passive margins. It can significantly influence the development of structural traps in hydrocarbon basins. The analogue models of domino‐style basement fault systems shown in this paper produced, on extension, characteristic hangingwall growth stratal wedges that, when contracted and inverted, formed classic inversion harpoon geometries and asymmetric hangingwall contractional fault‐propagation folds. Segmented footwall shortcut faults formed as the basement faults were progressively back‐rotated and steepened. The pre‐existing extensional fault architectures, basement fault geometries and the relative hangingwall and footwall block rotations exerted fundamental controls on the inversion styles. Digital image correlation (DIC) strain monitoring illustrated complex vertical fault segmentation and linkage during inversion as the major faults were reactivated and strain was progressively transferred onto footwall shortcut faults. Hangingwall deformation during inversion was dominated by significant back‐rotation as the inversion progressed. The mechanical stratigraphy of the cover sequences strongly influenced the fold and fault evolution of the reactivated fault systems. The implications of the experimental results for the interpretation and analysis of inversion structures are discussed and are compared with natural examples of inverted basement‐involved extensional faults observed in seismic datasets.  相似文献   

20.
Seven tectonic subsidence curves, based on outcrop data, have been calculated in order to constrain the geodynamic evolution of the Permian–Mesozoic sedimentary succession (up to 10 km thick) of the Central Southern Alps basin (Italy). The analysis of the tectonic subsidence curves, covering a time span of about 200 Ma, allowed us to quantify the subsidence rates, to document the activity of syndepositional fault systems and calculate their slip rates. Different stages, in terms of duration and magnitude of subsidence‐uplift trends, have been identified in the evolution of the basin. The fault activity, reconstructed by comparing subsidence curves from adjacent sectors, resulted as highly variable both temporally and spatially. Strike‐slip tectonics was coeval to Permian sedimentation, as suggested by the strong differences in the subsidence rates in the sections. The evolution and subsidence rates suggest a continental shelf deposition from Early Triassic to Carnian, when subsidence came to a stop. A rapid resumption of subsidence is observed from the Norian, with a subsidence pulse in the Late Norian, followed by the regional uplift, in the Late Rhaetian. The following Early Jurassic subsidence is characterized by tectonic subsidence similar to that of the Norian. The Norian and Early Jurassic pulses were characterized by the highest slip rates along growth faults and are identified as two distinct tectonic events. The Norian–Rhaetian event is tentatively related to transtensional tectonics whereas the Early Jurassic event is related to crustal extension. The Early Jurassic subsidence records a shift in space an time of the beginning of the extensional stage, from Late Hettangian to the east to Late Pliensbachian–Toarcian to the west. From the Toarcian to the Aptian, the curves are compatible with regional thermal subsidence, later followed (Albian–Cenomanian) by uplift pulses in a retrobelt foreland basin (from Cenomanian onward).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号