首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
Foreland basin strata provide an opportunity to review the depositional response of alluvial systems to unsteady tectonic load variations at convergent plate margins. The lower Breathitt Group of the Pocahontas Basin, a sub‐basin of the Central Appalachian Basin, in Virginia preserves an Early Pennsylvanian record of sedimentation during initial foreland basin subsidence of the Alleghanian orogeny. Utilizing fluvial facies distributions and long‐term stacking patterns within the context of an ancient, marginal‐marine foreland basin provides stratigraphic evidence to disentangle a recurring, low‐frequency residual tectonic signature from high‐frequency glacioeustatic events. Results from basin‐wide facies analysis, corroborated with petrography and detrital zircon geochronology, support a two end‐member depositional system of coexisting transverse and longitudinal alluvial systems infilling the foredeep during eustatic lowstands. Provenance data suggest that sediment was derived from low‐grade metamorphic Grenvillian‐Avalonian terranes and recycling of older Palaeozoic sedimentary rocks uplifted as part of the Alleghanian orogen and Archean‐Superior‐Province. Immature sediments, including lithic sandstone bodies, were deposited within a SE‐NW oriented transverse drainage system. Quartzarenites were deposited within a strike‐parallel NE‐SW oriented axial drainage, forming elongate belts along the western basin margin. These mature quartzarenites were deposited within a braided fluvial system that originated from a northerly cratonic source area. Integrating subsurface and sandstone provenance data indicates significant, repeated palaeogeographical shifts in alluvial facies distribution. Distinct wedges comprising composite sequences are bounded by successive shifts in alluvial facies and define three low‐frequency tectonic accommodation cycles. The proposed tectonic accommodation cycles provide an explanation for the recognized low‐frequency composite sequences, defining short‐term episodes of unsteady westward migration of the flexural Appalachian Basin and constrain the relative timing of deformation events during cratonward progression of the Alleghanian orogenic wedge.  相似文献   

2.
The Sivas Basin, located in the Central Anatolian Plateau of Turkey, is a foreland basin that records a complex interaction between sedimentation, salt tectonics and regional shortening during the Oligo‐Miocene leading to the formation of numerous mini‐basins. The Oligocene sedimentary infill of the mini‐basins consists of a thick continental succession, the Karayün Formation, comprising a vertical succession of three main sub‐environments: (i) playa‐lake, (ii) fluvial braided, and (iii) saline lacustrine. These sub‐environments are seen as forming a large Distributive Fluvial System (DFS) modified through time as a function of sediment supply and accommodation related to regional changes in climate and tectonic regime. Within neighbouring mini‐basins and despite a similar vertical stratigraphic succession, subtle variations in facies assemblages and thickness are observed in stratigraphic units of equivalent age, thus demonstrating the local control exerted by halokinesis. Stratigraphic and stratal patterns reveal in great detail the complex interaction between salt tectonics and sedimentation including different types of halokinetic structures such as hooks, wedges and halokinetic folds. The regional variations of accommodation/sediment supply led to coeval changes in the architectural patterns recorded in the mini‐basins. The type of accommodation regime produces several changes in the sedimentary record: (i) a regime dominated by regional accommodation limits the impact of halokinesis, which is recorded as very small variations in stratigraphic thickness and facies distribution within and between mini‐basins; (ii) a regime dominated by localized salt‐induced accommodation linked to the subsidence of each individual mini‐basin enhances the facies heterogeneity within the DFS, causing sharp changes in stratigraphic thickness and facies assemblages within and between mini‐basins.  相似文献   

3.
The Dzereg Basin is an actively evolving intracontinental basin in the Altai region of western Mongolia. The basin is sandwiched between two transpressional ranges, which occur at the termination zones of two regional‐scale dextral strike‐slip fault systems. The basin contains distinct Upper Mesozoic and Cenozoic stratigraphic sequences that are separated by an angular unconformity, which represents a regionally correlative peneplanation surface. Mesozoic strata are characterized by northwest and south–southeast‐derived thick clast‐supported conglomerates (Jurassic) overlain by fine‐grained lacustrine and alluvial deposits containing few fluvial channels (Cretaceous). Cenozoic deposits consist of dominantly alluvial fan and fluvial sediments shed from adjacent mountain ranges during the Oligocene–Holocene. The basin is still receiving sediment today, but is actively deforming and closing. Outwardly propagating thrust faults bound the ranges, whereas within the basin, active folding and thrusting occurs within two marginal deforming belts. Consequently, active fan deposition has shifted towards the basin centre with time, and previously deposited sediment has been uplifted, eroded and redeposited, leading to complex facies architecture. The geometry of folds and faults within the basin and the distribution of Mesozoic sediments suggest that the basin formed as a series of extensional half‐grabens in the Jurassic–Cretaceous which have been transpressionally reactivated by normal fault inversion in the Tertiary. Other clastic basins in the region may therefore also be inherited Mesozoic depocentres. The Dzereg Basin is a world class laboratory for studying competing processes of uplift, deformation, erosion, sedimentation and depocentre migration in an actively forming intracontinental transpressional basin.  相似文献   

4.
This paper develops a tectono‐stratigraphic model for the evolution and drowning of Early Jurassic carbonate platforms. The model arises from outcrop analysis and Sr isotope dating of successions exposed in the Betic Cordillera in southeastern Spain. Here, an extensive Early Jurassic (Sinemurian) carbonate platform developed on the rifted Tethyan margin of the Iberian Plate. The platform was dissected by extensional faults in early jamesoni times (ca. 191 Ma) and again in late ibex times (ca.188 Ma) during the Pliensbachian stage. Extensional faults and fault block rotation are shown to control the formation of three sequence boundaries that divide the platform stratigraphy (the Gavilan Formation) into three depositional sequences. The last sequence boundary marks localised drowning of the platform and deposition of the deeper water Zegri Formation, whereas adjacent platforms remain exposed or continue as the site of shallow‐marine sediment accumulation. This study is based on mapping, facies analysis and dating of platform carbonates exposed in three tectonic units within the zone: Gabar, Ponce and Canteras. Facies analysis leads to the recognition of facies associations deposited in carbonate ramp environments and adjacent to synsedimentary, marine, fault scarps. Sr isotope dating enables us to correlate platform‐top carbonates from the different tectonic units at a precision equivalent to ammonite zones. A sequence stratigraphic analysis of sections from the three tectonic units is carried out using the facies models together with the Sr isotope dates. This analysis indicates a clear tectonic control on the development of the stratigraphy: depositional sequences vary in thickness, have wedge‐shaped geometries and vary in facies, internal geometries and systems tracts from one tectonic unit to another. Criteria characterising depositional sequences and sequence boundaries from the Gabar and Ponce units are used to establish a tectono‐stratigraphic model for carbonate platform depositional sequences and sequence boundaries in maritime rifts, which can be applied to other less well‐exposed or subsurface successions from other sedimentary basins. Onlapping transgressive and progradational highstand systems tracts are recognised on dip slope ramps. Falling stage and lowstand systems tracts are developed as thick breccia units in hangingwall areas adjacent to extensional faults. Sequence boundaries vary in character, amplitude and/or duration of sea‐level fall and persistence across the area. Some boundaries coalesce onto the Canteras unit, which remained as a relatively positive area throughout the early Pliensbachian (Carixian). The carbonate platform on the Ponce tectonic unit drowned in the latest Carixian (davoei biozone). However, the adjacent tectonic units remained emergent and developed a long‐lived sequence boundary, indicating tectonic subsidence as the major cause for platform drowning. The stratigraphic evolution of this area on the rifted southern Iberian margin indicates that a widespread restricted shallow‐water carbonate platform environment accumulating peritidal carbonates evolved with faulting to a more open‐marine setting. Sr dating indicates that this transition took place around the Sinemurian–Pliesbachian boundary and it was driven by local fault‐related subsidence together with likely post‐faulting regional subsidence.  相似文献   

5.
The Tombador Formation exhibits depositional sequence boundaries placed at the base of extensive amalgamated fluvial sand sheets or at the base of alluvial fan conglomeratic successions that indicate basinward shifts of facies. The hierarchy system that applies to the Tombador Formation includes sequences of different orders, which are defined as follows: sequences associated with a particular tectonic setting are designated as ‘first order’ and are separated by first‐order sequence boundaries where changes in the tectonic setting are recorded; second‐order sequences represent the major subdivisions of a first‐order sequence and reflect cycles of change in stratal stacking pattern observed at 102 m scales (i.e., 200–300 m); changes in stratal stacking pattern at 101 m scales indicate third‐order sequences (i.e., 40–70 m); and changes in stratal stacking pattern at 100 m scales are assigned to the fourth order (i.e., 8–12 m). Changes in palaeogeography due to relative sea level changes are recorded at all hierarchical levels, with a magnitude that increases with the hierarchical rank. Thus, the Tombador Formation corresponds to one‐first‐order sequence, representing a distinct intracratonic sag basin fill in the polycyclic history of the Espinhaço Supergroup in Chapada Diamantina Basin. An angular unconformity separates fluvial‐estuarine to alluvial fan deposits and marks the second‐order boundary. Below the angular unconformity the third‐order sequences record fluvial to estuarine deposition. In contrast, above the angular unconformity these sequences exhibit continental alluvial successions composed conglomerates overlain by fluvial and eolian strata. Fourth‐order sequences are recognized within third‐order transgressive systems tract, and they exhibit distinct facies associations depending on their occurrence at estuarine or fluvial domains. At the estuarine domain, they are composed of tidal channel, tidal bar and overlying shoreface heterolithic strata. At the fluvial domain the sequences are formed of fluvial deposits bounded by fine‐grained or tidal influenced intervals. Fine grained intervals are the most reliable to map in fourth‐order sequences because of their broad laterally extensive sheet‐like external geometry. Therefore, they constitute fourth‐order sequence boundaries that, at the reservoir approach, constitute the most important horizontal heterogeneity and, hence, the preferable boundaries of production zones. The criteria applied to assign sequence hierarchies in the Tombador Formation are based on rock attributes, are easy to apply, and can be used as a baseline for the study of sequence stratigraphy in Precambrian and Phanerozoic basins placed in similar tectonic settings.  相似文献   

6.
The Tian Shan range formed in the late Cenozoic in response to the northward propagation of deformation related to the India–Eurasia continental collision. Precise timing of the Tian Shan uplift is required to understand possible mechanisms of continental lithosphere deformation and interactions between climate, tectonism and erosion. Here, we provide magnetostratigraphic age control on the northern Chinese Tian Shan foreland successions. A thorough rock magnetic analysis identifies haematite‐ and magnetite‐bearing alluvial fan deposits in the upper portion of the sampled strata as more reliable palaeomagnetic recorders than magnetite‐bearing fluvial and lacustrine deposits that are often maghaemitized in the lower part of the record. As a result, a robust correlation to the geomagnetic polarity time scale is obtained from 6 to 2 Ma while a tentative correlation is proposed from 6 to 16 Ma. Sediment accumulation rates increase from 155 to 260 m Myr?1 at 3.9±0.3 Ma. This change coincides with a gradual lithologic transition from fluvial (sandstone‐dominated) to alluvial fan (conglomerate‐dominated) deposits that likely records an approaching erosional source related to tectonically increased subsidence rather than differential compaction. Clear evidence for growth strata starting at an estimated age of ~2 Ma provides a minimum age for folding. These results are compared with previous magneotstratigraphic studies from the same and other sections of the northern Tian Shan foreland basin fill, thus enabling a critical assessment of the reliability of magnetostratigraphic dating and the significance of sediment accumulation rate variations with respect to facies variations and growth strata. Our results in the Taxi He section provide a sequence of events that is consistent with enhanced tectonic forcing starting at ~4 Ma, although a climatic contribution must be considered given the close relationship of these ages with the Pliocene climate deterioration.  相似文献   

7.
The Salar de Atacama Basin holds important information regarding the tectonic activity, sedimentary environments and their variations in northern Chile during Cretaceous times. About 4000 m of high‐resolution stratigraphic columns of the Tonel, Purilactis and Barros Arana Formations reveal braided fluvial and alluvial facies, typical of arid to semi‐arid environments, interrupted by scarce intervals with evaporitic, aeolian and lacustrine sedimentation, displaying an overall coarsening‐upward trend. Clast‐count and point‐count data evidence the progressive erosion from Mesozoic volcanic rocks to Palaeozoic basement granitoids and deposits located around the Cordillera de Domeyko area, which is indicative of an unroofing process. The palaeocurrent data show that the source area was located to the west. The U/Pb detrital zircon geochronological data give maximum depositional ages of 149 Ma for the base of the Tonel Formation (Agua Salada Member), and 107 Ma for its middle member (La Escalera Member); 79 Ma for the lower Purilactis Formation (Limón Verde Member), and 73 Ma for the Barros Arana Formation. The sources of these zircons were located mainly to the west, and comprised from the Coastal Cordillera to the Precordillera. The ages and pulses record the tectonic activity during the Peruvian Phase, which can be split into two large events; an early phase, around 107 Ma, showing uplift of the Coastal Cordillera area, and a late phase around 79 Ma indicating an eastward jump of the deformation front to the Cordillera de Domeyko area. The lack of internal deformation and the thicknesses measured suggest that deposition of the units occurred in the foredeep zone of an eastward‐verging basin. This sedimentation would have ended with the K‐T phase, recognized in most of northern Chile.  相似文献   

8.
The relationships between large‐scale depositional processes and the stratigraphic record of alluvial systems, e.g. the origin and distribution of channel stacking patterns, changing architecture and correlation of strata, are still relatively poorly understood, in contrast to marine systems. We present a study of the Castillian Branch of the Permo‐Triassic Central Iberian Basin, north‐eastern Spain, using chemostratigraphy and a detailed sedimentological analysis to correlate the synrift Triassic fluvial sandstones for ~80 km along the south‐eastern basin margin. This study investigates the effects of Middle Triassic (Ladinian) Tethyan marine transgression on fluvial facies and architecture. Chemostratigraphy identifies a major, single axially flowing fluvial system lasting from the Early to Middle Triassic (~10 Ma). The fluvial architecture comprises basal conglomerates, followed by amalgamated sandstones and topped by floodplain‐isolated single‐ or multi‐storey amalgamated sandstone complexes with a total thickness up to ~1 km. The Tethyan marine transgression advanced into the basin with a rate of 0.04–0.02 m/year, and is recorded by a transition from the fluvial succession to a series of maximum flooding surfaces characterised by marginal marine clastic sediments and sabkha evaporites. The continued, transgression led to widespread thick carbonate deposition infilling the basin and recording the final stage of synrift to early‐post‐rift deposition. We identify the nonmarine to marine transition characterised by significant changes in the Buntsandstein succession with a transition from a predominantly tectonic‐ to a climatically driven fluvial system. The results have important implications for the temporal and spatial prediction of fluvial architecture and their transition during a marine transgression.  相似文献   

9.
The Po River Basin, where accumulation and preservation of thick sedimentary packages are enhanced by high rates of tectonic subsidence, represents an ideal site to assess the relations between vertical changes in stratigraphic architecture and sediment accumulation rates. Based on a large stratigraphic database, a markedly contrasting stratigraphy of Late Pleistocene and Holocene deposits is reconstructed from the subsurface of the modern alluvial and coastal plains. Laterally extensive fluvial channel bodies and related pedogenically modified muds of latest Pleistocene age are unconformably overlain by Holocene overbank fines, grading seaward into paralic and nearshore facies associations. In the interfluvial areas, a stiff paleosol, dating at about 12.5–10 cal ky BP, marks the Pleistocene–Holocene boundary. Across this paleosol, aggradation rates (ARs) from 16 radiocarbon‐dated cores invariably show a sharp increase, from 0.1–0.9 mm year?1 to 0.9–2.9 mm year?1. Comparatively lower Pleistocene values are inferred to reflect fluvial activity under a low‐accommodation (lowstand and early transgressive) regime, whereas higher ARs during the Holocene are related to increasing accommodation under late transgressive and highstand conditions. Holocene sediment accumulation patterns vary significantly from site to site, and do not exhibit common trends. Very high accumulation rates (20–60 mm year?1) are indicated by fluvial channel or progradational delta facies, suggesting that extremely variable spatial distribution of Holocene ARs was primarily controlled by autogenic processes, such as fluvial channel avulsion or delta lobe switching. Contrasting AR between uppermost Pleistocene and Holocene deposits also are reported from the interfluves of several coeval, alluvial‐coastal plain systems worldwide, suggesting a key control by allogenic processes. Sediment accumulation curves from adjacent incised valley fills show, instead, variable shapes as a function of the complex mechanisms of valley formation and filling.  相似文献   

10.
Three successive zones of fault‐related folds disrupt the proximal part of the northern Tian Shan foreland in NW China. A new magnetostratigraphy of the Taxi He section on the north limb of the Tugulu anticline in the middle deformed zone clarifies the chronology of both tectonic deformation and depositional evolution of this collisional mountain belt. Our ~1200‐m‐thick section encompasses the upper Cenozoic terrigenous sequence within which ~300 sampling horizons yield an age span of ~8–2 Ma. Although the basal age in the Taxi He section of the Xiyu conglomerate (often cited as an indicator of initial deformation) is ~2.1 Ma, much earlier growth of the Tugulu anticline is inferred from growth strata dated at ~6.0 Ma. Folding of Neogene strata and angular unconformities in anticlines in the more proximal and distal deformed zones indicate deformation during Miocene and Early Pleistocene times, respectively. In the Taxi He area, sediment‐accumulation rates significantly accelerate at ~4 Ma, apparently in response to encroaching thrust loads. Together, growth strata, angular unconformities, and sediment‐accumulation rates document the northward migration of tectonic deformation into the northern Tian Shan foreland basin during the late Cenozoic. A progradational alluvial–lacustrine system associated with this northward progression is subdivided into two facies associations at Tugulu: a shallow lacustrine environment before ~5.9 Ma and an alluvial fan environment subsequently. The lithofacies progradation encompasses the time‐transgressive Xiyu conglomerate deposits, which should only be recognized as a lithostratigraphic unit. Along the length of the foreland, the locus of maximum shortening shifts between the medial and proximal zones of folding, whereas the total shortening across the foreland remains quite homogeneous along strike, suggesting spatially steady tectonic forcing since late Miocene times.  相似文献   

11.
At the Muskeg River Mine, bitumen is hosted in the clastic sediments of the lower Cretaceous McMurray Formation. Within the mine area, the McMurray Formation is divided informally into mappable units representing fluvial, continental floodplain, open estuarine, estuarine channel complex (ECC), and marine environments. Fluvial, open estuarine, and ECC deposits host more than 90% of the mineable bitumen reserves. Bitumen grade is more consistent within the fluvial and open estuarine units (12–15 mass%), whereas ECC sediments are characterized by significant lateral and vertical grade variability (0–15 mass%). In the ECC deposits, bitumen grade is controlled by significant reservoir heterogeneity. Facies assemblages including point-bar deposits (PB), abandoned channel-fills (AC), and tidal flat deposits (TF), create complex internal geometries, architectures and associated reservoir properties. Traditional facies mapping and correlation has proven to be difficult even in closely spaced wells for the ECC deposits of the McMurray Formation; thus, an alternative technique using concepts of Stratigraphic Dip Analysis (SDA) was developed to assess bitumen grade for the deposits at the Muskeg River Mine. This approach involves three main steps: (l) juxtaposing azimuth maps (rose diagrams) over horizon slice facies maps for selected stratigraphic intervals to identify major channel trends (paleo-current directions); (2) comparison of dips, with corresponding sedimentary structures allows for a better prediction and geometries of point bars and abandoned channel-fills; and (3) comparison of dip trends with dominant lithology of facies assemblages and available bitumen grades provides a base for accurate delineation of architectural elements. A detailed case study is presented and shows that this approach provides a base for accurate delineation of architectural elements and confirms that bitumen grade decreases laterally with inferred maturity of point bar successions.  相似文献   

12.
The Nysa K odzka river drainage basin in the Sudeten Mts., SW Poland, preserves a complex late Cainozoic succession that includes eight fluvial series or terraces and deposits from two glacial episodes as well as local volcanic rocks, slope deposits and loess. Fluvial sedimentation took place during the Late Pliocene and from the early Middle Pleistocene (Cromerian), with a long erosion phase (gap) during the Early Pleistocene. Fluvial series are dated to the Late Pliocene, Cromerian, Holsteinian, late Saalian/Eemian, Weichselian, and the Holocene. Glacial deposits represent the early Elsterian and early Saalian stages. Almost all these stratigraphic units have been observed in all geomorphic zones of the river: the mountainous K odzko Basin, the Bardo Mts. (Bardo gorge) and in the mountain foreland. The main phase of tectonic uplift and strong erosion was during the Early Pleistocene. Minor uplift is documented also during the post-early Saalian and probably the post-Elsterian. The post-early Saalian and post-Elstrian uplift phases are probably due to glacio-isostatic rebound. The Quaternary terrace sequence was formed due to base-level changes, epigenetic erosion after glaciations and neotectonic movements. The Cromerian fluvial deposits/terraces do not indicate tectonic influence at all. All other Quaternary terraces indicate clear divergence, and the post-early Saalian terraces also show fault scarps. The fluvial pattern remained stable, once formed during the Pliocene, with only minor changes along the uplifted block along the Bardo gorge, inferring an antecedent origin for the Bardo gorge. Only during the post-glacial times, have epigenetic incisions slightly modified the valley.  相似文献   

13.
In order to evaluate the relationship between thrust loading and sedimentary facies evolution, we analyse the progradation of fluvial coarse‐grained deposits in the retroarc foreland basin system of the northern Andes of Colombia. We compare the observed sedimentary facies distribution with the calculated one‐dimensional (1D) Eocene to Quaternary sediment‐accumulation rates in the Medina wedge‐top basin and with a three‐dimensional (3D) sedimentary budget based on the interpretation of ~1800 km of industry‐style seismic reflection profiles and borehole data. Age constraints are derived from a new chronostratigraphic framework based on extensive fossil palynological assemblages. The sedimentological data from the Medina Basin reveal rapid accumulation of fluvial and lacustrine sediments at rates of up to ~500 m my?1 during the Miocene. Provenance data based on gravel petrography and paleocurrents reveal that these Miocene fluvial systems were sourced from Upper Cretaceous and Paleocene sedimentary units exposed to the west in the Eastern Cordillera. Peak sediment‐accumulation rates in the upper Carbonera Formation and the Guayabo Group occur during episodes of coarse‐grained facies progradation in the early and late Miocene proximal foredeep. We interpret this positive correlation between sediment accumulation and gravel deposition as the direct consequence of thrust activity along the Servitá–Lengupá faults. This contrasts with one class of models relating gravel progradation in more distal portions of foreland basin systems to episodes of tectonic quiescence.  相似文献   

14.
The complex development of the northern Crotone Basin, a forearc basin of the Calabrian Arc (Southern Italy), has been documented by sedimentological, stratigraphic and structural analyses. This Mediterranean‐type fault bounded basin consists of small depocentres commonly characterized by a mix of facies that grades from continental to shallow marine. The lower Pliocene infill of the Crotone Basin consists of offshore marls (Cavalieri Marl) that grade upwards into a shallow‐marine to continental succession up to 850 m thick (Zinga Formation). The succession is subdivided into three main stratal units: Zinga 1, Zinga 2, Zinga 3 bounded by major unconformities. The Zinga 1 stratal unit grades from the Cavalieri Marl to deltaic and shoreface deposits, the latter organized into several stacked progradational wedges that show spectacular thickness changes and progressive unconformities related to salt‐cored NE‐trending growth folds and listric normal faults. The Zinga 2 stratal unit records a progressive and moderate deepening of the area, marked by fluvial sedimentation at the base, followed by lagoonal deposits and by a stacking of mixed bioclastic and siliciclastic shoreface units, organized into metre‐scale high‐frequency cycles. Deposition was controlled by NE‐trending synsedimentary normal faults that dissected the basin into a series of half‐grabens. Hangingwall stratigraphic expansion was compensated by footwall condensed sedimentation. The extensional tectonic regime continued during sedimentation of the Zinga 3 stratal unit. Deposition confined within structural lows during a generalized transgressive phase led to local enhancement of tidal flows and development of sand‐wave trains. The tectonic setting testifies the generalized structural domain of a forearc region. The angular unconformity at the top of the Zinga 3 stratal unit is regional, and marks the activation of a large‐scale tectonic phase linked to strike‐slip movements.  相似文献   

15.
S.Liu  S.Yang 《Basin Research》2000,12(1):1-18
Upper Triassic, Lower–Middle Jurassic and Upper Jurassic strata in the western Ordos Basin of North China are interpreted as three unconformity-bounded basin phases, BP-4, BP-5 and BP-6, respectively. The three basin phases were deposited in three kinds of predominantly continental basin: (1) a Late Triassic composite basin with a south-western foreland subbasin and a north-western rift subbasin, (2) an Early–Middle Jurassic sag basin and (3) a Late Jurassic foreland molasse wedge. Within the Late Triassic composite basin BP-4 includes three sequences, S4-1, S4-2 and S4-3. In the south-western foreland subbasin, the three sequences are the depositional response to three episodes of thrust load subsidence, and are mainly composed of alluvial fan, steep-sloped lacustrine delta and fluvial systems in front of a thrust fault-bounded basin flank. In the north-western rift subbasin, the three sequences are the depositional response to three episodes of rift subsidence, and consist of alluvial fan – braid plain and fan delta systems basinward of a normal fault-bounded basin margin. In the sag basin BP-5 includes four sequences, S5-1, S5-2, S5-3 and S5-4, which reflect four episodes of intracratonic sagging events and mainly consist of fluvial, gentle-gradient lacustrine delta and lacustrine systems sourced from peripheral uplifted flanks. BP-6, deposited in the foreland-type basin, includes one sequence, S6-1, which is the depositional response to thrust load subsidence and is composed of alluvial fan systems. The formation and development of these three kinds of basins was controlled by Late Triassic and Jurassic multi-episode tectonism of basin-bounding orogenic belts, which were mainly driven by collision of the North China and South China blocks and subduction of the western Pacific plate.  相似文献   

16.
A basin‐scale, integrated approach, including sedimentological, geomorphological and soil data, enables the reliable reconstruction of the infilling history of the southern Apenninic foredeep, with its subsequent inclusion in the wedge‐top of the foreland basin system. An example is shown from the Molise‐Apulian Apennines (Southern Italy), between Trigno and Fortore rivers, where the Pleistocene tectono‐sedimentary evolution of the basin is framed into a sequence‐stratigraphic scheme. Specifically, within the traditional subdivision into Quaternary marine (Qm) and Quaternary continental (Qc) depositional cycles, five third‐order depositional sequences (Qm1, Qm2, Qc1, Qc2 and Qc3) are identified based on recognition of four major stratigraphic discontinuities. The lower sequence boundaries are represented by angular unconformities or abrupt facies shifts and are generally associated with distinctive pedological and geomorphological features. Three paleosols, observed at top of depositional sequences Qm2, Qc1 and Qc2, represent pedostratigraphic markers that can be tracked basinwide. The geomorphological response to major tectono‐sedimentary events is marked by a series of paleosurfaces with erosional, depositional and complex characteristics. Detailed investigation of the relationships between stratigraphic architecture and development of unconformities, paleosols and paleosurfaces suggests that the four sequence boundaries were formed in response to four geomorphological phases/tectonic events which affected the basin during the Quaternary. The first three tectonic events (Lower‐Middle Pleistocene), marking the lower boundaries of sequences Qm2, Qc1 and Qc2, respectively, are interpreted to be related to the tectonic regime that characterized the last phase of thrusting recorded in the Southern Apennines. In contrast, sequence Qc3 does not display evidence of thrust tectonics and accumulated as a result of a phase of regional uplift starting with the Middle Pleistocene.  相似文献   

17.
The Orphan Basin, lying along the Newfoundland rifted continental margin, formed in Mesozoic time during the opening of the North Atlantic Ocean and the breakup of Iberia/Eurasia from North America. To investigate the evolution of the Orphan Basin and the factors that governed its formation, we (i) analysed the stratigraphic and crustal architecture documented by seismic data (courtesy of TGS), (ii) quantified the tectonic and thermal subsidence along a constructed geological transect, and (iii) used forward numerical modelling to understand the state of the pre‐rift lithosphere and the distribution of deformation during rifting. Our study shows that the pre‐rift lithosphere was 200‐km thick and rheologically strong (150‐km‐thick elastic plate) prior to rifting. It also indicates that extension in the Orphan Basin occurred in three distinct phases during the Jurassic, the Early Cretaceous and the Late Cretaceous. Each rifting phase is characterized by a specific crustal and subcrustal thinning configuration. Crustal deformation initiated in the eastern part of the basin during the Jurassic and migrated to the west during the Cretaceous. It was coupled with a subcrustal thinning which was reduced underneath the eastern domain and very intense in the western domains of the basin. The spatial and temporal distribution of thinning and the evolution of the lithosphere rheology through time controlled the tectonic, stratigraphic and crustal architecture that we observe today in the Orphan Basin.  相似文献   

18.
Located on the southern margin of the Lhasa terrane in southern Tibet, the Xigaze forearc basin records Cretaceous to lower Eocene sedimentation along the southern margin of Asia, prior to and during the initial stages of continental collision with the Tethyan Himalaya in the Early Eocene. We present new measured stratigraphic sections, totalling 4.5 km stratigraphic thickness, from a 60 km E–W segment of the western portion of the Xigaze forearc basin, northeast of the Lopu Kangri Range (29.8007° N, 84.91827° E). In addition, we apply U–Pb detrital zircon geochronology to constrain the provenance and maximum depositional ages of investigated strata. Stratigraphic ages range between ca. 88 and ca. 54 Ma and sedimentary facies indicate a shoaling‐upward trend from deep‐marine turbidites to fluvial deposits. Depositional environments of coeval Cretaceous strata along strike include deep‐marine distal turbidites, slope‐apron debris‐flow deposits and marginal marine carbonates. This along‐strike variability in facies suggests an irregular paleogeography of the Asian margin prior to collision. Paleocene–Eocene strata are composed of shallow marine carbonates with abundant foraminifera such as Nummulites‐Discocyclina and Miscellanea‐Daviesina and transition into fluvial deposits dated at ca. 54 Ma. Sandstone modal analyses, conglomerate clast compositions and detrital zircon U–Pb geochronology indicate that forearc detritus in this region was derived solely from the Gangdese magmatic arc to the north. In addition, U–Pb detrital zircon age spectra within the upper Xigaze forearc stratigraphy are similar to those from Eocene foreland basin strata south of the Indus‐Yarlung suture near Sangdanlin, suggesting that the Xigaze forearc was a possible source of Sangdanlin detritus by ca. 55 Ma. We propose a model in which the Xigaze forearc prograded south over the accretionary prism and onto the advancing Tethyan Himalayan passive margin between 58 and 54 Ma, during late stage evolution of the forearc basin and the beginning of collision with the Tethyan Himalaya. The lack of documented forearc strata younger than ca. 51 Ma suggests that sedimentation in the forearc basin ceased at this time owing to uplift resulting from continued continental collision.  相似文献   

19.
New seismic reflection profiles from the Tugrug basin in the Gobi‐Altai region of western Mongolia demonstrate the existence of preserved Mesozoic extensional basins by imaging listric normal faults, extensional growth strata, and partially inverted grabens. A core hole from this region recovered ca. 1600 continuous meters of Upper Jurassic – Lower Cretaceous (Kimmeridgian–Berriasian) strata overlying Late Triassic volcanic basement. The cored succession is dominated by lacustrine and marginal lacustrine deposits ranging from stratified lacustrine, to subaqueous fan and delta, to subaerial alluvial‐fluvial environments. Multiple unconformities are encountered, and these represent distinct phases in basin evolution including syn‐extensional deposition and basin inversion. Prospective petroleum source and reservoir intervals occur, and both fluid inclusions and oil staining in the core provide evidence of hydrocarbon migration. Ties to correlative outcrop sections underscore that, in general, this basin appears to share a similar tectono‐stratigraphic evolution with petroliferous rift basins in eastern Mongolia and China. Nevertheless, some interesting contrasts to these other basins are noted, including distinct sandstone provenance, less overburden, and younger (Neogene) inversion structures. The Tugrug basin occupies an important but perplexing paleogeographic position between late Mesozoic contractile and extensional provinces. Its formation may record a rapid temporal shift from orogenic crustal thickening to extensional collapse in the Late Jurassic, and/or an accommodation zone with a Mesozoic strike‐slip component.  相似文献   

20.
The tectonic evolution of the Tian Shan, as for most ranges in continental Asia is dominated by north‐south compression since the Cenozoic India‐Asia collision. However, precollision governing tectonic processes remain enigmatic. An excellent record is provided by thick Palaeozoic – Cenozoic lacustrine to fluvial depositional sequences that are well preserved in the southern margin of the Junggar Basin and exposed along a foreland basin associated to the Late Cenozoic rejuvenation of the Tian Shan ranges. U/Pb (LA‐ICP‐MS) dating of detrital zircons from 14 sandstone samples from a continuous series ranging in age from latest Palaeozoic to Quaternary is used to investigate changes in sediment provenance through time and to correlate them with major tectonic phases in the range. Samples were systematically collected along two nearby sections in the foreland basin. The results show that the detrital zircons are mostly magmatic in origin, with some minor input from metamorphic zircons. The U‐Pb detrital zircon ages range widely from 127 to 2856 Ma and can be divided into four main groups: 127–197 (sub‐peak at 159 Ma), 250–379 (sub‐peak at 318 Ma), 381–538 (sub‐peak at 406 Ma) and 543–2856 Ma (sub‐peak at 912 Ma). These groups indicate that the zircons were largely derived from the Tian Shan area to the south since a Late Carboniferous basin initiation. The provenance and basin‐range pattern evolution of the southern margin of Junggar Basin can be generally divided into four stages: (1) Late Carboniferous – Early Triassic basin evolution in a half‐graben or post‐orogenic extensional context; (2) From Middle Triassic to Upper Jurassic times, the southern Junggar became a passively subsiding basin until (3) being inverted during Lower Cretaceous – Palaeogene; (4) During the Neogene, a piedmont developed along the northern margin of the North Tian Shan block and Junggar Basin became a true foreland basin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号