首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A comprehensive interpretation of single and multichannel seismic reflection profiles integrated with biostratigraphical data and log information from nearby DSDP and ODP wells has been used to constrain the late Messinian to Quaternary basin evolution of the central part of the Alboran Sea Basin. We found that deformation is heterogeneously distributed in space and time and that three major shortening phases have affected the basin as a result of convergence between the Eurasian and African plates. During the Messinian salinity crisis, significant erosion and local subsidence resulted in the formation of small, isolated, basins with shallow marine and lacustrine sedimentation. The first shortening event occurred during the Early Pliocene (ca. 5.33–4.57 Ma) along the Alboran Ridge. This was followed by a major transgression that widened the basin and was accompanied by increased sediment accumulation rates. The second, and main, phase of shortening on the Alboran Ridge took place during the Late Pliocene (ca. 3.28–2.59 Ma) as a result of thrusting and folding which was accompanied by a change in the Eurasian/African plate convergence vector from NW‐SE to WNW‐ESE. This phase also caused uplift of the southern basins and right‐lateral transtension along the WNW‐ENE Yusuf fault zone. Deformation along the Yusuf and Alboran ridges continued during the early Pleistocene (ca. 1.81–1.19 Ma) and appears to continue at the present day together with the active NNE‐SSW trending Al‐Idrisi strike‐slip fault. The Alboran Sea Basin is a region of complex interplay between sediment supply from the surrounding Betic and Rif mountains and tectonics in a zone of transpression between the converging African and European plates. The partitioning of the deformation since the Pliocene, and the resulting subsidence and uplift in the basin was partially controlled by the inherited pre‐Messinian basin geometry.  相似文献   

2.
The Alhama de Murcia and Crevillente faults in the Betic Cordillera of southeast Spain form part of a network of prominent faults, bounding several of the late Tertiary and Quaternary intermontane basins. Current tectonic interpretations of these basins vary from late‐orogenic extensional structures to a pull‐apart origin associated with strike–slip movements along these prominent faults. A strike–slip origin of the basins, however, seems at variance both with recent structural studies of the underlying Betic basement and with the overall basin and fault geometry. We studied the structure and kinematics of the Alhama de Murcia and Crevillente faults as well as the internal structure of the late Miocene basin sediments, to elucidate possible relationships between the prominent faults and the adjacent basins. The structural data lead to the inevitable conclusion that the late Miocene basins developed as genuinely extensional basins, presumably associated with the thinning and exhumation of the underlying basement at that time. During the late Miocene, neither the Crevillente fault nor the Alhama de Murcia fault acted as strike–slip faults controlling basin development. Instead, parts of the Alhama de Murcia fault initiated as extensional normal faults, and reactivated as contraction faults during the latest Miocene–early Pliocene in response to continued African–European plate convergence. Both prominent faults presently act as reverse faults with a movement sense towards the southeast, which is clearly at variance with the commonly inferred dextral or sinistral strike–slip motions on these faults. We argue that the prominent faults form part of a larger scale zone of post‐Messinian shortening made up of SSE‐ and NNW‐directed reverse faults and NE to ENE‐trending folds including thrust‐related fault‐bend folds and fault‐propagation folds, transected and displaced by, respectively, WNW‐ and NNE‐trending, dextral and sinistral strike–slip (tear or transfer) faults.  相似文献   

3.
A series of analogue models are used to demonstrate how the multistage development of the Mid‐Polish Trough (MPT) could have been influenced by oblique basement strike–slip faults. Based on reinterpretation of palaeothickness, facies maps and published syntheses of the basin development, the following successive stages in the Mesozoic history of the south eastern part of the MPT were simulated in the models: (1) Oblique extension of the NW segment of the MPT connected with sinistral movement along the Holy Cross Fault (HCF, Early Triassic–latest Early Jurassic). (2) Oblique extension of both NW and SE segment of the MPT, parallel to the HCF (latest Early and Middle Jurassic). (3) Oblique extension of the SE segment of the MPT and much lesser extension of its NW segment connected with dextral movement along the HCF (Early Oxfordian–latest Early Kimmeridgian). (4) Oblique extension of the SE segment of the MPT and much lesser extension of its NW segment connected with dextral movement along the Zawiercie Fault (ZF, latest Early Kimmeridgian–Early Albian). (5) Oblique inversion of the NW segment of the MPT connected with dextral movement along the HCF (Early Albian–latest Cretaceous). (6) Oblique inversion of the SE segment of the MPT along the W–E direction (latest Cretaceous–Palaeogene). The different sense of movements of these two basement strike–slip faults (HCF and ZF) resulted in distinct segmentation of the basin and its SW margin by successive systems of extensional en‐echelon faults. The overall structure of this margin is controlled by the interference of the border normal faults with the en‐echelon fault systems related to successive stages of movement along the oblique strike–slip faults. This type of en‐echelon fault system is absent in the opposite NE‐margin of the basin, which was not affected by oblique strike–slip faults. The NE‐margin of the basin is outlined by a typical, steep and distinctly marked rift margin fault zone, dominated by normal and dip–slip/strike–slip faults parallel to its axis. Within the more extended segment of the basin, extensive intra‐rift faults and relay ramps develop, which produce topographic highs running across the basin. The change in the extension direction to less oblique relative to the basin axis resulted in restructuring of the fault systems. This change caused shifting of the basin depocentre to this margin. Diachronous inversion of the different segments of the basin in connection with movement along one of the oblique basement strike–slip faults resulted in formation of a pull‐apart sub‐basin in the uninverted SE‐segment of the basin. The results of the analogue models presented here inspire an overall kinematic model for the southeastern segment of the MPT as they provide a good explanation of the observed structures and the changes in the facies and palaeothickness patterns.  相似文献   

4.
Complex arrays of faults in extensional basins are potentially influenced by pre‐existing zones of weakness in the underlying basement, such as faults, shear zones, foliation, and terrane boundaries. Separating the influence of such basement heterogeneities from far‐field tectonics proves to be challenging, especially when the timing and character of deformation cannot be interpreted from seismic reflection data. Here we aim to determine the influence of basement heterogeneities on fault patterns in overlying cover rocks using interpretations of potential field geophysical data and outcrop‐scale observations. We mapped >1 km to meter scale fractures in the western onshore Gippsland Basin of southeast Australia and its underlying basement. Overprinting relationships between fractures and mafic intrusions are used to determine the sequence of faulting and reactivation, beginning with initial Early Cretaceous rifting. Our interpretations are constrained by a new Early Cretaceous U‐Pb zircon isotope dilution thermal ionization mass spectrometry age (116.04 ± 0.15 Ma) for an outcropping subvertical, NNW‐SSE striking dolerite dike hosted in Lower Cretaceous Strzelecki Group sandstone. NW‐SE to NNW‐SSE striking dikes may have signaled the onset of Early Cretaceous rifting along the East Gondwana margin at ca. 105–100 Ma. Our results show that rift faults can be oblique to their expected orientation when pre‐existing basement heterogeneities are present, and they are orthogonal to the extension direction where basement structures are less influential or absent. NE‐SW to ENE‐WSW trending Early Cretaceous rift‐related normal faults traced on unmanned aerial vehicle orthophotos and digital aerial images of outcrops are strongly oblique to the inferred Early Cretaceous N‐S to NNE‐SSW regional extension direction. However, previously mapped rift‐related faults in the offshore Gippsland Basin (to the east of the study area) trend E‐W to WNW‐ESE, consistent with the inferred regional extension direction. This discrepancy is attributed to the influence of NNE‐SSW trending basement faults underneath the onshore part of the basin, which caused local re‐orientation of the Early Cretaceous far‐field stress above the basement during rifting. Two possible mechanisms for inheritance are discussed—reactivation of pre‐existing basement faults or local re‐orientation of extension vectors. Multiple stages of extension with rotated extension vectors are not required to achieve non‐parallel fault sets observed at the rift basin scale. Our findings demonstrate the importance of (1) using integrated, multi‐scale datasets to map faults and (2) mapping basement geology when investigating the structural evolution of an overlying sedimentary basin.  相似文献   

5.
ABSTRACT Geological mapping and sedimentological investigations in the Guilin region, South China, have revealed a spindle‐ to rhomb‐shaped basin filled with Devonian shallow‐ to deep‐water carbonates. This Yangshuo Basin is interpreted as a pull‐apart basin created through secondary, synthetic strike‐slip faulting induced by major NNE–SSW‐trending, sinistral strike‐slip fault zones. These fault zones were initially reactivated along intracontinental basement faults in the course of northward migration of the South China continent. The nearly N–S‐trending margins of the Yangshuo Basin, approximately coinciding with the strike of regional fault zones, were related to the master strike‐slip faults; the NW–SE‐trending margins were related to parallel, oblique‐slip extensional faults. Nine depositional sequences recognized in Givetian through Frasnian strata can be grouped into three sequence sets (Sequences 1–2, 3–5 and 6–9), reflecting three major phases of basin evolution. During basin nucleation, most basin margins were dominated by stromatoporoid biostromes and bioherms, upon a low‐gradient shelf. Only at the steep, fault‐controlled, eastern margin were thick stromatoporoid reefs developed. The subsequent progressive offset and pull‐apart of the master strike‐slip faults during the late Givetian intensified the differential subsidence and produced a spindle‐shaped basin. The accelerated subsidence of the basin centre led to sediment starvation, reduced current circulation and increased environmental stress, leading to the extensive development of microbial buildups on platform margins and laminites in the basin centre. Stromatoporoid reefs only survived along the windward, eastern margin for a short time. The architectures of the basin margins varied from aggradation (or slightly backstepping) in windward positions (eastern and northern margins) to moderate progradation in leeward positions. A relay ramp was present in the north‐west corner between the northern oblique fault zone and the proximal part of the western master fault. In the latest Givetian (corresponding to the top of Sequence 5), a sudden subsidence of the basin induced by further offset of the strike‐slip faults was accompanied by the rapid uplift of surrounding carbonate platforms, causing considerable platform‐margin collapse, slope erosion, basin deepening and the demise of the microbialites. Afterwards, stromatoporoid reefs were only locally restored on topographic highs along the windward margin. However, a subsequent, more intense basin subsidence in the early Frasnian (top of Sequence 6), which was accompanied by a further sharp uplift of platforms, caused more profound slope erosion and platform backstepping. Poor circulation and oxygen‐depleted waters in the now much deeper basin centre led to the deposition of chert, with silica supplied by hydrothermal fluids through deep‐seated faults. Two ‘subdeeps’ were diagonally arranged in the distal parts of the master faults, and the relay ramp was destroyed. At this time, all basin margins except the western one evolved into erosional types with gullies through which granular platform sediments were transported by gravity flows to the basin. This situation persisted into the latest Frasnian. This case history shows that the carbonate platform architecture and evolution in a pull‐apart basin were not only strongly controlled by the tectonic activity, but also influenced by the oceanographic setting (i.e. windward vs. leeward) and environmental factors.  相似文献   

6.
P. Haughton 《Basin Research》2001,13(2):117-139
ABSTRACT The mechanisms driving subsidence in late orogenic basins are often not easily resolved on account of later fault reactivation and a rapidly changing stress field. Contained turbidites in such basins provide a unique opportunity of monitoring sea bed deformation and evolving bathymetry and hence patterns of subsidence during basin filling. A variety of interpretations have been proposed to explain subsidence in Neogene basins in SE Spain, including extensional, strike‐slip and thrust top mechanisms. Ponded turbidite sheets on the floor of the Neogene Sorbas Basin (SE Spain) were deposited by sand‐bearing currents which ran into enclosed bathymetric deeps where they underwent rapid suspension collapse. The structure and distribution of these sheets (and the thick mudstone caps which overlie them) act as a proxy for the containing sea bed bathymetry at the time of deposition. An analysis of the sheet architecture helps identify a trough‐axial zone of syndepositional faulting and reveals a westwards stepping of the ponding depocentre with time. Fault breaks at the sea bed influenced the position of flow arrest and the distribution of sandstone beds on the basin floor. Westward stepping of the deeper bathymetry was episodic and probably controlled by transverse faults. Re‐locations of the depocentre were accompanied by the destabilization of carbonate sand stores on the margins of the basin, resulting in the repeated emplacement of large‐volume carbonate megabeds and calciturbidites. The fill to the Sorbas Basin was shingled by the onset of compression in the east attributed to transfer of slip between intersecting strike‐slip fault strands. A sinistral fault (a splay of the Carboneras Fault System) propagated through the evolving basin fill from the east as the eastern part of the basin became inverted and the locus of subsidence migrated into the Tabernas area 20 km area to the west. The sedimentological analysis of the basin fill helps see through a late dextral overprint which ultimately juxtaposed basement rocks to the south against the inverted and upended basin, along a late slip‐modified unconformity. Conventional palaeostress analysis of fractures along the basin margin fails to see past this late dextral shearing event. Basin migration parallel to the E–W‐orientated basin axis, slip‐reversal (sinistral to dextral) and the active involvement of strike‐slip faults are now identified as important aspects of the evolution of the Sorbas Basin during the latestTortonian.  相似文献   

7.
《Basin Research》2018,30(1):97-131
The Danube Basin is situated between the Eastern Alps, Western Carpathians and Transdanubian mountain ranges and represents a classic petroleum prospection site. The basin fill is known from many 2D reflection seismic lines and deep wells with measured e‐logs which provided a good opportunity for theories about its evolution. New analyses of deep wells situated in the Danube Basin northeastern margin allowed us to refine stratigraphy and to interpret various depositional systems. This also allowed us to outline changes in provenance of sediment during the Cenozoic. The performed interpretation of the Palaeogene and Neogene depositional systems also confirmed the Oligocene–Early Miocene exhumation of the basin pre‐Neogene basement. Opening and development of the Middle to Late Miocene basin depocentres above the boundary between the Western Carpathians and Northern Pannonian domain was recognized. Our analysis contributed to a better understanding of the Hurbanovo–Diösjenő fault which acts as an inherited weakness zone along the boundary of two crustal fragments with different provenance. We document various basin types stacked one on another (retro‐arc, back‐arc and extensional hinterland basin). The analysis of sediment sources reveals intricate geodynamic processes during the Eastern Alpine–Western Carpathian orogenic system collision with European platform (formation of ALCAPA microplate) and its successive tectonics escape during the Pannonian Basin System origination.  相似文献   

8.
The development of high‐resolution 3D seismic cubes has permitted recognition of variable subvolcanic features mostly located in passive continental margins. Our study area is situated in a different tectonic setting, in the extensional Pannonian Basin system (central Europe) where the lithospheric extension was associated with a wide variety of magmatic suites during the Miocene. Our primary objective is to map the buried magmatic bodies, to better understand the temporal and spatial variation in the style of magmatism and emplacement mechanism within the first order Mid‐Hungarian Fault Zone (MHFZ) along which the substantial Miocene displacement took place. The combination of seismic, borehole and log data interpretation enabled us to delineate various previously unknown subvolcanic‐volcanic features. In addition, a new approach of neural network analysis on log data was applied to detect and quantitatively characterise hydrothermal mounds that are hard to interpret solely from seismic data. The volcanic activity started in the Middle Miocene and induced the development of extrusive volcanic mounds south of the NE‐SW trending, continuous strike‐slip fault zone (Hajdú Fault Zone). In the earliest Late Miocene (11.6–9.78 Ma), the style of magmatic activity changed resulting in emplacement of intrusions and development of hydrothermal mounds. Sill emplacement occurred from south‐east to north‐west based on primary flow‐emplacement structures. The time of sill emplacement and the development of hydrothermal mounds can be bracketed by onlapped forced folds and mounds. This time coincided with the acceleration of sedimentation producing poorly consolidated, water‐saturated sediments preventing magma from flowing to the paleosurface. The change in extensional direction resulted in change in fault pattern, thus the formerly continuous basin‐bounding strike‐slip fault became segmented which could facilitate the magma flow toward the basin centre.  相似文献   

9.
We report on new stratigraphic, palaeomagnetic and anisotropy of magnetic susceptibility (AMS) results from the Amantea basin, located on‐shore along the Tyrrhenian coast of the Calabrian Arc (Italy). The Miocene Amantea Basin formed on the top of a brittlely extended upper plate, separated from a blueschist lower plate by a low‐angle top‐to‐the‐west extensional detachment fault. The stratigraphic architecture of the basin is mainly controlled by the geometry of the detachment fault and is organized in several depositional sequences, separated by major unconformities. The first sequence (DS1) directly overlaps the basement units, and is constituted by Serravallian coarse‐grained conglomerates and sandstones. The upper boundary of this sequence is a major angular unconformity locally marked by a thick palaeosol (type 1 sequence boundary). The second depositional sequence DS2 (middle Tortonian‐early Messinian) is mainly formed by conglomerates, passing upwards to calcarenites, sandstones, claystones and diatomites. Finally, Messinian limestones and evaporites form the third depositional sequence (DS3). Our new biostratigraphic data on the Neogene deposits of the Amantea basin indicate a hiatus of 3 Ma separating sequences DS1 and DS2. The structural architecture of the basin is characterized by faulted homoclines, generally westward dipping, dissected by eastward dipping normal faults. Strike‐slip faults are also present along the margins of the intrabasinal structural highs. Several episodes of syn‐depositional tectonic activity are marked by well‐exposed progressive unconformities, folds and capped normal faults. Three main stages of extensional tectonics affected the area during Neogene‐Quaternary times: (1) Serravallian low‐angle normal faulting; (2) middle Tortonian high‐angle syn‐sedimentary normal faulting; (3) Messinian‐Quaternary high‐angle normal faulting. Extensional tectonics controlled the exhumation of high‐P/low‐T metamorphic rocks and later the foundering of the Amantea basin, with a constant WNW‐ESE stretching direction (present‐day coordinates), defined by means of structural analyses and by AMS data. Palaeomagnetic analyses performed mainly on the claystone deposits of DS1 show a post‐Serravallian clockwise rotation of the Amantea basin. The data presented in this paper constrain better the overall timing, structure and kinematics of the early stages of extensional tectonics of the southern Tyrrhenian Sea. In particular, extensional basins in the southern Tyrrhenian Sea opened during Serravallian and evolved during late Miocene. These data confirm that, at that time, the Amantea basin represented the conjugate extensional margin of the Sardinian border, and that it later drifted south‐eastward and rotated clockwise as a part of the Calabria‐Peloritani terrane.  相似文献   

10.
In areas of broadly distributed extensional strain, the back‐tilted edges of a wider than normal horst block may create a synclinal‐horst basin. Three Neogene synclinal‐horst basins are described from the southern Rio Grande rift and southern Transition Zone of southwestern New Mexico, USA. The late Miocene–Quaternary Uvas Valley basin developed between two fault blocks that dip 6–8° toward one another. Containing a maximum of 200 m of sediment, the Uvas Valley basin has a nearly symmetrical distribution of sediment thickness and appears to have been hydrologically closed throughout its history. The Miocene Gila Wilderness synclinal‐horst basin is bordered on three sides by gently tilted (10°, 15°, 20°) fault blocks. Despite evidence of an axial drainage that may have exited the northern edge of the basin, 200–300 m of sediment accumulated in the basin, probably as a result of high sediment yields from the large, high‐relief catchments. The Jornada del Muerto synclinal‐horst basin is positioned between the east‐tilted Caballo and west‐tilted San Andres fault blocks. Despite uplift and probable tilting of the adjacent fault blocks in the latest Oligocene and Miocene time, sediment was transported off the horst and deposited in an adjacent basin to the south. Sediment only began to accumulate in the Jornada del Muerto basin in Pliocene and Quaternary time, when an east‐dipping normal fault along the axis of the syncline created a small half graben. Overall, synclinal‐horst basins are rare, because horsts wide enough to develop broad synclines are uncommon in extensional terrains. Synclinal‐horst basins may be most common along the margins of extensional terrains, where thicker, colder crust results in wider fault spacing.  相似文献   

11.
The Central Graben in the Danish North Sea sector consists of a series of N–S to NW–SE trending, eastward‐tilted half‐grabens, bound to the east by the Coffee Soil Fault zone. This fault zone has a complex Jurassic history that encompasses at least two fault populations; N–S to NNW–SSE striking faults active in the Late Aalenian–Early Oxfordian, and NNW–SSE to WNW–ESE striking faults forming in Late Kimmeridgian time (sensu gallico), following a short period of tectonic quiescence. Sediment transport across the Coffee Soil Fault zone was controlled by fault array evolution, and in particular the development of relay ramps that formed potential entry points for antecedent drainage systems from the Ringkøbing–Fyn High east of the rift. Fault and isochore trends of the Upper Kimmeridgian–Lower Volgian succession in the northeast Danish Central Graben show that accommodation space was initially generated close to several minor, isolated or overlapping faults. Subsidence became focused along a few master faults in the Early Volgian through progressive linkage of selected faults. Seismic time isochore geometries, seismic facies, amplitude trends and well ties indicate the presence of coarse clastic lithologies locally along the fault zone. The deposits probably represent submarine mass flow deposits supplied from footwall degradation and possibly also from the graben hinterland via a relay ramp. The latter source appears to have been cut off as the relay ramp was breached and the footwall block are uplifted. Fault growth and linkage processes thus controlled the spatial and temporal trends of accommodation space generation and sediment supply to the rift basin.  相似文献   

12.
Mapping and correlation of 2D seismic reflection data define the overall subsurface structure of the East Gobi basin (EGB), and reflect Jurassic–Cretaceous intracontinental rift evolution through deposition of at least five distinct stratigraphic sequences. Three major northeast–southwest‐trending fault zones divide the basin, including the North Zuunbayan (NZB) fault zone, a major strike‐slip fault separating the Unegt and Zuunbayan subbasins. The left‐lateral NZB fault cuts and deforms post‐rift strata, implying some post‐middle‐Cretaceous movement. This fault likely also had an earlier history, based on its apparent role as a basin‐bounding normal or transtensional fault controlling deposition of the Jurassic–Cretaceous synrift sequence, in addition to radiometric data suggesting a Late Triassic (206–209 Ma) age of deformation at the Tavan Har locality. Deposits of the Unegt subbasin record an early history of basin subsidence beginning ~155 Ma, with deposition of the Upper Jurassic Sharilyn and Lower Cretaceous Tsagantsav Formations (synrift sequences 1–3). Continued Lower Cretaceous synrift deposition is best recorded by thick deposits of the Zuunbayan Formation in the Zuunbayan subbasin, including newly defined synrift sequences 4–5. Geohistory modelling supports an extensional origin for the EGB, and preliminary thermal maturation studies suggest that a history of variable, moderately high heat flow characterized the Jurassic–Cretaceous rift period. These models predict early to peak oil window conditions for Type 1 or Type 2 kerogen source units in the Upper Tsagantsav/Lower Zuunbayan Formations (Synrift Sequences 3–4). Higher levels of maturity could be generated from distal depocentres with greater overburden accumulation, and this could also account for the observed difference in maturity between oil samples from the Tsagan Els and Zuunbayan fields.  相似文献   

13.
Transtensional basins are sparsely described in the literature compared with other basin types. The oblique‐divergent plate boundary in the southern Gulf of California has many transtensional basins: we have studied those on San Jose island and two other transtensional basins in the region. One major type of transtensional basin common in the southern Gulf of California region is a fault‐termination basin formed where normal faults splay off of strike‐slip faults. These basins suggest a model for transtensional fault‐termination basins that includes traits that show a hybrid nature between classic rift and strike‐slip (pull‐apart) basins. The traits include combinations of oblique, strike‐slip and normal faults with common steps and bends, buttress unconformities between the fault steps and beyond the ends of faults, a common facies pattern of terrestrial strata changing upward and away from the faults into marine strata, small fault blocks within the basin that result in complex lateral facies relations, common Gilbert deltas, dramatic termination of the margin of the basin by means of fault reorganization and boundary faults dying and an overall short basin history (few million years). Similar transtensional fault‐termination basins are present in Death Valley and other parts of the Eastern California shear zone of the western United States, northern Aegean Sea and along ancient strike‐slip faults.  相似文献   

14.
The Sagaing Fault zone is the largest active fault in SE Asia, whose current displacement rate of around 1.8 cm year?1 is well‐established from GPS data. Yet determining the timing of initiation and total displacement on the fault zone has proven controversial. The timing problem can potentially be resolved through a newly identified syn‐kinematic sedimentary section directly related to displacement on the Sagaing Fault in the northern Minwun Ranges. The northern part of the western strand of the Sagaing Fault has a releasing splay geometry that sets up a syn‐kinematic oblique‐extensional basin in its hangingwall, here called the North Minwun Basin. A series of thick ridges probably composed of alluvial fan and fluvial sandstones dipping between 20 and 70° to the north, and younging northwards comprise the basin fill over a distance of 40 km. Total stratigraphic thickness (not vertical thickness) is estimated at 25 km. The basin in terms of depositional geometries, large displacements, and large stratigraphic thickness and appearance on satellite images has parallels with the extensional Hornelen basin, Norway and the strike‐slip Ridge Basin, California. Minimum likely displacement on the fault strand is 40 km, and may possibly be in excess of 100 km. The remote and inaccessible basin has yet to be properly dated, likely ages range between Eocene and Miocene. When dated the basin will provide an important constraint on the timing of deformation. The potential for this basin to constrain the timing and displacement along the northern part of the Sagaing Fault has not been previously recognised.  相似文献   

15.
During the Messinian—Pleistocene, the Peninsular Tyrrhenian margin underwent a NE—SW orientated stretching regime, with the formation of a NW—SE normal fault system and basins which are linked by NE—SW transfer fault zones. These fault zones border narrow and deep asymmetric basins. This paper uses geological and geophysical analysis (structural and stratigraphical data, seismic lines and anisotropy of magnetic susceptibility (AMS) data) to look at the evolution of one of these transfer-related basins, located south of Rome (Ardea basin). Comparison with other similar features indicates that the common characteristics of these transfer structures are: (i) the slip vector along the transfer fault is mostly dip-slip, which means that the local extensional direction is orthogonal to the regional extensional direction; (ii) development of a narrow and deep half-graben basin.  相似文献   

16.
Tertiary extension in the Aegean region has led to extensional detachment faulting, along which metamorphic core complexes were exhumed, among which is the Early to Middle Miocene South Aegean core complex. This paper focuses on the supradetachment basin developed during the final stages of exhumation of the South Aegean core complex along the Cretan detachment, plus the Late Miocene to Pliocene basin development and palaeogeography associated with the southward motion of Crete during the opening of the Aegean arc. For the latter purpose, the sedimentary and palaeobathymetric evolutions of a large number of Middle Miocene to Late Pliocene sequences exposed on Crete, Gavdos and Koufonisi were studied. The supradetachment basin development of Crete is characterised by a break‐up of the hanging wall of the Cretan detachment into extensional klippen and subsequent migration of laterally coexisting sedimentary systems, and finally the deformation of the exhumed core complex by processes related to the opening of the Aegean arc. Hence, three main tectonic phases are recognised: (1) Early to Middle Miocene N–S extension formed during the Cretan detachment, exhumed in the South Aegean core complex. The Cretan detachment remained active until 11–10 Ma, based on the oldest sediments that unconformably overlie the metamorphic rocks. Successions older than 11–10 Ma unconformably overlie only the hanging wall of the Cretan detachment, and do not contain fragments of the footwall rocks; they therefore predate the oldest exposure of the metamorphic rocks of the footwall. The hanging wall rocks and Middle Miocene sediments form isolated blocks on top of the exhumed metamorphic rocks, which are interpreted as extensional klippen. (2) From approximately 10 Ma onward, southward migration of the area that presently covers Crete was accompanied by E–W extension, and the opening of the Sea of Crete to the north. Contemporaneously, large folds with WNW–ESE striking, NNE dipping axial planes developed, possibly in response to sinistral transpression. (3) During the Pliocene, Crete emerged and tilted to the NNW, probably as a result of left‐lateral transpression in the Hellenic fore‐arc, induced by the collision with the African promontory.  相似文献   

17.
Along‐strike structural linkage and interaction between faults is common in various compressional settings worldwide. Understanding the kinematic history of fault interaction processes can provide important constraints on the geometry and evolution of the lateral growth of segmented faults in the fold‐and‐thrust belts, which are important to seismic hazard assessment and hydrocarbon trap development. In this study, we study lateral structural geometry (fault displacement and horizon shortening) of thrust fault linkages and interactions along the Qiongxi anticline in the western Sichuan foreland basin, China, using a high‐resolution 3D seismic reflection dataset. Seismic interpretation suggests that the Qiongxi anticline can be related to three west‐dipping, hard‐linked thrust fault segments that sole onto a regional shallow detachment. Results reveal that the lateral linkage of fault segments limited their development, affecting the along‐strike fault displacement distributions. A deficit between shortening and displacement is observed to increase in linkage zones where complex structural processes occur, such as fault surface bifurcation and secondary faulting, demonstrating the effect of fault linkage process on structural deformation within a thrust array. The distribution of the geometrical characteristics shows that thrust fault development in the area can be described by both the isolated fault model and the coherent fault model. Our measurements show that new fault surfaces bifurcate from the main thrust ramp, which influences both strain distribution in the relay zone and along‐strike fault slip distribution. This work fully describes the geometric and kinematic characteristics of lateral thrust fault linkage, and may provide insights into seismic interpretation strategies in other complex fault transfer zones.  相似文献   

18.
The Celtic Sea basins lie on the continental shelf between Ireland and northwest France and consist of a series of ENE–WSW trending elongate basins that extend from St George’s Channel Basin in the east to the Fastnet Basin in the west. The basins, which contain Triassic to Neogene stratigraphic sequences, evolved through a complex geological history that includes multiple Mesozoic rift stages and later Cenozoic inversion. The Mizen Basin represents the NW termination of the Celtic Sea basins and consists of two NE–SW-trending half-grabens developed as a result of the reactivation of Palaeozoic (Caledonian, Lower Carboniferous and Variscan) faults. The faults bounding the Mizen Basin were active as normal faults from Early Triassic to Late Cretaceous times. Most of the fault displacement took place during Berriasian to Hauterivian (Early Cretaceous) times, with a NW–SE direction of extension. A later phase of Aptian to Cenomanian (Early to Late Cretaceous) N–S-oriented extension gave rise to E–W-striking minor normal faults and reactivation of the pre-existing basin bounding faults that propagated upwards as left-stepping arrays of segmented normal faults. In common with most of the Celtic Sea basins, the Mizen Basin experienced a period of major erosion, attributed to tectonic uplift, during the Paleocene. Approximately N–S Alpine regional compression-causing basin inversion is dated as Middle Eocene to Miocene by a well-preserved syn-inversion stratigraphy. Reverse reactivation of the basin bounding faults was broadly synchronous with the formation of a set of near-orthogonal NW–SE dextral strike-slip faults so that compression was partitioned onto two fault sets, the geometrical configuration of which is partly inherited from Palaeozoic basement structure. The segmented character of the fault forming the southern boundary of the Mizen Basin was preserved during Alpine inversion so that Cenozoic reverse displacement distribution on syn-inversion horizons mirrors the earlier extensional displacements. Segmentation of normal faults therefore controls the geometry and location of inversion structures, including inversion anticlines and the back rotation of earlier relay ramps.  相似文献   

19.
Integrated analysis and modelling of apatite fission track with vitrinite reflectance (VR) data allows the timing, magnitude and pattern of Palaeogene subsidence and Neogene inversion to be established for an uplifted and largely denuded basin: the Buller Coalfield, New Zealand. At the time of maximum subsidence in the late Oligocene, the basin consisted of an extensional half graben, bounded to the west by the Kongahu Fault Zone (KFZ), with up to 6 km of upper Eocene to Oligocene section adjacent to it; currently, only a few tens of metres of basal coal measures on basement are preserved on top of a range 800–1000 m above sea level. Integrated modelling of the VR and fission track data show that the deepest parts of the basin were inverted during two Miocene compressional phases (24–19 Ma and 13–8 Ma), and are consistent with a further phase of inversion during the Quaternary that formed the present topography. Palinspastic restoration of the three phases of inversion shows that the basin was not inverted in a simple way: most of the rock uplift/denudation adjacent to the KFZ occurred during the early Miocene phase, and at the same time burial occurred in the south-eastern part of the basin (maximum temperatures were experienced at different times at different places in the basin); during the middle to late Miocene there was broad uplift in the central and eastern parts of the coalfield. Because the timing and magnitude of uplift have been derived from the zone of inversion, they can be compared independently with the timing of unconformity development and rapid subsidence in the adjacent foredeeps, particularly the Westport Trough. For the middle to late Miocene phase of inversion, we show that during the first 1–2 million years of compression, the uplift within the coalfield also involved the margins of the Westport Trough, contributing to unconformity development; subsequently, uplift continued on the inversion structure but the margins of the Westport Trough subsided rapidly. This is explained by a model of stick slip behaviour on the boundary faults, especially for the KFZ. When compression started the fault zone has locked and uplift extends into the basin, whereas subsequently the fault zone unlocks, and the inversion structure overrides the basin margin, thereby loading it and causing subsidence.  相似文献   

20.
Reconnaissance level geomorphological observations in the northern part of Evia (Euboea) Island, suggest that a major topographic feature, the 17 km long and 15 km wide Nileas depression (NDpr), corresponds to a previously undetected graben structure, bounded by fault zones of ENE–WSW to NE–SW general strike. These fault zones have been active in the Quaternary, since they affect the Neogene deposits of the Limni–Histiaia basin. They strike transverse to the NW–SE active fault zones that bound northern Evia in the specific area and are characterised along most of their length by subtle geomorphic signatures in areas of extensive forest cover and poor exposure.The NDpr was formed during the Early–Middle Quaternary, after the deposition of the Neogene basin fill. During the Middle–Late Quaternary, the NW–SE fault zones that bound northern Evia have been the main active structures, truncating and uplifting the NDpr to a perched position in relation to the northern Gulf of Evia graben and the submarine basin on the Aegean side of the island. The present-day morphology of the NDpr, with an interior (floor) comprised of Middle Pleistocene erosional surfaces extensively dissected by drainages, was shaped by erosion during this uplift. Judging from their geomorphic signatures, the fault zones that bound the NDpr must have been characterised by low or very low rates of activity during the Late Quaternary. Yet, that they may still be accommodating strain today is suggested by moderate earthquakes that have been recorded within the NDpr.The fault zone at the SE flank of the NDpr (Prokopi–Pelion fault zone) may be very important in terms of earthquake segmentation of the active NW–SE Dirfys fault zone that controls the Aegean coast of northern Evia, given that the intersection between the two presents striking morpho-structural similarities with the intersection of two fault zones with the same directions on the mainland (the Atalanti and Hyampolis fault zones), which is known to have acted as a barrier to the propagation of the Atalanti earthquake ruptures in 1894.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号