首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This study constrains the sediment provenance for the Late Cretaceous–Eocene strata of the Ager Basin, Spain, and reconstructs the interplay between foreland basin subsidence and sediment routing within the south-central Pyrenean foreland basin during the early phases of crustal shortening using detrital zircon (DZ) U-Pb-He double dating. Here we present and interpret 837 new DZ U-Pb ages, 113 of which are new DZ (U-Th)/He double-dated zircons. U-Pb-He double dating results allow for a clear differentiation between different foreland and hinterland sources of Variscan zircons (280–350 Ma) by leveraging the contrasting thermal histories of the Ebro Massif and Pyrenean orogen, recorded by the zircon (U-Th)/He (ZHe) ages, despite their indistinguishable U-Pb age signatures. Cretaceous–Paleocene sedimentary rocks, dominated by Variscan DZ U-Pb age components with Permian–Triassic (200–300 Ma) ZHe cooling ages, were sourced from the Ebro Massif south of the Ager Basin. A provenance shift occurred at the base of the Early Eocene Baronia Formation (ca. 53 Ma) to an eastern Pyrenean source (north-east of the Ager Basin) as evidenced by an abrupt change in paleocurrents, a change in DZ U-Pb signatures to age distributions dominated by Cambro-Silurian (420–520 Ma), Cadomian (520–700 Ma), and Proterozoic–Archean (>700 Ma) age components, and the prominent emergence of Cretaceous–Paleogene (<90 Ma) ZHe cooling ages. The Eocene Corçà Formation (ca. 50 Ma), characterized by the arrival of fully reset ZHe ages with very short lag times, signals the accumulation of sediment derived from the rapidly exhuming Pyrenean thrust sheets. While ZHe ages from the Corçà Formation are fully reset, zircon fission track (ZFT) ages preserve older inherited cooling ages, bracketing the exhumation level within the thrust sheets to ca. 6–8 km in the Early Eocene. These DZ ZHe ages yield exhumation rate estimates of ca. 0.03 km/Myr during the Late Cretaceous–Paleocene for the Ebro Massif and ca. 0.2–0.4 km/Myr during the Eocene for the eastern Pyrenees.  相似文献   

2.
The European Alps are a mountain belt that is characterized by a series of discrete orogenic events, which have long been recognized. Despite the inherent episodic nature of orogenic evolution, the Alps have been continuously exhumed, mainly by erosion, but also by normal faulting. Since continental collision started in the late Eocene/Early Oligocene evidence for ongoing erosional exhumation has been preserved in synorogenic sediments that accumulated in basins adjacent to the pro- and retro-side of this double-vergent mountain belt. This long-term erosion record can be used to determine exhumation rates. Lag-times calculated from fission-track (FT) ages of detrital zircon from synorogenic sediments are fairly constant for the European Alps since the Oligocene–Late Miocene. Although the fast exhuming areas were unroofed at rates of 0.4–0.7 km Myr−1, the overall average exhumation rate is between 0.2 and 0.3 km Myr−1 on a regional scale. The detrital and bedrock zircon FT data of the Alps do not detect the increase in erosion rates since the Pliocene over the past ∼5 Myr, as shown elsewhere. This increase cannot be detected yet with the detrital zircon FT method because not enough rock has been removed to widely expose zircons with Pliocene or younger cooling ages in the Alps. Long term (30 Myr) exhumation rates appear to have been approximately constant when averaged over a sliding time window of about 8 Myr, or depth window of 5 to 10 km (ZFT closure depths); shorter-term fluctuations are not identified using this method.  相似文献   

3.
Despite abundant data on the early evolution of the Central Alps, the latest stage exhumation history, potentially related to relief formation, is still poorly constrained. We aim for a better understanding of the relation between glaciation, erosion and sediment deposition. Addressing both topics, we analysed late Pliocene to recent deposits from the Upper Rhine Graben and two modern river sands by apatite fission‐track and (U‐Th‐Sm)/He thermochronology. From the observed age patterns we extracted the sediment provenance and paleo‐erosion history of the Alpine‐derived detritus. Due to their pollen and fossil record, the Rhine Graben deposits also provide information on climatic evolution, so that the erosion history can be related to glacial evolution during the Plio‐Pleistocene. Our data show that Rhine Graben deposits were derived from Variscan basement, Hegau volcanics, Swiss Molasse Basin, and the Central Alps. The relations between glaciation, Alpine erosion, and thermochronological age signals in sedimentary rocks are more complex than assumed. The first Alpine glaciation during the early Pleistocene did not disturb the long‐term exhumational equilibrium of the Alps. Recent findings indicate that main Alpine glaciation occurred at ca. 1 Ma. If true, then main Alpine glaciation was coeval with an apparent decrease of hinterland erosion rates, contrary to the expected trend. We suggest that glaciers effectively sealed the landscape, thus reducing the surface exposed to erosion and shifting the area of main erosion north toward the Molasse basin, causing sediment recycling. At around 0.4 Ma, erosion rates increased again, which seems to be a delayed response to main glaciation. The present‐day erosion regime seems to be dominated by mass‐wasting processes. Generally, glacial erosion rates did not exceed the pre‐glacial long‐term erosion rates of the Central Alps.  相似文献   

4.
《Basin Research》2018,30(4):636-649
The geometry and evolution of rivers originating from the Tibetan plateau are influenced by topography and climate change during the India‐Asia collision. The Yangtze River is the longest among these rivers and formed due to capturing many rivers on the eastern Tibetan Plateau by the middle Yangtze. The timing of these capture events is still controversial. Here, we use detrital muscovite 40Ar/39Ar and zircon U–Pb ages to constrain the provenance of late Cenozoic sediments in the Jianghan Basin in the middle reaches of the Yangtze River. The combined data suggest that late Pliocene sediments were mainly derived from a local source in the Jianghan Basin including the Dabie Shan. The middle Pleistocene sediments were derived from the Min River west of the Three Gorges. This implies that at least one river, perhaps the palaeo‐Han River, originating from the Dabie Shan region, flowed through the centre of the Jianghan Basin during the late Pliocene. The appearance of sediment from the Min River in the Jianghan Basin somewhere between late Pliocene and middle Pleistocene suggests that the Three Gorges section of the Yangtze River was formed somewhere between late Pliocene and middle Pleistocene (N2– Q2).  相似文献   

5.
The Coastal Range in eastern Taiwan contains the remnants of the Pliocene–Pleistocene retro‐foredeep basin of the ongoing Penglai orogeny. These sedimentary successions record the earliest exhumation of the Central Range, Taiwan. We dated detrital Plio‐Pleistocene sediments in the Coastal Range using multiple thermochronometers [fission‐track, zircon (U–Th)/He and U/Pb dating] to document changes in exhumation rate through time. Fission‐track grain ages in 2–4‐Myr‐old sediments were not reset by the Penglai orogeny and reflect the early stage removal of the sedimentary cover. This early stage, when exhumation rates were low, could encompass both the accretionary wedge phase of the orogen and the early arc–continent collision. Sediments younger than 2‐Myr‐old yield Pliocene zircon fission‐track grain ages and suggest that exhumation, transport and deposition occurred within 0.4–1.5 Myr. The recorded onset of rapid exhumation in the Pliocene is contemporaneous with other major tectonic changes in the region, including an increase in subsidence rate in both the pro‐ and retro‐foredeep basins and a change in the wedge kinematics from internal shortening to underplating.  相似文献   

6.
The Chinese Tian Shan is one of the most actively growing orogenic ranges in Central Asia. The Late Miocene‐Quaternary landscape evolution of northern Tian Shan has been significantly driven by the interaction between tectonic deformations and climate change, further modulated by the erosion of the upstream bedrocks and deposition into the downstream basins. In this study, only the accessible Kuitun River drainage basin in northern Tian Shan was considered, and detrital zircon geochronology and heavy minerals were analyzed to investigate the signature of the driving forces for Miocene sedimentation in northern Tian Shan. This study first confirmed a previously recognized tectonic uplift at ca. 7.0 Ma and further revealed that the basin sediments were mainly derived from the present glacier‐covered ridge‐crest regions during 3.3–2.5 Ma. It is suggested Late‐Pliocene to Early Pleistocene sedimentation was likely a response to the onset of the northern hemispheric glaciation. Although complicated, this study highlights that the tectonic‐climatic interaction during the Late Cenozoic orogenesis can be discriminated in the northern Chinese Tian Shan.  相似文献   

7.
《Basin Research》2018,30(5):835-862
We used detrital zircon U/Pb geochronology and apatite (U–Th–Sm)/He thermochronology to better constrain depositional ages and sedimentation rates for the Pliocene Productive Series in Azerbaijan. U/Pb analysis of 1,379 detrital zircon grains and (U–Th–Sm)/He analysis of 57 apatite grains—from Kirmaky Valley and Yasamal Valley onshore sections, Absheron Peninsula—yielded two distinct sub‐populations: “young” Neogene grains and “old” Mesozoic, Palaeozoic and Proterozoic/Archean grains. The large numbers of Neogene age grains (around 10% of all grain ages) provided a new absolute age constraint on the maximum depositional age of the Lower Productive Series of 4.0 Myr. These “young” Neogene zircon grains most likely originated from volcanic ash falls sourced from the Lesser Caucasus or Talesh Mountains. In this paper we propose a timescale scenario using the maximum depositional age of the Productive Series from detrital zircon grain U/Pb constraints. Potential consequences and limitations of using apatite (U–Th–Sm)/He dating method in estimating maximum depositional ages are also discussed. These new age constraints for the Lower Productive Series gave much faster sedimentation rates than previously estimated: 1.3 km/Myr in the South Caspian Basin margin outcrops and up to 3.9 km/Myr in the basin centre. The sedimentation rates are one of the highest in comparison to other sedimentary basins and coeval to global increase in sedimentation rates 2–4 Myr. The older group of detrital zircon grains constitutes the majority of grains in all sample sets (~80%). These older ages are inferred to reflect the provenance of the Productive Series sediment. This sediment is interpreted to have been derived from the Proterozoic and Archean crystalline basement rocks and Phanerozoic cover of the East European Craton, Proterozoic/Palaeozoic rocks of the Ural Mountains and Mesozoic sedimentary rocks of the Greater Caucasus. This sediment was likely supplied from northerly sourced drainage that emptied into the South Caspian Basin.  相似文献   

8.
The Sichuan Basin and the Songpan‐Ganze terrane, separated by the Longmen Shan fold‐and‐thrust belt (the eastern margin of the Tibetan Plateau), are two main Triassic depositional centres, south of the Qinling‐Dabie orogen. During the Middle–Late Triassic closure of the Paleo‐Tethys Ocean, the Sichuan Basin region, located at the western margin of the Yangtze Block, transitioned from a passive continental margin into a foreland basin. In the meantime, the Songpan‐Granze terrane evolved from a marine turbidite basin into a fold‐and‐thrust belt. To understand if and how the regional sediment routing system adjusted to these tectonic changes, we monitored sediment provenance primarily by using detrital zircon U‐Pb analyses of representative stratigraphic samples from the south‐western edge of the Sichuan Basin. Integration of the results with paleocurrent, sandstone petrology and published detrital zircon data from other parts of the basin identified a marked change in provenance. Early–Middle Triassic samples were dominated by Neoproterozoic (~700–900 Ma) zircons sourced mainly from the northern Kangdian basement, whereas Late Triassic sandstones that contain a more diverse range of zircon ages sourced from the Qinling, Longmen Shan and Songpan‐Ganze terrane. This change reflects a major drainage adjustment in response to the Late Triassic closure of the Paleo‐Tethys Ocean and significant shortening in the Longmen Shan thrust belt and the eastern Songpan‐Ganze terrane. Furthermore, by Late Triassic time, the uplifted northern Kangdian basement had subsided. Considering the eastward paleocurrent and depocenter geometry of the Upper Triassic deposits, subsidence of the northern Kangdian basement probably resulted from eastward shortening and loading of the Songpan‐Ganze terrane over the western margin of the Yangtze Block in response to the Late Triassic collision among Yangtze Block, Yidun arc and Qiangtang terrane along the Ganze‐Litang and Jinshajiang sutures.  相似文献   

9.
An integrated provenance analysis of the Upper Cretaceous Magallanes retroarc foreland basin of southern Chile (50°30′–52°S) provides new constraints on source area evolution, regional patterns of sediment dispersal and depositional age. Over 450 new single‐grain detrital‐zircon U‐Pb ages, which are integrated with sandstone petrographic and mudstone geochemical data, provide a comprehensive detrital record of the northern Magallanes foreland basin‐filling succession (>4000‐m‐thick). Prominent peaks in detrital‐zircon age distribution among the Punta Barrosa, Cerro Toro, Tres Pasos and Dorotea Formations indicate that the incorporation and exhumation of Upper Jurassic igneous rocks (ca. 147–155 Ma) into the Andean fold‐thrust belt was established in the Santonian (ca. 85 Ma) and was a significant source of detritus to the basin by the Maastrichtian (ca. 70 Ma). Sandstone compositional trends indicate an increase in volcanic and volcaniclastic grains upward through the basin fill corroborating the interpretation of an unroofing sequence. Detrital‐zircon ages indicate that the Magallanes foredeep received young arc‐derived detritus throughout its ca. 20 m.y. filling history, constraining the timing of basin‐filling phases previously based only on biostratigraphy. Additionally, spatial patterns of detrital‐zircon ages in the Tres Pasos and Dorotea Formations support interpretations that they are genetically linked depositional systems, thus demonstrating the utility of provenance indicators for evaluating stratigraphic relationships of diachronous lithostratigraphic units. This integrated provenance dataset highlights how the sedimentary fill of the Magallanes basin is unique among other retroarc foreland basins and from the well‐studied Andean foreland basins farther north, which is attributed to nature of the predecessor rift and backarc basin.  相似文献   

10.
Sedimentary strata in the Lhasa terrane of southern Tibet record a long but poorly constrained history of basin formation and inversion. To investigate these events, we sampled Palaeozoic and Mesozoic sedimentary rocks in the Lhasa terrane for detrital zircon uranium–lead (U–Pb) analysis. The >700 detrital zircon U–Pb ages reported in this paper provide the first significant detrital zircon data set from the Lhasa terrane and shed new light on the tectonic and depositional history of the region. Collectively, the dominant detrital zircon age populations within these rocks are 100–150, 500–600 and 1000–1400 Ma. Sedimentary strata near Nam Co in central Lhasa are mapped as Lower Cretaceous but detrital zircons with ages younger than 400 Ma are conspicuously absent. The detrital zircon age distribution and other sedimentological evidence suggest that these strata are likely Carboniferous in age, which requires the existence of a previously unrecognized fault or unconformity. Lower Jurassic strata exposed within the Bangong suture between the Lhasa and Qiangtang terranes contain populations of detrital zircons with ages between 200 and 500 Ma and 1700 and 2000 Ma. These populations differ from the detrital zircon ages of samples collected in the Lhasa terrane and suggest a unique source area. The Upper Cretaceous Takena Formation contains zircon populations with ages between 100 and 160 Ma, 500 and 600 Ma and 1000 and 1400 Ma. Detrital zircon ages from these strata suggest that several distinct fluvial systems occupied the southern portion of the Lhasa terrane during the Late Cretaceous and that deposition in the basin ceased before 70 Ma. Carboniferous strata exposed within the Lhasa terrane likely served as source rocks for sediments deposited during Cretaceous time. Similarities between the lithologies and detrital zircon age‐probability plots of Carboniferous rocks in the Lhasa and Qiangtang terranes and Tethyan strata in the Himalaya suggest that these areas were located proximal to one another within Gondwanaland. U–Pb ages of detrital zircons from our samples and differences between the geographic distribution of igneous rocks within the Tibetan plateau suggest that it is possible to discriminate a southern vs. northern provenance signature using detrital zircon age populations.  相似文献   

11.
Foreland basins are important recorders of tectonic and climatic processes in evolving mountain ranges. The Río Iruya canyon of NW Argentina (23° S) exposes ca. 7500 m of Orán Group foreland basin sediments, spanning over 8 Myr of near continuous deposition in the Central Andes. This study presents a record of sedimentary provenance for the Iruya Section in the context of a revised stratigraphic chronology. We use U‐Pb zircon ages from six interbedded ash layers and new magnetostratigraphy to constrain depositional ages in the section between 1.94 and 6.49 Ma, giving an average sedimentation rate of 0.93 ± 0.02 (2σ) km Myr?1. We then pair U‐Pb detrital zircon dating with quartz trace‐element analysis to track changes in sedimentary provenance from ca. 7.6 to 1.8 Ma. Results suggest that from ca. 7.6 to ca. 6.3 Ma, the Iruya watershed did not tap the Salta Group or Neogene volcanics that are currently exposed in the eastern Cordillera and Puna margin. One explanation is that a long‐lived topographic barrier separated the eastern Puna from the foreland for much of the mid‐late Miocene, and that the arrival of Jurassic‐Neogene zircons records regional tectonic reactivation at ca. 6.3 Ma. A second major provenance shift at ca. 4 Ma is marked by changes in the zircon and quartz populations, which appear to be derived from a restricted source region in Proterozoic‐Ordovician meta‐sediments. Considered in conjunction with the onset of coarse conglomerate deposition, we attribute this shift to accelerated uplift of the Santa Victoria range, which currently defines the catchment's western limit. A third shift at ca. 2.3 Ma records an apparent disconnection of the Iruya with the eastern Puna, perhaps due to defeat of the proto Rio‐Iruya by the rising Santa Victoria range. This study is one of the first applications of quartz trace‐element provenance analysis, which we show to be an effective complement to U‐Pb detrital zircon dating when appropriate statistical methods are applied.  相似文献   

12.
Sediment provenance studies have proven to be an effective method to extract the sediment provenance and tectonic process information recorded by detrital minerals. In this contribution, we conducted detrital monazite and zircon U‐Pb geochronology and detrital Cr‐spinel major element chemistry analyses on samples from the Qaidam Basin to reconstruct the spatial and temporal evolution of the Altyn Tagh Range and the Qimen Tagh Range in the northern Tibetan Plateau. Based on the significant variation in [Th/U]N, [Gd/Lu]N and [Eu/Eu*]N and the U‐Pb ages of the monazite and zircon, the South Altyn Tagh subduction‐collision belt and the North Qimen Tagh Range were, respectively, the main provenances of the Ganchaigou section and the Dongchaishan‐Weitai section in the Qaidam Basin in the Cenozoic. Paleozoic peak metamorphism, retrograde granulite‐facies metamorphism and amphibolite‐facies metamorphism in the South Altyn Tagh subduction‐collision belt were well recorded by the detrital monazite. In comparison, the detrital zircon is a better indicator of igneous events than detrital monazite. Synthesizing the detrital monazite, zircon and Cr‐spinel data, we concluded that the South Altyn Tagh Ocean and Qimen Tagh Ocean existed in the early Paleozoic and that the Altyn Tagh terrane and Qimen Tagh terrane experienced different Paleozoic tectonothermal histories. The collision between the Qaidam terrane and the Azhong terrane occurred at ca. 500 Ma. The Middle Ordovician was the key period of transformation from the collision‐induced compressional environment to an extensional environment in the area of the South Altyn Tagh Range. In the early Paleozoic, the Qimen Tagh area was characterized by the subduction of oceanic crust.  相似文献   

13.
Abstract We use a quantitative model of apatite fission track (AFT) annealing to constrain the thermal evolution of a sedimentary basin and its margin. Apatites deposited in a basin contain several types of information. Provided temperatures remained below ?70°C, they retain much of their provenance thermal signatures and mainly record the thermal evolution of their source area. Above 70°C, the fission tracks in apatite rapidly fade, reflecting the thermal evolution of the basin. Therefore, downhole AFT dates in a well section can in principle be used to assess both the provenance detail (from shallow/cool samples) and the subsequent thermal history in the basin (from the deeper samples). We apply this concept to the south Norwegian offshore and onshore using AFT and ZFT (zircon fission track) data; the latter constrain maximum palaeotemperatures and provide additional provenance information. AFT and ZFT data from three offshore wells in the northern North Sea are shown to contain a record of palaeogeographical and tectonic evolution, closely associated with the Norwegian basement. ZFT data from Middle Triassic sediments suggest a Permian volcanic source. Modelling of AFT data from Jurassic sediments presently residing at temperatures below 70°C indicate rapid cooling during the Late Triassic to Early Jurassic, similar to onshore AFT data. During the Cretaceous minor sediment supply was derived from the Norwegian basement, as evidenced by ZFT ages that do not correlate to the onshore, suggesting that parts of southern Norway were covered with sediments at this time. At the end of the Palaeogene and during the Neogene, the south Norwegian basement again became a major source of elastics. AFT and ZFT data indicate that all wells are presently at maximum temperatures. No significant (> 500 m) erosion events are indicated in the three wells since the Jurassic. AFT data have not yet effectively equilibrated to present-day temperatures as nonzero fission track ages are maintained in sediments currently at temperatures of > 120°C. This implies that the present-day thermal regime has only recently been installed. Probable causes include rapid subsidence and an increase in the geothermal gradient during the last 5 Myr.  相似文献   

14.
The Patagonian Magallanes retroarc foreland basin affords an excellent case study of sediment burial recycling within a thrust belt setting. We report combined detrital zircon U–Pb geochronology and (U–Th)/He thermochronology data and thermal modelling results that confirm delivery of both rapidly cooled, first‐cycle volcanogenic sediments from the Patagonian magmatic arc and recycled sediment from deeply buried and exhumed Cretaceous foredeep strata to the Cenozoic depocentre of the Patagonian Magallanes basin. We have quantified the magnitude of Eocene heating with thermal models that simultaneously forward model detrital zircon (U–Th)/He dates for best‐fit thermal histories. Our results indicate that 54–45 Ma burial of the Maastrichtian Dorotea Formation produced 164–180 °C conditions and heating to within the zircon He partial retention zone. Such deep burial is unusual for Andean foreland basins and may have resulted from combined effects of high basal heat flow and high sediment accumulation within a rapidly subsiding foredeep that was floored by basement weakened by previous Late Jurassic rifting. In this interpretation, Cenozoic thrust‐related deformation deeply eroded the Dorotea Formation from ca. 5 km burial depths and may be responsible for the development of a basin‐wide Palaeogene unconformity. Results from the Cenozoic Río Turbio and Santa Cruz formations confirm that they contain both Cenozoic first‐cycle zircon from the Patagonian magmatic arc and highly outgassed zircon recycled from older basin strata that experienced burial histories similar to those of the Dorotea Formation.  相似文献   

15.
ABSTRACT Zircon is the most widely used mineral in detrital dating studies because it is common to multiple rock types, is chemically and physically resistant, and can endure successive cycles of burial, metamorphism and erosion. Zircon also has the advantage that single grains may be dated by either the fission‐track (FT) or U–Pb method, which, because of their contrasting thermal sensitivities (total resetting occurs at temperatures > 320 °C for FT and > 700–900 °C for U–Pb), can provide unique information about both the age structure and the thermal evolution of a sediment source. However, single method‐based bias and difficulties associated with interpreting measured ages can influence both the quality and the level of useful provenance information. For example, the zircon FT system is sensitive to metamorphic overprinting and hence measured ages alone cannot be interpreted as unambiguously dating formation age of the source rock. In contrast, U–Pb zircon data have high resistance (700–900 °C) to thermal overprinting and therefore recorded formation ages may not relate to an immediate source but may instead reflect a polycyclical history. The focus of this paper is to examine, from a practical standpoint, the provenance potential of detrital zircon fission track data and to investigate the method's complementary role as an aide to the interpretation of high‐temperature detrital U–Pb zircon data by combining U–Pb and FT methods in a single study.  相似文献   

16.
The Central Maine Basin is the largest expanse of deep‐marine, Upper Ordovician to Devonian metasedimentary rocks in the New England Appalachians, and is a key to the tectonics of the Acadian Orogeny. Detrital zircon ages are reported from two groups of strata: (1) the Quimby, Rangeley, Perry Mountain and Smalls Falls Formations, which were derived from inboard, northwesterly sources and are supposedly older; and (2) the Madrid, Carrabassett and Littleton Formations, which were derived from outboard, easterly sources and are supposedly younger. Deep‐water deposition prevailed throughout, with the provenance shift inferred to mark the onset of foredeep deposition and orogeny. The detrital zircon age distribution of a composite of the inboard‐derived units shows maxima at 988 and 429 Ma; a composite from the outboard‐derived units shows maxima at 1324, 1141, 957, 628, and 437 Ma. The inboard‐derived units have a greater proportion of zircons between 450 and 400 Ma. Three samples from the inboard‐derived group have youngest age maxima that are significantly younger than the nominal depositional ages. The outboard‐derived group does not share this problem. These results are consistent with the hypothesised provenance shift, but they signal potential problems with the established stratigraphy, structure, and (or) regional mapping. Shallow‐marine deposits of the Silurian to Devonian Ripogenus Formation, from northwest of the Central Maine Basin, yielded detrital zircons featuring a single age maximum at 441 Ma. These zircons were likely derived from a nearby magmatic arc now concealed by younger strata. Detrital zircons from the Tarratine Formation, part of the Acadian foreland‐basin succession in this strike belt, shows age maxima at 1615, 980 and 429 Ma. These results are consistent with three episodes of zircon recycling beginning with the deposition of inboard‐derived strata of the Central Maine Basin, which were shed from post‐Taconic highlands located to the northwest. Next, southeasterly parts of this succession were deformed in the Acadian orogeny, shedding detritus towards the northwest into what remained of the basin. Finally, by Pragian time, all strata in the Central Maine Basin had been deformed and detritus from this new source accumulated as the Tarratine Formation in a new incarnation of the foreland basin. Silurian‐Devonian strata from the Central Maine Basin have similar detrital zircon age distributions to coeval rocks from the Arctic Alaska and Farewell terranes of Alaska and the Northwestern terrane of Svalbard. We suggest that these strata were derived from different segments of the 6500‐km‐long Appalachian‐Caledonide orogen.  相似文献   

17.
Fission‐track (FT) analysis of detrital zircon from synorogenic sediment is a well‐established tool to examine the cooling and exhumation history of convergent mountain belts, but has so far not been used to determine the long‐term evolution of the central Himalaya. This study presents FT analysis of detrital zircon from 22 sandstone and modern sediment samples that were collected along three stratigraphic sections within the Miocene to Pliocene Siwalik Group, and from modern rivers, in western and central Nepal. The results provide evidence for widespread cooling in the Nepalese Himalaya at about 16.0±1.4 Ma, and continuous exhumation at a rate of about 1.4±0.2 km Myr?1 thereafter. The ~16 Ma cooling is likely related to a combination of tectonic and erosional activity, including movement on the Main Central thrust and Southern Tibetan Detachment system, as well as emplacement of the Ramgarh thrust on Lesser Himalayan sedimentary and meta‐sedimentary units. The continuous exhumation signal following the ~16 Ma cooling event is seen in connection with ongoing tectonic uplift, river incision and erosion of lower Lesser Himalayan rocks exposed below the MCT and Higher Himalayan rocks in the hanging wall of the MCT, controlled by orographic precipitation and crustal extrusion. Provenance analysis, to distinguish between Higher Himalayan and Lesser Himalayan zircon sources, is based on double dating of individual zircons with the FT and U/Pb methods. Zircons with pre‐Himalayan FT cooling ages may be derived from either nonmetamorphic parts of the Tethyan sedimentary succession or Higher Himalayan protolith that formerly covered the Dadeldhura and Ramgarh thrust sheets, but that have been removed by erosion. Both the Higher and Lesser Himalaya appear to be sources for the zircons that record either ~16 Ma cooling or the continuous exhumation afterwards.  相似文献   

18.
《Basin Research》2018,30(Z1):401-423
The Lobo Formation of southwestern New Mexico consists of spatially variable continental successions attributed to the Laramide orogeny (80–40 Myr), although its age and provenance are virtually undocumented. This study combines sedimentological, magnetostratigraphical and geochronological data to infer the timing and origin of the Lobo Formation. Measured sections of Lobo strata at two locations, Capitol Dome in the Florida Mountains and in the Victorio Mountains, indicate significant differences in depositional environments and sediment provenance. At Capitol Dome, where Lobo strata were deposited above a syncline developed in Palaeozoic strata, deposition took place in fluvial, palustrine and marginal lacustrine settings, with alluvial‐fan deposits only at the top of the formation. Combined magnetostratigraphy and a young U–Pb detrital zircon age suggest deposition of the section at Capitol Dome from ~60 to 52 Ma. The Lobo Formation in the Victorio Mountains was deposited in alluvial‐fan and fluvial settings; the age of deposition is poorly bracketed between 66 ± 2 Ma, the weighted‐mean age of two young zircons, and middle Eocene (~40 Ma), the approximate age of overlying volcanic rocks. U–Pb zircon ages from sandstones at the Victorio and Capitol Dome localities indicate that different source rocks provided sediment to the Lobo Formation. Local Proterozoic basement (~1.47–1.45 Ga) dominated the source of the Lobo Formation in the Victorio Mountains, consistent with abundant granitic clasts that are present in the proximal facies there; a diverse range of grain ages suggest that recycled Lower Cretaceous strata provided the dominant source for Lobo Formation sediment at the Capitol Dome locality. The U–Pb data suggest that the depositional systems at the two sites were not connected. Contrasts in depositional setting and detrital zircon provenance indicate that the Palaeogene Lobo Formation in southwest New Mexico was deposited in an assemblage of local depositional settings, possibly in separate structural basins, as a consequence of Laramide tectonics in the region.  相似文献   

19.
Sedimentological and geochronological studies along a north–south traverse across the Bangong‐Nujiang suture zone (BNSZ) in Gaize, Tibet provide evidence for a Late Triassic–Jurassic accretionary wedge accreted to the south margin of Qiangtang. This wedge, preserved as the Mugagangri Group (MG), records evidence for the northward subduction of the Bangong‐Nujiang Ocean (BNO) beneath Qiangtang. The MG strata comprise two coarser intervals (lower olistostromes and upper conglomerates) intercalated within sandy turbidites, which are consistent with timing and forearc stratigraphy during subduction initiation predicted by geodynamic modelling. Following the model, the northward subduction of the BNO beneath Qiangtang and subsequent arc‐magmatism are inferred to have begun, respectively, at ca. 220 Ma and ca. 210 Ma, with respect to depositional ages constrained by youngest detrital‐zircon ages. The initiation of arc‐magmatism is also supported by provenance transition reflected by sandstone detrital modes and age patterns of detrital zircons. Previously, evidence for an incipient arc was lacking, but the timing of Late Triassic BNO subduction and related arc‐magmatism is coincident with an important Late Triassic magmatic event in central Qiangtang that probably represents the ‘missing’ arc. Other Qiangtang events, such as exhumation of the Qiangtang metamorphic belt as a source area, and development of the Late Triassic Nadigangri deposits and bimodal volcanism, are more easily explained in the tectonic context of early northward subduction of the BNO beneath Qiangtang, beginning at about 220 Ma.  相似文献   

20.
The Cenozoic geodynamics of the north‐eastern Mediterranean Basin have been dominated by the subduction of the African Plate under Eurasia. A trench‐parallel crustal‐scale thrust system (Misis–Kyrenia Thrust System) dissects the southern margin of the overriding plate and forms the structural grain and surface expression of northern Cyprus. Late Eocene to Miocene flysch of the Kythrea (De?irmenlik) Group is exposed throughout northern Cyprus, both at the hanging‐wall and foot‐wall of the thrust system, permitting access to an extensive Cenozoic sedimentary record of the basin. We report the results of a combined examination of detrital zircon and rutile U–Pb geochronology (572 concordant ages), coupled with Th/U ratios, Hf isotopic data and quantitative assessment of grain morphology of detrital zircon from four formations (5 samples) from the Kythrea flysch. These data provide a line of independent evidence for the existence of two different sediment transportation systems that discharged detritus into the basin between the late Eocene and late Miocene. Unique characteristics of each transport system are defined and a sediment unmixing calculation is demonstrated and explained. The first system transported almost exclusively North Gondwana‐type, Precambrian‐aged detrital zircon sourced from siliciclastic rock units in southern Anatolia. A different drainage system is revealed by the middle to late Miocene flysch sequence that is dominated by Late Cretaceous–Cenozoic‐aged detrital zircon, whose age range is consistent with the magmatic episodicity of southeast Anatolia, along the Arabia–Eurasia suture zone. Deposition of these late Miocene strata took place thereupon closure of the Tethyan Seaway and African–Eurasian faunal exchange, and overlap in time with a pronounced uplift of eastern Anatolia. Our analytical data indicate the onset of prominent suture‐parallel sediment transport from the collision zone of south‐eastern Anatolia into the Kyrenia Range of northern Cyprus, marking the drainage response to the continental collision between Arabia and Eurasia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号